
Hume and Multicore
Architectures

Kevin Hammond, Roy Dyckhoff,
Pedro Vasconcelos, Meng Sun, Leonid Timochouk,

Edwin Brady, Steffen Jost, Armelle Bonenfant
University of St Andrews, Scotland

Greg Michaelson, Andy Wallace,
Robert Pointon, Graeme McHale, Chunxiu Liu, Gudmund Grov, Zenzi Chen

Heriot-Watt University, Scotland
Jocelyn Sérot, Norman Scaife

LASMEA, Clermont-Ferrand, France
Martin Hofmann, Hans-Wolfgang Loidl

Ludwig-Maximilians Universität, München, Germany
Christian Ferdinand, Reinhold Heckmann

AbsInt GmbH, Saarbrücken, Germany
http://www.hume-lang.org
http://www.embounded.org

Slide 2Kevin Hammond, University of St Andrews

Background:
Glasgow Parallel Haskell

• Glasgow Parallel Haskell (GpH)
– Parallel Functional Programming Language
– built on good sequential compiler (GHC - Glasgow Haskell Compiler)
– Semi-explicit parallelism - minimal modification (par introduces threads)
– purely functional = no artificial limits on thread introduction
– Message passing implementation (mapped to cache on SMP)
– low parallel overheads

• Large-scale multithreading
– Evaluation strategies to structure parallelism and control threads

» good for irregular parallelism (control parallel apps.)
– Implicit threading
– Automatic throttling where needed (evaluate-and-die)
– task stealing approach

• 2-level heap structure
– independent memory
– parallel GC

G

L

O

B

A

L

Local

...

Local

with
Simon Peyton Jones,

Jim Mattson,
Phil Trinder etc

Slide 3Kevin Hammond, University of St Andrews

Example: Ray Tracer
• Maps individual ray tracing function

 (trace) over all pixels in the view.

• Parallelism is introduced by adding the
 parallel all strategy on lists.

ray :: Int -> [[(Int,Int), Vector]]
ray size = map f1 coords
 where f1 i = map (f2 i) coords
 f2 i j = ((i,j), trace i j)
 trace = ...; coords = [1..size]

ray size = map f1 coords `using` parallel all
 where f1 i = map (f2 i) coords `using` parallel all
 f2 i j = ((i,j), trace i j)

Slide 4Kevin Hammond, University of St Andrews

Example Speedup Graph

Slide 5Kevin Hammond, University of St Andrews

Simulation Activity Profile

Slide 6Kevin Hammond, University of St Andrews

Speedup v Comms. Latency
(Simulated)

multicore? distributed?SMP?

Slide 7Kevin Hammond, University of St Andrews

Irregular Applications
• Lolita Natural Language Parser 47,000 lines
• Naira Compiler 6,000 lines
• Ray Tracing 1,500 lines
• Accident Blackspots 1,000 lines
• Particle Simulation 800 lines
• Linear Equation Solver 800 lines
plus many smaller examples

Slide 8Kevin Hammond, University of St Andrews

Hume Research Objectives
• Virtual Testbed for Space/Time/Power Cost Modelling

– targetting Embedded Systems

• Real-Time, Hard Space High-Level Programming
– Based on Functional Programming and Finite Automata

• Concurrent Multithreaded Design
– Asynchronous threading

Slide 9Kevin Hammond, University of St Andrews

Hume Language Structure

• Boxes structure processes
– Implicitly parallel, but clearly identification of tasks
– Asynchronous communication
– Stateless automata

• Functions structure computations
– Purely functional notation (based on Haskell)
– Pattern-matching relates inputs to outputs through

functional expressions
– No communication during thread execution

» fire, match, execute, write
– Strict evaluation

box1

box2

box3

inport1

outport1 outport2

Slide 10Kevin Hammond, University of St Andrews

Hume Implementation
• One thread per box
• Independent thread stack/heap

– No GC necesary for short threads

• Fixed-Size Wire Buffers (shared mem.)
• Shared Instruction Stream (multi possible)

S
t
a
c
k

H
e
a
p

internal

input

output

wirebox

instructions

Slide 11Kevin Hammond, University of St Andrews

Hume and Multicore
• Boxes can be mapped to different cores

– Concurrency model supports multithread scheduling
– Asynchronous threading model

• Each box runs as a thread up to communication
– Efficient execution by one core
– No inter-core interaction except at communication points
– Thread interaction can be predicted => more efficient scheduling
– Threads can be further decomposed to microthreads

• Exceptions happen at box level
– Single handler for all thread exceptions
– Efficient handling

• Handles real-time, real-space restrictions
– Highly accurate space cost estimates

Slide 12Kevin Hammond, University of St Andrews

Hume and Multicore (2)
• Hardware/software co-design notation?

– Different computation levels can be used
» HW-Hume - close match to hardware
» FSM-Hume - more programming power
» Template-Hume - Higher-order patterns to structure computations
» Full-Hume - fully featured language

• Time, Space and ?Power? consumption can be predicted
– Source based approach

» Loop bounds, conditionals, worst-case or probabilistic
– Combined with static analysis of computer architecture

» (accurate low-level, worst-case behaviour - AbsInt GmbH, Germany)

Slide 13Kevin Hammond, University of St Andrews

Conclusions
• High-Level Notation for Concurrent Programming

– lightweight threading: high degree of parallelism
– minimise communication/synchronisation
– locking points explicitly identified (and minimal)
– independent memory
– good sequential code within thread
– fast scheduling (based on available inputs)
– 2-level structure allows focus on different properties

• Research focus on hard real-time, but this can help with multicore
– natural concurrency
– boxes can be arbitrarily replicated
– controlled communication
– per-thread cache requirements easily identified

Slide 14Kevin Hammond, University of St Andrews

Wish List for Multithreading
• What hardware support would be useful

– several (fast) cores
– non-uniform caches
– lock support on part of the memory (cache coherence)
– but most cache needs to be fast, coherence isn’t an issue
– memory allocation support (allocation hints, in-cache allocation)?
– thread creation support
– thread placement hints (to improve spatial locality)
– scheduling support (thread pools)

Slide 15Kevin Hammond, University of St Andrews

Current Projects
• EmBounded: €1.3M (5 EU sites)

– Develop and robustify Hume
– Enhance cost models and analyses
– Provide resource certification
– Develop substantial real-time applications (control and computer vision)

• Defence technology Consortium: £297K (part of a £4M overall project)
– Apply Hume to Control Systems for Autonomous Vehicles
– ?Extend to mobile sensor networks?
– Industrial project coordinated by BAe Systems

• Generative Programming for Embedded Systems: £145K
– Allow reasoning about resource usage in multi-stage compilers

• Symbolic Computing for Commodity Parallel Machines: £153K
– Adapt symbolic computing algs. to stock architectures (e.g. multicore)

28 person
years

in total

K. Hammond
and G. Michaelson (eds.)

Research Directions in
Parallel Functional Programming

Springer, October 1999,
ISBN 1-85233-092-9, 520pp, £60

Chapters on:
Design, Implementation, Parallel Paradigms, Proof,
Cost Modelling, Performance Evaluation, Applications

http://www-fp.dcs.st-and.ac.uk/pfpbook

Slide 17Kevin Hammond, University of St Andrews

http://www.hume-lang.org

Slide 18Kevin Hammond, University of St Andrews

Some Recent Papers
Is it Time for Real-Time Functional Programming?

Kevin Hammond
Trends in Functional Programming 4, 2005, pp. 1-12.

Inferring Costs for Recursive, Polymorphic and Higher-Order Functional Programs
Pedro Vasconcelos and Kevin Hammond
Proc. 2003 Intl. Workshop on Implementation of Functional Languages (IFL ‘03), Edinburgh,
Springer-Verlag LNCS, 2004. Winner of the Peter Landin Prize for best paper

Hume: A Domain-Specific Language for Real-Time Embedded Systems
Kevin Hammond and Greg Michaelson
Proc. 2003 Conf. on Generative Programming and Component Engineering (GPCE 2003), Erfurt, Germany,
Springer-Verlag LNCS, Sept. 2003. Proposed for ACM TOSEM Fast Track Submission

FSM-Hume: Programming Resource-Limited Systems using Bounded Automata
Greg Michaelson, Kevin Hammond and Jocelyn Sérot
Proc. 2004 ACM Symp. on Applied Computing (SAC ‘04), Nicosia, Cyprus, March 2004

The Design of Hume
Kevin Hammond
Invited chapter in Domain-Specific Program Generation,
Springer-Verlag LNCS State-of-the-art Survey, C. Lengauer (ed.), 2004

Predictable Space Behaviour in FSM-Hume,
Kevin Hammond and Greg Michaelson,
Proc. 2002 Intl. Workshop on Implementation of Functional Languages (IFL ‘02), Madrid, Spain, Sept. 2002,
Springer-Verlag LNCS 2670, ISBN 3-540-40190-3,, 2003, pp. 1-16

