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Nested Data Parallelism in Haskell

Manuel M. T. Chakravarty
University of New South Wales

Joint work with Gabriele Keller

➀ Nesl-style parallelism in Haskell
➁ Flattening Transformation
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PARALLEL ARRAYS

Sparse matrix:
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type SparseRow = [:(Int , Float):]

type SparseMatrix = [:SparseRow :]

E.g., [:[:(0, 5), (2, 8):], [::], [:(0, 9):]:]

— Sparse matrix vector multiplication
smvm :: SparseMatrix → [:Float :]→ Float

smvm sm vec =

[:sumP [:x ∗ (vec !: col) | (col, x)← row:]
︸ ︷︷ ︸

products of one row

| row ← sm :]
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New data type:
➜ Parallel array with α elements: [:α:]

➜ For example,

data RoseTree α = Node α [:RoseTree α:]

-- e.g., useful to implement Barnes-Hut N -body algorithm

List-like operations:
➜ Same special syntax, but with [: · :] brackets

E.g., [:x + y | x ← xs | y ← ys :]

➜ Prelude functions with suffix P

E.g., lengthP xs, mapP (+1) xs

Semantics:
➜ All elements are demanded simultaneously

lengthP [:1, ⊥, 3:] = 3, whereas [:1, ⊥, 3:] !: 0 = ⊥

➜ Finite length
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HOW SHALL WE IMPLEMENT PARALLEL ARRAYS?

➀ Very fine-grained multi-threading:
[:foo x | x ← xs :] generates lengthP xs threads

V Conceptually simple
V Provably efficient thread scheduling
X Thread granularity

➁ Flattening transformation:
[:foo x | x ← xs :] becomes foo↑ xs where foo↑ lifted
V Improves array performance already on uniprocessors
V Portability (DM, GPUs & multicores with vector instructions)
X Requires sophisticated compiler technology

➼ Let’s look more closely at flattening. . .
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FLATTENING

What is flattening?

foo :: Int → Int → Int

foo x y = x ∗ 2 + y

[:foo x y | x ← xs | y ← ys :]

=

foo↑ xs ys

foo↑ :: [:Int :]→ [:Int :]→ [:Int :]

foo↑ xs ys = [:x ∗ 2 + y | x ← xs | y ← ys :]

= xs ∗↑ (replicateP (lengthP xs) 2) +↑ ys

➜ In its full glory more tricky as it has to deal with recursion,
higher-order functions, etc.
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Sequential performance with flattening:
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Sparse-Matrix Vector Multiplication: 160,000 non-zeros
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Portability of flattening. . .
. . . to distributed-memory machines:
➜ There surely will be clusters of multicores
➜ Flattening gives us a handle on controlling load balancing
➜ Flat arrays are easier to partition than nested arrays (and other

irregular structures)

. . . to graphical processing units (GPUs):
➜ Recently became interesting for general-purpose computing
➜ Stream processing on GPUs generalises classic vector

processing
➜ Flattening seems attractive to widen application domain

. . . to multicores with vector instructions:
➜ Use multiple cores, hyperthreads, and vector instructions

simultaneously
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IMPLEMENTING FLATTENING FOR HASKELL

Flattening itself:
➀ Flattening of data structures
➁ Vectorising functions
➂ Rewriting of closures to support vanilla and vectorised versions

of functions

Supporting transformations:
➜ Type-indexed array primitives
➜ Partitioning into threads (guided by types)
➜ Equational array fusion (improves locality of access)
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Π partitioned arrays
partitioned code

(machine-level partitioning)Loop Fusion
deep computations
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CONCLUSIONS

Nested data parallelism:
➜ Generalises regular data parallelism
➜ Convenient programming model for a wide range of

applications
➜ Fits nicely into functional programming languages

Flattening:
➜ Transforms nested into flat data parallelism
➜ Already improves sequential array performance in Haskell
➜ Promises portability
➜ Requires further transformations (array fusion)
➜ Requires significant implementation effort
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