
Parallelism in Logic Programs

Vı́tor Santos Costa

COPPE/Sistemas and LIACC

UFRJ and UP



Logic Programming

• Declarative Approach to Programming

• Prolog:

? Practical
? Popular
? Hard to Change

• Can Parallelism help?



Outline

• Quick Review of Parallelism

? Explicit
? Implicit

• Applications

? Deterministic
? Model Checking
? ILP
? Constraints

• Where to go?



Parallelism in LP

• Explicit:

? MPI
? Threads
? Programming Languages

• Implicit

? Or-Parallelism
? Dependent And-Parallelism
? Independent And-Parallelism



MPI Packages

• Distributed Model

• Low-Level Interface:

? mpi

• Distributed DB

• Issues

? Imperative
? Message Passing Expensive?



Threads

• Thread hosts engine

• Shared Data-Base:

? Private engine predicates

• Implementation

? P-Threads
? DataBase Concurrency Management

• Issues:

? Maintenance
? No standard (ciao, SWI, SICStus).
? Explicit Locking



OR (Search) Parallelism

• Usually, Multi-Agent Model

• Implementation well studied:

? Minor (?) Engine changes
∗ Low space-time overhead

? Scheduling

• Issues:

? Pruning
? Side-Effects (assert)



Independent AND-Parallelism

• Divide-And-Conquer

• Works very well for deterministic computations

• Implementation:

? Goal Setting-Up
? Minor Engine Changes

• Issues:

? Backtracking
? Memory Fragmentation
? Detecting Fork Points



Dependent AND-Parallelism

• Concurrent Computation

• Usually, deterministic model

• Implementation:

? Goal Setting-Up
? Major Engine Changes
? Concurrent GC

• Issues:

? Language Issues
? Overheads



Status?

• Great tech:

? Smart Work
? Cool Speedups

• But, Low Impact

? Too focused on small benchmarks
? Everest Effect
? Runs well for
∗ Too few apps, on
∗ Too few machines

? Hard To Maintain



Can Parallelism Help?

• Who can it help?

? Application

• Where can it help?

? Hardware

• How can it help?

? Explicit, ORP, IAP?

• The Answer:

? Applications are the key!!



Deterministic Applications

• Very Many Examples:

? Compilers in Prolog
? van Noord’s Finite State Automaton
? Angelopoulos’s Markov Chain Monte Carlov

• Patterns:

? Memory Management is Crucial (GC)
? Small Procedures may dominate running time



So Far

• ORP is useless here

• IAP has had good results

? Compilers

• DAP can also work well

• Problem: Memory Management

? Work-Set can be pretty large
? Incremental Parallel GC?



Search Applications

• Backtracking Search is Core

• Search Space is an Issue:

? Tabling
? Co-routining/Constraint Propagation

• Search can be improved

? Meta-Interpreter (ILP)



Search Applications

Issues

• Memory Management:

? Often, search space is represented in DB:
∗ Explicitely
∗ Through tables

? Execution Stacks ok

• Same engine may run very different searches

• Harder to understand performance



Example I: Model Checking

• XMC:

? From several spec languages
? To logic programs run by Tabled Prolog

• Tabling avoid loops, guarantees finiteness

• Models be deterministic

? or may be shallow search with very high branching fac-
tor

? or may be deep search

• Related: Program Analysis, Security



So Far

• ORP can work well:

? Excellent results of OPTYap
∗ Best case, linear up to 32

? No Side-Effects
? Extensive Search

• Lots of Interest in Parallelism

? Work going on on Threads



Example II: Learning with ILP

• Search Engine generates clauses

• Clauses are evaluated on examples

• Performance?

? Time may be spent on search ops
? or on running examples:
∗ We may have lots of examples
∗ Each example may be costly



So Far

• Gobs of Interest

• Grid used for experiment management

• MPI with new ILP search techniques

• Threads:

? Randomised Search is easy to parallelise
? Clause scoring: improving

• Exciting opportunity for Implicit Parallelism!



Example III: Constraints

• Two phases

? Constraint Propagation
? Labeling

• How does it run?

? Labeling is search
? Propagation is deterministi
? Which matters? Depends on data...



So Far

• ORP based

? Good Results
? Not widely used

• DAP

? Parallelise Constraint Propagation
? Interesting Results in Andorra-I
? Related to Distributed Constraints

• IAP

• Interest?



Conclusions

• Speed is a Real Issue:

? Apps can run for hours
? Parallelism is Useful

• Often, Memory Intensive (Stacks or/and DB)

• Same program performs different on different data

? Flexibility
? Low Overhead



Applications

• Deterministic Applications

? Not well exploited
? GC is an issue

• Search

? ORP can do well
? Lots of Interest: ILP, MC



Future Directions

• Explicit Parallelism is having Real Impact:

? eg, best paper at this year’s ILP

• Implicit Parallelism

? Needs to Fit
? ORP
∗ Does well for pure search
∗ Benefits from Threads

? IAP
∗ Lots of potential for deterministic comps
∗ Work on Memory Management



SMTs

• Shared Memory is Great!

• Applications/Interest exists

? Limited Speedup is Speedup!!

• But:

? Memory Bandwith?
? Maintenance?
? High-Performance Context-Switching?



Fine Grained Parallelism

• Back?

• Ex: Concurrent GC

• Ex: WAM-level

? New Compilation Technology
? Real Exciting

• Bad experience with Hyperthreading

? Better Thread Packages?


