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Background:
Glasgow Parallel Haskell

• Glasgow Parallel Haskell (GpH)
– Parallel Functional Programming Language
– built on good sequential compiler (GHC - Glasgow Haskell Compiler)
– Semi-explicit parallelism - minimal modification (par introduces threads)
– purely functional = no artificial limits on thread introduction
– Message passing implementation (mapped to cache on SMP)
– low parallel overheads

• Large-scale multithreading
– Evaluation strategies to structure parallelism and control threads

» good for irregular parallelism (control parallel apps.)
– Implicit threading
– Automatic throttling where needed (evaluate-and-die)
– task stealing approach

• 2-level heap structure
– independent memory
– parallel GC
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Example: Ray Tracer
• Maps individual ray tracing function

 (trace) over all pixels in the view.

• Parallelism is introduced by adding the
 parallel all strategy on lists.

ray :: Int -> [[(Int,Int), Vector]]
ray size = map f1 coords
 where f1 i = map (f2 i) coords
       f2 i j = ((i,j), trace i j)
       trace = ...; coords = [1..size]

ray size = map f1 coords          `using` parallel all
 where f1 i = map (f2 i) coords   `using` parallel all
       f2 i j = ((i,j), trace i j)
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Example Speedup Graph
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Simulation Activity Profile
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Speedup v Comms. Latency
(Simulated)

multicore? distributed?SMP?
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Irregular Applications
• Lolita Natural Language Parser 47,000 lines
• Naira Compiler  6,000 lines
• Ray Tracing   1,500 lines
• Accident Blackspots  1,000 lines
• Particle Simulation     800 lines
• Linear Equation Solver     800 lines
plus many smaller examples
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Hume Research Objectives
• Virtual Testbed for Space/Time/Power Cost Modelling

– targetting Embedded Systems

• Real-Time, Hard Space High-Level Programming
– Based on Functional Programming and Finite Automata

• Concurrent Multithreaded Design
– Asynchronous threading
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Hume Language Structure

• Boxes structure processes
– Implicitly parallel, but clearly identification of tasks
– Asynchronous communication
– Stateless automata

• Functions structure computations
– Purely functional notation (based on Haskell)
– Pattern-matching relates inputs to outputs through

functional expressions
– No communication during thread execution

» fire, match, execute, write
– Strict evaluation
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Hume Implementation
• One thread per box
• Independent thread stack/heap

– No GC necesary for short threads

• Fixed-Size Wire Buffers (shared mem.)
• Shared Instruction Stream (multi possible)
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Hume and Multicore
• Boxes can be mapped to different cores

– Concurrency model supports multithread scheduling
– Asynchronous threading model

• Each box runs as a thread up to communication
– Efficient execution by one core
– No inter-core interaction except at communication points
– Thread interaction can be predicted => more efficient scheduling
– Threads can be further decomposed to microthreads

• Exceptions happen at box level
– Single handler for all thread exceptions
– Efficient handling

• Handles real-time, real-space restrictions
– Highly accurate space cost estimates
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Hume and Multicore (2)
• Hardware/software co-design notation?

– Different computation levels can be used
» HW-Hume - close match to hardware
» FSM-Hume - more programming power
» Template-Hume - Higher-order patterns to structure computations
» Full-Hume - fully featured language

• Time, Space and ?Power? consumption can be predicted
– Source based approach

» Loop bounds, conditionals, worst-case or probabilistic
– Combined with static analysis of computer architecture

» (accurate low-level, worst-case behaviour - AbsInt GmbH, Germany)



Slide 13Kevin Hammond, University of St Andrews

Conclusions
• High-Level Notation for Concurrent Programming

– lightweight threading: high degree of parallelism
– minimise communication/synchronisation
– locking points explicitly identified (and minimal)
– independent memory
– good sequential code within thread
– fast scheduling (based on available inputs)
– 2-level structure allows focus on different properties

• Research focus on hard real-time, but this can help with multicore
– natural concurrency
– boxes can be arbitrarily replicated
– controlled communication
– per-thread cache requirements easily identified
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Wish List for Multithreading
• What hardware support would be useful

– several (fast) cores
– non-uniform caches
– lock support on part of the memory (cache coherence)
– but most cache needs to be fast, coherence isn’t an issue
– memory allocation support (allocation hints, in-cache allocation)?
– thread creation support
– thread placement hints (to improve spatial locality)
– scheduling support (thread pools)
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Current Projects
• EmBounded: €1.3M (5 EU sites)

– Develop and robustify Hume
– Enhance cost models and analyses
– Provide resource certification
– Develop substantial real-time applications (control and computer vision)

• Defence technology Consortium: £297K (part of a £4M overall project)
– Apply Hume to Control Systems for Autonomous Vehicles
– ?Extend to mobile sensor networks?
– Industrial project coordinated by BAe Systems

• Generative Programming for Embedded Systems: £145K
– Allow reasoning about resource usage in multi-stage compilers

• Symbolic Computing for Commodity Parallel Machines: £153K
– Adapt symbolic computing algs. to stock architectures (e.g. multicore)

28 person
years

in total
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http://www.hume-lang.org
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