
Next Generation of Logic
Programming Systems

Gopal Gupta
The University of Texas at Dallas

Acknowledgements

• People:
• Enrico Pontelli (New Mexico State Univ)
• Hai-Feng Guo (University of Nebraska) & Karen Villaverde (NMSU)
• Many others, discussions with whom have influenced our work:

David H. D. Warren, Vitor Santos Costa, Manuel Hermenegildo,
Khayri Ali, Peter Szeredi, Feliks Kluzinak, Mats Carlsson, Ines Dutra,
Rong Yang, Tony Beuamont, Ines Dutra, Kish Shen, Raed Sindaha, …

• Graduate students at UTD: A. Bansal, A. Mallya, L. Simon, Q. Wang

• Funding Agencies:
• National Science Foundation
• Department of Energy (Sandia Labs)
• NATO, Fullbright, JAIST (Japan), State of Texas

Brief History of Parallel LP

• Work on parallel LP began as soon as LP was
invented: Pollard (Kowalski’s student) did first
thesis in 1981.

• Interest increased with the Japanese 5th Gen. Project:
• Goal of the FGCS project: to build “fast, intelligent computers”
• Speed to come from parallel processing
• Intelligence via AI; realized through LP

• Soon Parallel LP became synonymous with the
FGCS project.

The Global FGCS Project

• FGCS spurred global interest in (parallel) LP (MCC, ECRC)
• ECRC produced PEPSys (but, more importantly, produced

Constraint Logic Programming).
• MCC produced &-Prolog and spear-headed important work in

deductive databases.
• Many other groups got into parallel LP:

• Bristol, Madrid, SICS, Argonne (Giga Lips project)

• And important systems were produced:
• Aurora, Muse, &-Prolog, Andorra-I, DDAS, EAM

• Work continued in other groups in the 90s:
• New Mexico State University
• U. of Porto/UFRJ
• Madrid (compile-time analysis)

Global FGCS (cont’d)

• Mistakes that the FGCS made:
• Commitment to a h/w intensive approach (swept by RISC m/c)
• Implementors dictated the language:

• Concurrent Prolog to GHC to Flat GHC to KL1
• KL1 was too inexpressive & low-level a language for parallelism
• By late 80s, software impl. of KL1 would beat its hardware impl.

• Lessons to learn:
• Do not change the language to ease implementation
• Do not rely on custom hardware (Yes! Use the Intel multicore h/w �)

• The Japanese were ahead of their times; we did not know then
how to implement parallel search (or-parallelism) efficiently
• Therefore, the FGCS project ignored or-parallelism.

• We now know how to implement or-parallelism efficiently.

Global FGCS Project’s Assumptions

• Exploit parallelism implicitly & from full logic programming.
• Stick to Prolog (Warren): By default, the user should see the

same operational semantics as in a sequential implementation.
• No slowdown guarantee (Hermenegildo): High sequential

efficiency; parallel overhead should be a fixed factor (< 1).
• Putting just one more processor should produce a speed-up.
• We are interested in speed, not speed-ups
• Implies: do not build your own sequential engine; extend existing ones

• Simplicity of implementation (Gupta): The parallel impl.
techniques should be simple; for two reasons:
• Other people will incorporate them in their system
• Impl. overhead will be low (easier to guarantee no slowdown)

• No distrib. fat: One feature should not affect another’s perf.

Brief Overview of Our Work

• Goal: Exploit parallelism implicitly mainly from symbolic
applications by programming them in (C)LP.

• Symbolic Applications = Non-numerical applications =
Reasoning/NLP/Databases/Compiling/Web/Decision support.

• Applications of LP have been steadily increasing: Learning
(ILP), Verification (Tabled LP), Planning (ASP).

• Parallelism from numerical applications can also be exploited
(number crunching in Fortran, control in LP)

• Aim: to exploit parallelism from 2-20 processors; in the end
we also succeeded in building scalable (or-) parallel systems.

Types of Parallelism

• Or-parallelism: multiple matching rules explored in parallel
• IAP: goals that do not share bindings are executed in parallel

(equiv. to evaluating args in parallel in FP)
• DAP: goals that share bindings explored in parallel preserving

dependencies (equivalent to executing a call and its argument
in parallel).

qsort([], []).
qsort([P|T], L) :- partition(T, P, A, B),

qsort(A, L1),
qsort(B, L2),

append(L1, [P|L2], L).

Types of Parallelism (cont’d)

• Data Or-parallelism: member(X, [1, .., n]) type of
calls automatically flattened into a single choicepoint
at run time under certain conditions

• Last Alternative Optimization

• Data And-parallelism: map(P, [1, …, n], R)
automatically flattened into a single parcall frame at
runtime under certain conditions

• Last Parallel Call Optimization

Parallel LP Systems

• Large number of systems built:
• Or-parallelism: Aurora (Bristol), Muse (SICS)
• IAP: &-Prolog (MCC/Madrid), &-ACE (NMSU)
• DAP: KL1 (ICOT), Parlog (Imperial), DDAS (Cambridge)

• Challenge: combine all these forms of parallel
systems into one
• Attempted by the ACE system

The ACE System

• Exploits all sources of parallelism
• Or-parallelism, independent and-parallelism, dependent and-

parallelism, data or-parallelism, data and-parallelism + coroutining

• Engine highly optimized (based on SICStus Prolog
with many optimizations for parallelism added)

• Massive parallelism was not the aim; desktop
multiprocessors (including multicores)

• Shown good performance over a range of programs,
many of which are thousands of line long.

The ACE System

• ACE organizes processors in teams (cf: Andorra-I)
• IAP/DAP exploited within processors in a team
• Or-parallelism exploited between teams

• Parallel overhead: approximately 5%;
• Supports full Prolog
• Ideal for network of distributed shared memory mult.
• Lessons learned from the ACE project:

• Parallelism can be exploited from symbolic apps
• And-parallelism harder to exploit in a scalable manner
• Or-parallelism easier to exploit in a scalable manner

The ACE System: Performance

ACE Performance: Artwork

ACE Performance: Artwork

ACE Performance: ULTRA

ACE Performance: ULTRA

Scalable Or-parallelism

• One reason why the Japanese FGCS project failed was the
inability to implement or-parallelism efficiently (the first
thing to be thrown out).

• Today the multiple environment representation problem is
understood well.

• We know how to implement or-parallelism including on
scalable parallel machines

• Stack splitting: generalization of stack-copying in which
alternatives are distributed at the time of stack copying.

• Leads to superb performance on all types of parallel m/c.

Stack-splitting Performance
• Parallel overhead: 5-10%; 14 proc. Sun Sparc

Stack-splitting on Beowulf

Future LP Systems

• LP is a vibrant field: more and more applications are being
shown to be elegantly solvable by advanced LP systems:

• Tabled LP for Verification and Semantic Web apps
• Inductive LP for Machine Learning apps
• Constraint LP for Optimization/Search problems
• Answer Set Programming for Planning and reasoning problems

• These advances have been made independent of each other.
• Challenge for the LP community is to combine these advances

into a single system in which parallelism is also exploited.
• Such a system will allow highly complex applications to be

developed with unprecedented ease.

Need for Simple Impl. Techniques

• Problem with declarative languages is that their impl.
technology is very complex: main reason why multiple
advances in LP have not been integrated into one.

• Challenge for implementors: design techniques that are so
simple that they can be incorporated in any LP system in a
few man months of work.

• Obviously, we have been working on these techniques:
• Stack splitting for realizing or-parallelism
• DRA for realizing tabled LP
• Co-recursion for realizing ASP
• Continuation trailing for realizing Andorra-I style coroutining

Possible Applications
• We are working on this next generation LP system that

combines constraints, tabling, andorra-I, parallelism & ASP
• Significantly complex applications become possible:

• Model checking of specifications
• Verification of timed systems (more general type of timed constraints

become possible)
• Complex planning/agent applications including those involving real-

time become possible
• Semantic web applications (e.g., implementations of description

logics) can be easily implemented.
• Bio-informatics applications w/ constraint LP

• In all cases, exploitation of parallelism will result in
performance that we think will be significantly better than that
of dedicated systems.

Declarative Languages
• As we demonstrate the ease with which declarative languages

can solve highly complex problems, declarative languages
will eventually prevail.

• Similar to debate between Roman numerals and decimal nos.;
it took 100s of years for the world to accept decimal numbers.

• IT industry is gradually moving towards declarative langs:
• APIs: programming with functions
• Automatic memory management (in Java, then in C#)
• (more) logical pointers (i.e., less distinction between pointer & its

value; pointer vs reference)

• However, the most critical change needed (single assignment)
not adopted yet; may take 50 years �

Conclusions
• Parallelism can be exploited implicitly from logic programs.
• Considerable work done in building parallel LP systems.
• Considerable work done in making LP systems suitable for advanced

(intelligent) applications (tabled LP, ILP, ASP, constraints).
• The implementation techniques are reasonably well understood and

various parallel systems built.
• Considerable progress has been made in building support tools: automatic

parallelizers, granularity analyzers, parallel execution visualization tools.
• Future work: develop very simple implementation techniques that will

help in combining various advanced LP systems along with parallelism to
produce a super powerful, super fast LP system that will

REALIZE THE FGCS DREAM

Message

The field of LP and parallel
LP is ready for multicores

5th Gen Project: Reissue the Challenge
1. Advances in LP permit highly advanced (intelligent) apps:

• Tabled LP for Verification, Semantic Web
• ASP for planning, non-monotonic reasoning
• ILP for learning applications
• Constraint LP for search/optimization applications

2. Inexpensive multi-cores are becoming available, and the LP
community knows how to efficiently exploit parallelism

ITS TIME TO RESTART THE FIFTH GENERATON
PROJECT WHICH WILL PUT 1 and 2 TOGETHER

TO OBTAIN INTELLIGENCE AND SPEED

References
• G. Gupta, E. Pontelli, K. Ali, M. Carlsson, M.

Hermenegildo. Parallel Execution of Prolog Programs:
A Survey. ACM Transactions on Programming
Languages and Systems, Vol 23, No. 4, pp. 472-602.

• G. Gupta. Next Generation Logic Programming
Systems. Technical Report, UT Dallas. 2003.

• E. Pontelli. High Performance Logic Programmng. Ph.
D. Thesis, NMSU, 1997.

• H-F Guo. High Performance Parallel Prolog Systems.
Ph.D. Thesis, NMSU, 2000.

• K. Villaverde. Scalable Parallel Prolog on the Beowulf.
Ph.D. thesis. NMSU, 2003.

