Next Generation of Logic
Programming Systems

Gopal Gupta
The University of Texas at Dallas

ALPS LAB 0 UEID)

Acknowledgements

People:
Enrico Pontelli (New Mexico State Univ)
Hai-Feng Guo (University of Nebraska) & Karen Villaverde (NMSU)
Many others, discussions with whom have influenced our work:

David H. D. Warren, Vitor Santos Costa, Manuel Hermenegildo,
Khayri Ali, Peter Szeredi, Feliks Kluzinak, Mats Carlsson, Ines Dutra,
Rong Yang, Tony Beuamont, Ines Dutra, Kish Shen, Raed Sindaha, ...

Graduate students at UTD: A. Bansal, A. Mallya, L. Simon, Q. Wang
Funding Agencies:
National Science Foundation

Department of Energy (Sandia Labs)
NATO, Fullbright, JAIST (Japan), State of Texas

ALPS LAB @

Brieft History of Parallel LP

Work on parallel LP began as soon as LP was
invented: Pollard (Kowalski’s student) did first
thesis in 1981.

Interest increased with the Japanese 5™ Gen. Project:

Goal of the FGCS project: to build “fast, intelligent computers™
Speed to come from parallel processing
Intelligence via Al; realized through LP

Soon Parallel LP became synonymous with the
FGCS project.

ALPS LAB @

NUMBER Y

VOLUME 26

OMMUNICATIONS

m
[+s}
]

OF THE

The Global FGCS Project

FGCS spurred global interest 1in (parallel) LP (MCC, ECRC)

ECRC produced PEPSys (but, more importantly, produced
Constraint Logic Programming).

MCC produced &-Prolog and spear-headed important work in
deductive databases.

Many other groups got into parallel LP:
Bristol, Madrid, SICS, Argonne (Giga Lips project)

And 1mportant systems were produced:
Aurora, Muse, &-Prolog, Andorra-I, DDAS, EAM

Work continued in other groups in the 90s:

New Mexico State University
U. of Porto/UFRJ
Madrid (compile-time analysis)

ALPS LAB @

Global FGCS (cont’d)

Mistakes that the FGCS made:

Commitment to a h/w intensive approach (swept by RISC m/c)

Implementors dictated the language:
Concurrent Prolog to GHC to Flat GHC to KL1

KL1 was too inexpressive & low-level a language for parallelism
By late 80s, software impl. of KLL1 would beat its hardware impl.

Lessons to learn:
Do not change the language to ease implementation
Do not rely on custom hardware (Yes! Use the Intel multicore h/w ©)

The Japanese were ahead of their times; we did not know then
how to implement parallel search (or-parallelism) efficiently

Therefore, the FGCS project ignored or-parallelism.
We now know how to implement or-parallelism efficiently.

ALPS LAB @

Global FGCS Project’s Assumptions

Exploit parallelism implicitly & from full logic programming.

Stick to Prolog (Warren): By default, the user should see the
same operational semantics as in a sequential implementation.

No slowdown guarantee (Hermenegildo): High sequential
efficiency; parallel overhead should be a fixed factor (< 1).

Putting just one more processor should produce a speed-up.

We are interested in speed, not speed-ups

Implies: do not build your own sequential engine; extend existing ones
Simplicity of implementation (Gupta): The parallel impl.
techniques should be simple; for two reasons:

Other people will incorporate them in their system

Impl. overhead will be low (easier to guarantee no slowdown)

No distrib. fat: One feature should not affect another’s pert.

ALPS LAB @

Briet Overview of Our Work

Goal: Exploit parallelism implicitly mainly from symbolic
applications by programming them in (C)LP.

Symbolic Applications = Non-numerical applications =
Reasoning/NLP/Databases/Compiling/Web/Decision support.

Applications of LP have been steadily increasing: Learning
(ILP), Verification (Tabled LP), Planning (ASP).

Parallelism from numerical applications can also be exploited
(number crunching in Fortran, control in LP)

Aim: to exploit parallelism from 2-20 processors; in the end
we also succeeded in building scalable (or-) parallel systems.

ALPS LAB @

Types ot Parallelism

Or-parallelism: multiple matching rules explored in parallel

IAP: goals that do not share bindings are executed in parallel
(equiv. to evaluating args in parallel in FP)

DAP: goals that share bindings explored in parallel preserving
dependencies (equivalent to executing a call and its argument
in parallel).
gsort([], [1).
gsort([PIT], L) :- partition(T, P, A, B),
gsort(A, L1),
gsort(B, L2),
append(L 1 S[RIL2]), 1%

ALPS LAB @

Types of Parallelism (cont’d)

Data Or-parallelism: member(X, [1, .., n]) type of
calls automatically flattened into a single choicepoint
at run time under certain conditions

Last Alternative Optimization
Data And-parallelism: map(P, [1, ..., n], R)
automatically flattened into a single parcall frame at

runtime under certain conditions
Last Parallel Call Optimization

ALPS LAB @

Parallel LP Systems

Large number of systems built:
Or-parallelism: Aurora (Bristol), Muse (SICS)
IAP: &-Prolog (MCC/Madrid), &-ACE (NMSU)
DAP: KL1 (ICOT), Parlog (Imperial), DDAS (Cambridge)

Challenge: combine all these forms of parallel
systems 1nto one

Attempted by the ACE system

ALPS LAB @

The ACE System

Exploits all sources of parallelism

Or-parallelism, independent and-parallelism, dependent and-
parallelism, data or-parallelism, data and-parallelism + coroutining

Engine highly optimized (based on SICStus Prolog
with many optimizations for parallelism added)

Massive parallelism was not the aim; desktop
multiprocessors (including multicores)

Shown good performance over a range of programs,
many of which are thousands of line long.

ALPS LAB 0 VD)

The ACE System

ACE organizes processors in teams (cf: Andorra-I)
IAP/DAP exploited within processors in a team
Or-parallelism exploited between teams

Parallel overhead: approximately 5%;
Supports full Prolog
Ideal for network of distributed shared memory mult.

Lessons learned from the ACE project:
Parallelism can be exploited from symbolic apps
And-parallelism harder to exploit in a scalable manner
Or-parallelism easier to exploit in a scalable manner

ALPS LAB 0 VD)

The ACE System: Performance

9.00 - 2.00 |
8.00 - 5.00
o 700 - R
_g 6.00 - S 600F
2 500 2 B osool
o Q.
S 4.00 o V1 400k
3.00 4 3.00
2.00 - 2.00
1.00 - 1.00 A4 -
1 1 1 1 1 1 1 1 1 1
200 400 600 800 1000 200 400 600 800 1000
No. of Agents Speedups No. of Agents

Fig (i) Fig (ii)

Figure 1: Speedups in ACE

ALPS LAB ¢ UHID)

ACE Performance: Artwork

Query ACE Agents
1 2 3 4

Sentence; | 4810 | 3620 | 1623 | 1503

Table 1: Parallel prediction (Sun Spare, times in ms.)

ALPS LAB ¢ UHID)

ACE Performance: Artwork

ArtWork on ACE

(And-parallel Execution)

14 t _ 1
—— Discourse 2 |
12 m—8 Discourse 1 T
10 | -
a |]
A -
o) : iy
o
W 6 O |
4+ O
0
2 |
- O
0 ' 1 ' | f
0 5 10 15

No. of Processors

Figure 2: Speedups for and-Parallel Artwork

ALPS LAB ¢ UHID)

ACE Performance: ULTRA

Cluery ACE Agents
1 2 4
English to Chinese | 322669 | 200402 (1.11) | 251682 (1.29)

Table 3: Or-parallelism in ULTRA (Sequent, ms.)

30505 (3.0)

18370 (4.08)

10057 (9.1)

Croals ACE agents

executed 1 2 3 3 10 15 18

Eng to Ger | 562740 | 282339 (1.99) | 190115 (2.96) | 128500 (4.38) | 65283 (8.62) | 46507 (12.1) | 37768 (14.9)
[Eng to Chin | 322660 | 160100 (2.0) | 108642 (2.97) 70145 (4.6) | 87088 (8.7) | 24631 (13.1) | 20817 (15.5)
_Eng to -‘F?jmu 91519 45750 (2.0)

G770 (13.5)

5684 (16.1)

Table 4: Execution Times for ULTRA (Sequent Symmetry, times in ms.)

ALPS LAB @

ACE Performance: ULTRA

Ultra on ACE

(And-parallel Execution)

15
= English to German

English to Chinese
English to Spanish

10

Speedup

E| 1 1 1
0 5 10 15
No. of Processors

ALPS LAB ¢ VEID)

Scalable Or-parallelism

One reason why the Japanese FGCS project failed was the
inability to implement or-parallelism efficiently (the first
thing to be thrown out).

Today the multiple environment representation problem 1s
understood well.

We know how to implement or-parallelism including on
scalable parallel machines

Stack splitting: generalization of stack-copying in which
alternatives are distributed at the time of stack copying.

Leads to superb performance on all types of parallel m/c.

ALPS LAB @

Stack-splitting Performance

Parallel overhead: 5-10%; 14 proc. Sun Sparc

Benchimark 7= Agents
1 | 2 | 4 | 8 14
9-Clostas 715.360 | 3652058 | 184.141 | 92.165 | 53.453
Stable 653.705 | 368,943 | 185474 | 92,811 | 53.860
Knight 275.737 | 141.213 | T0.528 | 35.539 | 22.403
Send More 115.183 | 65.271 31.447 | 16.4596 | 9.656
5-Clostas 66.392 34,251 17.192 5.680 5.202
8- Puzzle 52.945 29.601 15.026 7.845 4.754
Bart 25.562 15.411 6.865 3.577 2.144
Solitaire 12.912 7.598 3.813 2.029 1.335
10-Clueens T.575 3.922 2.087 1.378 1.141
Hamilton 6.895 3.879 1.940 1.151 0.761
Map Coloring 2.036 1.298 0.696 0.4749 0.430
S-CJueens 0.306 0.198 0.143 0.157 0.149
Table 1: Incremental Stack-splitting (sec.)

ALPS LAB (0 ["EHDD

Stack-splitting on Beowult

Benchmark

Processors

1 | 2 | 4 | 8 | 16 | 32
9 Costas | 412.570 | 210.228 | 105.132 | 52.686 | 26.547 | 14.075
Knight 150.950 | 81.615 | 40.020 | 20.754 | 10.030 | 8248
Stable 62.638 | 35.200 | 17.800 | 0.117 | 4844 | 3.315
Send More | 61.817 | 32.053 | 17.317 | 8.031 | 41023 | 3.016
8 Costas | 38.681 | 10746 | 0.030 | 5052 | 2,733 | 1.753
S Puzzle | 27.810 | 15.387 | 8.442 | 10.522 | 3.128 | 5.040
Bart 13.610 | 7.058 | 4000 | 2031 | 1.600 | O.811
Solitaire 5000 | 3538 | LRIl | 1.003 | 0.628 | 0.635
10 Queens | 4.572 | 2418 | 1.380 | 0.821 | 1.043 | 0.905
Hamilion 3175 | 1807 | 0.952 | 0.610 | 0.458 | 0.486
Map Coloring | 1.113 | 0702 | 0.430 | 0.310 | 0.318 | 0.348
8 Queens 0.185 | 0.162 | 0.166 | 0.208 | 0.169 | 0.180

Table 4: Timings for Incremental Stack-Splitting (Time in sec.)

ALPS LAB @

Future LP Systems

LP 1s a vibrant field: more and more applications are being
shown to be elegantly solvable by advanced LP systems:
Tabled LP for Verification and Semantic Web apps
Inductive LP for Machine Learning apps
Constraint LP for Optimization/Search problems
Answer Set Programming for Planning and reasoning problems

These advances have been made independent of each other.

Challenge for the LP community 1s to combine these advances
into a single system in which parallelism 1s also exploited.

Such a system will allow highly complex applications to be
developed with unprecedented ease.

ALPS LAB @

Need for Simple Impl. Techniques

Problem with declarative languages 1s that their impl.
technology 1s very complex: main reason why multiple
advances 1n LP have not been integrated into one.

Challenge for implementors: design techniques that are so
simple that they can be incorporated in any LP system in a
few man months of work.

Obviously, we have been working on these techniques:

Stack splitting for realizing or-parallelism
DRA for realizing tabled LP
Co-recursion for realizing ASP

Continuation trailing for realizing Andorra-I style coroutining

ALPS LAB @

Possible Applications

We are working on this next generation LP system that
combines constraints, tabling, andorra-I, parallelism & ASP

Significantly complex applications become possible:
Model checking of specifications

Verification of timed systems (more general type of timed constraints
become possible)

Complex planning/agent applications including those involving real-
time become possible

Semantic web applications (e.g., implementations of description
logics) can be easily implemented.

Bio-informatics applications w/ constraint LP

In all cases, exploitation of parallelism will result in
performance that we think will be significantly better than that
of dedicated systems.

ALPS LAB @

Declarative Languages

As we demonstrate the ease with which declarative languages
can solve highly complex problems, declarative languages
will eventually prevail.

Similar to debate between Roman numerals and decimal nos.;
it took 100s of years for the world to accept decimal numbers.

IT industry 1s gradually moving towards declarative langs:
APIs: programming with functions

Automatic memory management (in Java, then in C#)

(more) logical pointers (i.e., less distinction between pointer & its
value; pointer vs reference)

However, the most critical change needed (single assignment)
not adopted yet; may take 50 years ©

ALPS LAB @

Conclusions

Parallelism can be exploited implicitly from logic programs.
Considerable work done in building parallel LP systems.

Considerable work done in making LLP systems suitable for advanced
(intelligent) applications (tabled LP, ILP, ASP, constraints).

The implementation techniques are reasonably well understood and
various parallel systems built.

Considerable progress has been made in building support tools: automatic
parallelizers, granularity analyzers, parallel execution visualization tools.

Future work: develop very simple implementation techniques that will
help in combining various advanced LP systems along with parallelism to
produce a super powerful, super fast LP system that will

REALIZE THE FGCS DREAM

ALPS LAB @

Message

The field of LP and parallel
LP 1s ready tor multicores

Sth Gen Project: Reissue the Challenge

Advances in LP permit highly advanced (intelligent) apps:
Tabled LP for Verification, Semantic Web
ASP for planning, non-monotonic reasoning
ILP for learning applications
Constraint LP for search/optimization applications

Inexpensive multi-cores are becoming available, and the LP
community knows how to efficiently exploit parallelism

I'TS TIME TO RESTART THE FIFTH GENERATON
PROJECT WHICH WILL PUT 1 and 2 TOGETHER
TO OBTAIN INTELLIGENCE AND SPEED

ALPS LAB @

S TEMBER 1983 VOoLUME 26 NUMBER

OMMUNICATIONS

OF THE

References

G. Gupta, E. Pontelli, K. Ali, M. Carlsson, M.
Hermenegildo. Parallel Execution of Prolog Programs:

A Survey. ACM Transactions on Programming
Languages and Systems, Vol 23, No. 4, pp. 472-602.

G. Gupta. Next Generation Logic Programming
Systems. Technical Report, UT Dallas. 2003.

E. Pontelli. High Performance Logic Programmng. Ph.
D. Thesis, NMSU, 1997.

H-F Guo. High Performance Parallel Prolog Systems.
Ph.D. Thesis, NMSU, 2000.

K. Villaverde. Scalable Parallel Prolog on the Beowulf.
Ph.D. thesis. NMSU, 2003.

ALPS LAB 0 VD)

