
Stabilizers: A Checkpointing
Abstraction for Concurrent

(Functional) Programs

Suresh Jagannathan

joint work with Lukaz Ziarek and Philip Schatz

Observations
• Classical approaches to coordinating activities of multiple threads:

★ Impose a heavy burden on programmer to balance safety and
performance

★ Pose well-known issues with deadlocks, data races, priority
inversion, interaction with external actions, etc.

★ Scalability impacted by the use of mutual-exclusion

• Advent of multi-core processors exacerbate these concerns

• Opportunity for principled language design

★ Abstractions that

✦ simplify concurrent program structure

✦ without sacrificing efficiency or scalability

• Examples:

★ Software transactions

★ Safe software-based speculation

2

Issues

• Expressivity:

★ Software transactions

✦Modularity concerns raise important issues:

‣Multi-threaded transactions

‣Open nesting semantics

• Robustness:

★ Errors and exceptional conditions may arise in long-lived
computations

• These are closely-related issues

3

Robustness
• How can an exception handler ensure that global state is

consistent after it executes?

★ Consider thread communication within a handler scope

★ How does a handler revert thread state to one which is
consistent with views of other threads?

★ Failure to ensure consistency can lead to deadlock, or
erroneous results

• Difficult for applications to enforce consistency statically
because of non-determinism and implicit, dynamically-
defined thread dependencies

★ If a thread broadcasts some data, how can an
application efficiently determine the set of threads that
read this data?

4

Checkpoints
• Checkpoints provide a means to globally revert a computation to an

earlier state.

• Transparent approaches: compiler or operating system

★ May not be efficient or semantically meaningful

• Non-transparent: Library or application-directed

★ Precise but non-trivial to construct

• Our idea:

★ Applications define thread-local program points where checkpoint
is feasible.

✦ When a thread attempts to restore execution to a previous
checkpoint, control reverts to one of these points for each
thread.

‣ The exact checkpoint chosen is calculated dynamically based on
lightweight monitoring of thread communication events:

- message-passing through channels

- shared memory
5

Stabilizers
• Signatures

★ stable: (‘a -> ‘b) -> (‘a -> ‘b)

★ stabilize: unit -> ‘a

• Declare monitored section of code
★ Track inter-thread actions including communication and shared memory

access

★ Defines a thread-local checkpoint

• Maintain a global dependency structure
★Construct a global checkpoint from a collection of thread-local ones based

on (transitive) thread dependencies

• Serve as building blocks for
★ multi-threaded open-nested transactions

★ safe software-based speculative execution

6

Example

7

What happens if f raises a
timeout exception?

Must re-execute it, erasing
effects from the earlier
evaluation

Determining the set of
events that must be
restored depends on
dynamic scheduler events.

For many multi-threaded applications, determining these points is
non-trivial because it requires reasoning about global, rather than
thread-local, invariants. Compiler and operating-system injected
checkpoints are transparent to the programmer. However, trans-
parency comes at a notable cost: checkpoints may not be semanti-
cally meaningful or efficient to construct. If all application threads
run within the same process, saving and restoring checkpoints may
be expensive since only a small number of threads may be affected
as a result of a rollback. If application threads run in separate pro-
cesses, each process may get checkpointed at different intervals,
violating the need to preserve global state. Furthermore, concur-
rent programs exacerbate the question of where and how to in-
ject sensible checkpoints because thread interaction is often non-
deterministic. In a multi-threaded program, an injected checkpoint
may capture different global state each time the same piece of code
is executed.

1.1 Stabilizers

To alleviate the burden of defining and restoring safe checkpoints
in multi-threaded programs, we propose a new language abstraction
for dynamic, composable, on-the-fly checkpointing called stabiliz-
ers. Stabilizers encapsulate two operations. The first initiates mon-
itoring of code for communication and thread creation events, and
establishes thread-local checkpoints when monitored code is eval-
uated. The other reverts control and state to a safe global check-
point. The checkpoints defined by stabilizers are composable: a
monitored procedure can freely create and return other monitored
procedures. Stabilizers can be arbitrarily nested, and work in the
presence of a dynamically-varying number of threads.
Our checkpointing mechanism is a middle ground between the

transparency afforded by operating systems or compilers, and the
precision afforded by user-injected checkpoints. In our approach,
applications are required to identify meaningful per-thread program
points where a checkpoint may be saved; when a rollback opera-
tion occurs, control reverts to one of these saved checkpoints for
each thread. The exact set of checkpoints chosen is determined by
safety conditions that ensure that a globally consistent state is pre-
served. Our approach guarantees that when a thread is rolled-back
to a checkpointed state C, other threads with which it has com-
municated prior to its last rollback are in states consistent with C.
No action is taken for threads that have not been influenced by its
effects.
To calculate how to revert threads to safe checkpoints, the run-

time system keeps track of thread states and traces communication
events among threads. When a spawn, communication, or shared
data access operation occurs, information is recorded in a runtime
data structure about the operation as well as the thread’s continua-
tion prior to the event.
When a rollback action occurs, the runtime-maintained data

structure is consulted to determine the proper checkpoint for all
threads that maintains global consistency. A rollback is sensible
only if re-execution results in a different execution path than the one
that caused the rollback to occur initially. Thus, our solution criti-
cally relies on non-deterministic behavior: to ensure that rollbacks
do not simply lead to infinite looping, subsequent re-execution of
threads should lead to different thread interactions and behavior.
For most multi-threaded programs, this requirement is not par-
ticularly onerous. However, to allow applications further control
over the state in which a checkpoint resumes, stabilizers also come
equipped with a simple compensation mechanism [7] that maybe
executed before control is reverted to the checkpointed state. Com-
pensations also allow stabilizers to work in the presence of non-
restorable actions such as I/O.

1.2 Contributions

This paper makes three contributions:

1. The design and semantics of stabilizers, a new language ab-
straction for defining and restoring meaningful checkpoints in
concurrent programs in which threads communicate through
both message-passing and shared memory. To the best of our
knowledge, stabilizers are the first language-centric design of
a checkpointing facility for concurrent programs with dynamic
thread creation, and selective communication [31] that provides
global consistency and safety guarantees when checkpointed
state is restored.

2. A lightweight dynamic monitoring algorithm faithful to the se-
mantics that constructs efficient checkpoints based on the con-
text in which a restore action is performed. Efficiency is defined
with respect to the amount of rollback required to ensure that
all threads resume execution after a checkpoint is restored in a
consistent global state.

3. A detailed evaluation study in SML that quantifies the cost of
using stabilizers on various open-source server-style applica-
tions. Our results reveal that the cost of defining and monitor-
ing thread state is small, typically adding roughly no more than
6% overhead to overall execution time. Memory overheads are
equally modest.

The remainder of the paper is structured as follows. In Section 2,
we provide a motivating example that highlights the issues asso-
ciated with safely checkpointing computation in concurrent pro-
grams. Section 3 describes the stabilizer abstraction. An opera-
tional semantics is given in Section 4. A strategy for incremental
construction of checkpoint information is given in Section 5. Imple-
mentation details are provided in Section 6. A detailed evaluation
on the costs and overheads of using stabilizers is given in Section 7,
related work is presented in Section 8, and conclusions are given in
Section 9.

2. Motivating Example

To motivate the use of stabilizers, consider the program fragment
shown below. The program spawns a new asynchronous thread of
control to compute the application of f to argument arg . Function
f in turn spawns a thread to compute the application of g to argu-
ment arg’ , and sends data on a channel c that may potentially
be read by g . In addition, g also reads data from channel c’ that
is not accessed by f . Assume channels are synchronous, and thus
sends and receives block if there is no matching recipient or sender
(resp). In the example, both f and g can raise a Timeout excep-
tion. The desired behavior when a timeout occurs is to re-execute
the procedure that raises the exception, ensuring that none of the
procedure’s earlier effects remain visible when it is reapplied. Or-
dinarily, an exception handler will not be able to restore the global
program state such that the procedure can be re-executed safely.

let val c = channel()
val c’ = channel()
fun g y = ... recv(c) ... recv(c’)

...
raise Timeout
...
in handle Timeout => ...

fun f x = let val = spawn(g(...))
val = send(c,x)
...

in if ...
then raise Timeout
else ...

end handle Timeout => ...
in spawn(f(arg))
end
For example, notice that f not only spawns a new thread, but

also communicates data along channel c . Simply re-executing f

2 2005/11/11

8

Example

7

multi-threaded applications, determining these points is non-trivial
because it requires reasoning about global, rather than thread-local,
invariants. Compiler and operating-system injected checkpoints are
transparent to the programmer. However, transparency comes at a
notable cost: checkpoints may not be semantically meaningful or
efficient to construct. If all application threads run within the same
process, saving and restoring checkpoints may be expensive since
only a small number of threads may be affected as a result of a
rollback. If application threads run in separate processes, each pro-
cess may get checkpointed at different intervals, violating the need
to preserve global state. Furthermore, concurrent programs exacer-
bate the question of where and how to inject sensible checkpoints
because thread interaction is often non-deterministic. In a multi-
threaded program, an injected checkpoint may capture different
global state each time the same piece of code is executed.

1.1 Stabilizers

To alleviate the burden of defining and restoring safe checkpoints
in multi-threaded programs, we propose a new language abstraction
for dynamic, composable, on-the-fly checkpointing called stabiliz-
ers. Stabilizers encapsulate two operations. The first initiates mon-
itoring of code for communication and thread creation events, and
establishes thread-local checkpoints when monitored code is eval-
uated. The other reverts control and state to a safe global check-
point. The checkpoints defined by stabilizers are composable: a
monitored procedure can freely create and return other monitored
procedures. Stabilizers can be arbitrarily nested, and work in the
presence of a dynamically-varying number of threads.
Our checkpointing mechanism is a middle ground between the

transparency afforded by operating systems or compilers, and the
precision afforded by user-injected checkpoints. In our approach,
applications are required to identify meaningful per-thread program
points where a checkpoint may be saved; when a rollback opera-
tion occurs, control reverts to one of these saved checkpoints for
each thread. The exact set of checkpoints chosen is determined by
safety conditions that ensure that a globally consistent state is pre-
served. Our approach guarantees that when a thread is rolled-back
to a checkpointed state C, other threads with which it has com-
municated prior to its last rollback are in states consistent with C.
No action is taken for threads that have not been influenced by its
effects.
To calculate how to revert threads to safe checkpoints, the run-

time system keeps track of thread states and traces communication
events among threads. When a spawn, communication, or shared
data access operation occurs, information is recorded in a runtime
data structure about the operation as well as the thread’s continua-
tion prior to the event.
When a rollback action occurs, the runtime-maintained data

structure is consulted to determine the proper checkpoint for all
threads that maintains global consistency. A rollback is sensible
only if re-execution results in a different execution path than the one
that caused the rollback to occur initially. Thus, our solution criti-
cally relies on non-deterministic behavior: to ensure that rollbacks
do not simply lead to infinite looping, subsequent re-execution of
threads should lead to different thread interactions and behavior.
For most multi-threaded programs, this requirement is not par-
ticularly onerous. However, to allow applications further control
over the state in which a checkpoint resumes, stabilizers also come
equipped with a simple compensation mechanism [?] that maybe
executed before control is reverted to the checkpointed state. Com-
pensations also allow stabilizers to work in the presence of non-
restorable actions such as I/O.

1.2 Contributions

This paper makes three contributions:

1. The design and semantics of stabilizers, a new language ab-
straction for defining and restoring meaningful checkpoints in
concurrent programs in which threads communicate through
both message-passing and shared memory. To the best of our
knowledge, stabilizers are the first language-centric design of
a checkpointing facility for concurrent programs with dynamic
thread creation, and selective communication [?] that provides
global consistency and safety guarantees when checkpointed
state is restored.

2. A lightweight dynamic monitoring algorithm faithful to the se-
mantics that constructs efficient checkpoints based on the con-
text in which a restore action is performed. Efficiency is defined
with respect to the amount of rollback required to ensure that
all threads resume execution after a checkpoint is restored in a
consistent global state.

3. A detailed evaluation study in SML that quantifies the cost of
using stabilizers on various open-source server-style applica-
tions. Our results reveal that the cost of defining and monitor-
ing thread state is small, typically adding roughly no more than
6% overhead to overall execution time. Memory overheads are
equally modest.

The remainder of the paper is structured as follows. In Sec-
tion ??, we provide a motivating example that highlights the is-
sues associated with safely checkpointing computation in concur-
rent programs. Section ?? describes the stabilizer abstraction. An
operational semantics is given in Section ??. A strategy for in-
cremental construction of checkpoint information is given in Sec-
tion ??. Implementation details are provided in Section ??. A de-
tailed evaluation on the costs and overheads of using stabilizers is
given in Section ??, related work is presented in Section ??, and
conclusions are given in Section ??.

2. Motivating Example

To motivate the use of stabilizers, consider the program fragment
shown below. The program spawns a new asynchronous thread of
control to compute the application of f to argument arg . Function
f in turn spawns a thread to compute the application of g to argu-
ment arg’ , and sends data on a channel c that may potentially
be read by g . In addition, g also reads data from channel c’ that
is not accessed by f . Assume channels are synchronous, and thus
sends and receives block if there is no matching recipient or sender
(resp). In the example, both f and g can raise a Timeout excep-
tion. The desired behavior when a timeout occurs is to re-execute
the procedure that raises the exception, ensuring that none of the
procedure’s earlier effects remain visible when it is reapplied. Or-
dinarily, an exception handler will not be able to restore the global
program state such that the procedure can be re-executed safely.

let val c = channel()
val c’ = channel()
fun g y = ... recv(c) ... recv(c’)

...
raise Timeout
...
in handle Timeout => ...

fun f x = stable fn () =>
let val = spawn(g(...))

val = send(c,x)
...

in if ...
then raise Timeout
else ...

end handle Timeout => stabilize()
in spawn(f(arg))
end

2 2006/1/14

A timeout exception
reverts the computation
to a state in which the
spawn of g, and its receipt
on channel c have been
discarded.

()

Example

9

(a) (b)

Figure 2. Interactions of Stable Sections.

3. Programming Model

To dynamically calculate consistent checkpoints, we introduce a new abstraction called stabilizers. Stabilizers

are expressed using new primitives, stable and stabilize, with the following signatures:

stable : (’a -> ’b) -> ’a -> ’b

stabilize : unit -> unit

A stable section is a monitored section of code whose effects are guaranteed to be reverted as a single unit if

a stabilize operation were executed within its dynamic context. The primitive stable is used to define stable

sections. The evaluation of stable f for function f yields a new function f’ identical to f except that interesting

communication and spawn events are monitored and grouped; in addition, the continuation in which the stable

operation was executed is saved as part of the checkpoint state.

The second primitive, stabilize reverts execution to a dynamically calculated checkpoint; this checkpoint

will always correspond to a program state that existed immediately prior to execution of a stable section,

communication event, or thread spawn point. Unlike classical exceptions, the result of invoking stabilize

does not guarantee that control reverts to the checkpoint corresponding to the dynamically-closest stable section,

communication event, or spawn point. The choice of where control must revert depends upon the actions

undertaken by the thread within the stable section in which the stabilize call was triggered, or the event

prior to the stabilize call if it occurs outside a stable section.

Matching inter-thread events are unrolled as pairs. If a send is unrolled, the matching receive must also be

unrolled. If a thread spawned another thread within a stable section in which a stabilize action occurs, this

new thread (and all its actions) must also be discarded. A thread is stable with respect to a statement s, if there
is no thread affected by s (i.e., all threads are in a point within their execution prior to the execution of the
statement and its transitive effects).

For example, consider thread t1 that enters a stable section S1 and initiates a communication event with

thread t2 (see Fig. 2(a)). Suppose t1 subsequently enters another stable section S2, and again establishes a

communication with thread t2. Suppose further that t2 receives these events within its own stable section S3. The

program states immediately prior to S1 and S2 represent feasible checkpoints as determined by the programmer,

depicted as white circles in the example. If a rollback is initiated within S2, then a consistent global state would

require that t2 revert back to the checkpoint associated with the start of S3 since it has received a communication

from t1 initiated within S2. However, discarding the actions within S3 now obligates t1 to resume execution at
the start of S1 since it initiated a communication event within S1 to t2 (executing within S3). Such situations

can also arise without the presence of nested stable sections. Consider the example in Fig. 2(b). Once again, the

program is obligated to revert to S1 in t1, since the stable section S3 spans communication events from both S1

and S2.

5 2005/4/13

Sections chosen for rollback depends upon communication
actions performed

10

Example

Sections chosen for rollback depends upon communication
actions performed

(a) (b)

Figure 2. Interactions of Stable Sections.

3. Programming Model

To dynamically calculate consistent checkpoints, we introduce a new abstraction called stabilizers. Stabilizers

are expressed using new primitives, stable and stabilize, with the following signatures:

stable : (’a -> ’b) -> ’a -> ’b

stabilize : unit -> unit

A stable section is a monitored section of code whose effects are guaranteed to be reverted as a single unit if

a stabilize operation were executed within its dynamic context. The primitive stable is used to define stable

sections. The evaluation of stable f for function f yields a new function f’ identical to f except that interesting

communication and spawn events are monitored and grouped; in addition, the continuation in which the stable

operation was executed is saved as part of the checkpoint state.

The second primitive, stabilize reverts execution to a dynamically calculated checkpoint; this checkpoint

will always correspond to a program state that existed immediately prior to execution of a stable section,

communication event, or thread spawn point. Unlike classical exceptions, the result of invoking stabilize

does not guarantee that control reverts to the checkpoint corresponding to the dynamically-closest stable section,

communication event, or spawn point. The choice of where control must revert depends upon the actions

undertaken by the thread within the stable section in which the stabilize call was triggered, or the event

prior to the stabilize call if it occurs outside a stable section.

Matching inter-thread events are unrolled as pairs. If a send is unrolled, the matching receive must also be

unrolled. If a thread spawned another thread within a stable section in which a stabilize action occurs, this

new thread (and all its actions) must also be discarded. A thread is stable with respect to a statement s, if there
is no thread affected by s (i.e., all threads are in a point within their execution prior to the execution of the
statement and its transitive effects).

For example, consider thread t1 that enters a stable section S1 and initiates a communication event with

thread t2 (see Fig. 2(a)). Suppose t1 subsequently enters another stable section S2, and again establishes a

communication with thread t2. Suppose further that t2 receives these events within its own stable section S3. The

program states immediately prior to S1 and S2 represent feasible checkpoints as determined by the programmer,

depicted as white circles in the example. If a rollback is initiated within S2, then a consistent global state would

require that t2 revert back to the checkpoint associated with the start of S3 since it has received a communication

from t1 initiated within S2. However, discarding the actions within S3 now obligates t1 to resume execution at
the start of S1 since it initiated a communication event within S1 to t2 (executing within S3). Such situations

can also arise without the presence of nested stable sections. Consider the example in Fig. 2(b). Once again, the

program is obligated to revert to S1 in t1, since the stable section S3 spans communication events from both S1

and S2.

5 2005/4/13

Dependency Graph

11

SYNTAX:

P ::= P‖P | t[e]
δ

e ::= x | l | λ x.e | λs x.e
| mkCh() | send(e, e) | recv(e) | spawn(e)
| stable(e) | stable(e) | stabilize

EVALUATION CONTEXTS:

E ::= • | E (e) | v(E) |

send(E , e) | send(l,E) |

recv(E) | stable(E) | stable(E)

E t,P

δ
[e] ::= P‖t[E [e]]

δ

e → e′

E t,P

δ
[e], ∆

α
=⇒ E t,P

δ
[e′], ∆

PROGRAM STATES:

P ∈ Process
t ∈ Tid
x ∈ Var
l ∈ Channel
δ ∈ StableId
v ∈ Val = unit | λ x.e | λs x.e | l

α, β ∈ Op = {SP,COMM,SS,ST,ES}
Λ ∈ StableState= Process × StableMap

∆ ∈ StableMap = StableId
fin
→ StableState

LOCAL EVALUATION RULES:

λ x.e(v) → e[v/x]

mkCh() → l, l fresh

stable(λ x.e) → λs x.e

GLOBAL EVALUATION RULES:

t′fresh

E t,P

δ
[spawn(e)], ∆

SP
=⇒ P‖t[E [unit]]

δ
‖t′[e]φ, ∆

t′fresh
P = P ′‖t[E [send(l, v)]]

δ
‖t′[E ′[recv(l)]]

δ′

P, ∆
COMM
=⇒ P ′‖t[E [unit]]

δ.δ
‖t′[E ′[v]]

δ′.δ′
, ∆

∀δ ∈ Dom(∆), δ′ ≥ δ
∆′ = ∆[δ′ (→ (E t,P

δ
[λs x.e(v)], ∆)]

Λ = ∆′(δmin), δmin ≤ δ ∀δ ∈ Dom(∆′)

E t,P

δ
[λs x.e(v)], ∆

SS
=⇒ E t,P

δ.δ
[stable(e[v/x])], ∆[δ′ (→ Λ]

E t,P

δ.δ
[stable(v)], ∆

ES
=⇒ E t,P

δ
[v], ∆ − {δ}

∆(δ) = (P ′, ∆′)

E t,P

δ.δ
[stabilize], ∆

ST
=⇒ P ′, ∆′

Figure 3. A core call-by-value language for stabilizers.

We define a correspondence between the two semantics that for-
malizes the intuition that incremental checkpoint construction re-
sults in less rollback than a global point-in-time checkpoint strat-
egy:

Theorem[Correspondence]
Let

E t,P

δ
[e], ∆0

α.ST

=⇒ ∗ P ′, ∆′

α.ST.β

=⇒ ∗ P ′′‖t[v], ∆f

Then whenever

E t,P [e], G0

α.ST
!

∗ P ′, G′α.ST.β′

!
∗ P ′′‖t[v], Gf ,

| β′ |≤| β |.

5.1 Example

To illustrate the semantics, consider the sequence of actions shown
in Fig. 5. When thread t1 spawns a new thread t2, a new node n2 is
created to represent t2’s actions, and an edge between the current
node referenced by t1 in the graph (n1) to n2 is established (see
(a)). When t2 enters a stable section, a new node n3 is created, and
an edge between n2 and n3 is recorded (see (b)). When threads t1
and t2 are available to engage in a communication event, new nodes
for both threads are created, and a bi-directional edge between them
is established (see (c)). Notice, that for thread t2 a backward edge
to the node representing its stable section is also added; thus, if
t1 unrolls to an earlier checkpoint that precedes the send, t2 will
roll-back to it local checkpoint represented by n2. Notice that t1
is not executing within any stable section currently, and thus no

Actions: SP.SS.COMM.SS.COMM

Figure 5. Incremental checkpoint construction.

backward edge from n5 can be constructed. When t1 enters a stable
section, the graph is augmented as before (see (d)). Finally, when
the threads communicate again, a similar extension of the graph is
performed (see (e)). Since both threads are now in stable sections,
backward edges are established from the current node to the closest
enclosing stable section.

6 2005/11/11

Establish dependencies among
threads and their actions:

(a) thread spawn
(b) stable section entry
(c) inter-thread communication
event
(d) stable section entry
(e) further communication

Nodes record context
information (continuations) and
edges reflect dependencies

Characteristics
• Properties:

★Safety: A stabilize action never yields an infeasible state.

★Correspondence: Stabilization is never worse than global
checkpointing

• A rich abort semantics:

★ More expressive than classical transactional undo semantics

★Set of participating threads is determined by (transitive)
cross-thread dataflow dependencies that occur within
monitored sections.

★ Basis for an open nested transactions

★ Fine-grained speculative computation

★ Avoids the need for non-local exception handling logic in
every potentially affected thread

12

Overheads

13

Threads Channels Events
Shared
Writes

Shared
Reads

Graph
Size

Runtime
Overheads (%)

Triangle 205 79 187 88 88 .19 .59

N-Body 240 99 224 224 273 .29 .81

Pretty 801 340 950 602 840 .74 6.23

Swerve 10532 231 902 9339 80293 5.43 6.60

• Implemented in MLton
★ Insertion of write barriers and eliminating read barriers

★ Compensations

★ hooks in the CML library to update the dependency graph

• Overheads to maintain checkpoints small, roughly 6%
★ eXene: a windowing toolkit

★ Swerve: a web server

Conclusions

• Stabilizers are an on-the-fly checkpointing abstraction.

• Improve robustness and expressivity of concurrency and
synchronization abstractions

★ Valuable for long-lived applications

★ Useful to help coordinate activities of dynamically-
related threads

• Provides useful safety guarantees

• Can be implemented with relatively small overhead

14

