
Slide 1

Nested Data Parallelism in Haskell

Manuel M. T. Chakravarty
University of New South Wales

Joint work with Gabriele Keller

➀ Nesl-style parallelism in Haskell
➁ Flattening Transformation

Slide 2

PARALLEL ARRAYS

Sparse matrix:

0

B

B

@

5 0 8

0 0 0

9 0 0

1

C

C

A

∗

0

B

B

@

−3

2

9

1

C

C

A

type SparseRow = [:(Int , Float):]

type SparseMatrix = [:SparseRow :]

E.g., [:[:(0, 5), (2, 8):], [::], [:(0, 9):]:]

— Sparse matrix vector multiplication
smvm :: SparseMatrix → [:Float :]→ Float

smvm sm vec =

[:sumP [:x ∗ (vec !: col) | (col, x)← row:]
︸ ︷︷ ︸

products of one row

| row ← sm :]

PARALLEL ARRAYS 1

Slide 3

New data type:
➜ Parallel array with α elements: [:α:]

➜ For example,

data RoseTree α = Node α [:RoseTree α:]

-- e.g., useful to implement Barnes-Hut N -body algorithm

List-like operations:
➜ Same special syntax, but with [: · :] brackets

E.g., [:x + y | x ← xs | y ← ys :]

➜ Prelude functions with suffix P

E.g., lengthP xs, mapP (+1) xs

Semantics:
➜ All elements are demanded simultaneously

lengthP [:1, ⊥, 3:] = 3, whereas [:1, ⊥, 3:] !: 0 = ⊥

➜ Finite length

Slide 4

HOW SHALL WE IMPLEMENT PARALLEL ARRAYS?

➀ Very fine-grained multi-threading:
[:foo x | x ← xs :] generates lengthP xs threads

V Conceptually simple
V Provably efficient thread scheduling
X Thread granularity

➁ Flattening transformation:
[:foo x | x ← xs :] becomes foo↑ xs where foo↑ lifted
V Improves array performance already on uniprocessors
V Portability (DM, GPUs & multicores with vector instructions)
X Requires sophisticated compiler technology

➼ Let’s look more closely at flattening. . .

FLATTENING 2

Slide 5

FLATTENING

What is flattening?

foo :: Int → Int → Int

foo x y = x ∗ 2 + y

[:foo x y | x ← xs | y ← ys :]

=

foo↑ xs ys

foo↑ :: [:Int :]→ [:Int :]→ [:Int :]

foo↑ xs ys = [:x ∗ 2 + y | x ← xs | y ← ys :]

= xs ∗↑ (replicateP (lengthP xs) 2) +↑ ys

➜ In its full glory more tricky as it has to deal with recursion,
higher-order functions, etc.

Slide 6

Sequential performance with flattening:

0

5

10

15

20

25

30

0.1110100

R
un

tim
e

in
 m

s

Density in %

Standard Haskell arrays
PArrays [flattened]

PArrays [fused]
C [handcoded]

Sparse-Matrix Vector Multiplication: 160,000 non-zeros

FLATTENING 3

Slide 7

0

2

4

6

8

10

12

14

16

18

100000 200000 300000 400000 500000 600000 700000 800000 900000

R
un

tim
e

in
 s

ec
on

ds

Upperbound

Standard Haskell arrays
PArrays

C

Prime sieve

Slide 8

Portability of flattening. . .
. . . to distributed-memory machines:
➜ There surely will be clusters of multicores
➜ Flattening gives us a handle on controlling load balancing
➜ Flat arrays are easier to partition than nested arrays (and other

irregular structures)

. . . to graphical processing units (GPUs):
➜ Recently became interesting for general-purpose computing
➜ Stream processing on GPUs generalises classic vector

processing
➜ Flattening seems attractive to widen application domain

. . . to multicores with vector instructions:
➜ Use multiple cores, hyperthreads, and vector instructions

simultaneously

IMPLEMENTING FLATTENING FOR HASKELL 4

Slide 9

IMPLEMENTING FLATTENING FOR HASKELL

Flattening itself:
➀ Flattening of data structures
➁ Vectorising functions
➂ Rewriting of closures to support vanilla and vectorised versions

of functions

Supporting transformations:
➜ Type-indexed array primitives
➜ Partitioning into threads (guided by types)
➜ Equational array fusion (improves locality of access)

Slide 10

Σ Σ Σ Σ Σ Σ

Π nested arrays (irregular)

irregular algorithm
(algorithmic partitioning)

Flattening

Σ
↑

Π flat arrays (semi-regular)
segment desc (rt shape desc)

vectorised code

Partitioning

Σ
↑

Σ
↑

Σ
↑

Σ
↑

Π partitioned arrays
partitioned code

(machine-level partitioning)Loop Fusion
deep computations

CONCLUSIONS 5

Slide 11

CONCLUSIONS

Nested data parallelism:
➜ Generalises regular data parallelism
➜ Convenient programming model for a wide range of

applications
➜ Fits nicely into functional programming languages

Flattening:
➜ Transforms nested into flat data parallelism
➜ Already improves sequential array performance in Haskell
➜ Promises portability
➜ Requires further transformations (array fusion)
➜ Requires significant implementation effort

CONCLUSIONS 6

