Stabilizers: A Checkpointing

Abstraction for Concurrent
Functional

joint work with Lukaz Ziarek and Philip Schatz

PURDUE (®

Observations

Classical approaches to coordinating activities of multiple threads:

Impose a heavy burden on programmer to balance safety and
performance

Pose well-known issues with deadlocks, data races, priority
inversion, interaction with external actions, etc.

Scalability impacted by the use of mutual-exclusion

Advent of multi-core processors exacerbate these concerns

Opportunity for principled language design
Abstractions that
4 simplify concurrent program structure

4 without sacrificing efficiency or scalability

Examples:

Software transactions

Safe software-based speculation

2

e Expressivity:

Software transactions
4 Modularity concerns raise important issues:
» Multi-threaded transactions
» Open nesting semantics

e Robustness:

Errors and exceptional conditions may arise in long-lived
computations

e These are closely-related issues

Robustness

e How can an exception handler ensure that global state is
consistent after it executes!?

Consider thread communication within a handler scope

How does a handler revert thread state to one which is
consistent with views of other threads!?

Failure to ensure consistency can lead to deadlock, or
erroneous results

e Difficult for applications to enforce consistency statically
because of non-determinism and implicit, dynamically-
defined thread dependencies

If a thread broadcasts some data, how can an
application efficiently determine the set of threads that
read this data!?

Checkpoints provide a means to globally revert a computation to an
earlier state.

Transparent approaches: compiler or operating system

May not be efficient or semantically meaningful

Non-transparent: Library or application-directed

Precise but non-trivial to construct
Our idea:

Applications define thread-local program points where checkpoint
is feasible.

4 When a thread attempts to restore execution to a previous
checkpoint, control reverts to one of these points for each
thread.

» The exact checkpoint chosen is calculated dynamically based on
lightweight monitoring of thread communication events:

- message-passing through channels

- shared memory

Stabilizers

* Signatures
stable: (‘a -> ‘b) -> (‘a -> ’‘b)
stabilize: unit -> ‘a

e Declare monitored section of code

Track inter-thread actions including communication and shared memory
access

Defines a thread-local checkpoint
e Maintain a global dependency structure

Construct a global checkpoint from a collection of thread-local ones based
on (transitive) thread dependencies

e Serve as building blocks for

multi-threaded open-nested transactions

safe software-based speculative execution

let val c¢ = channel()
val c’ = channel()
fun g y = ... recv(c) ... recv(c’)

raise Timeout

in handle Timeout => ...

fun £ x = let val _ = spawn(g(...))
val _ = send(c,x)
in if ...
then raise Timeout
else

end| handle Timeout =>

in spawn(f(arg))
end

What happens if f raises a
timeout exception?

Must re-execute it, erasing
effects from the earlier
evaluation

Determining the set of
events that must be
restored depends on
dynamic scheduler events.

let val ¢ = channel()

val ¢’ = channel() A timeout exception

fun g y = ... recv(c) ... recv(c’) :
o reverts the computation
raise Timeout to a state in which the

in handle Timeout => ...

fun f x = |stable

in spawn(f (arg))
end

spawn of g, and its receipt
on channel c have been

fn () => .
let val _ = spawn(g(...)) discarded.
val _ = send(c,x)
in if
then raise Timeout
else

end [handle Timeout => stabilize()] ()

S1 O S3 a (O Checkpoint
Send @ Stabilize
S2 \
Send \
v

Sections chosen for rollback depends upon communication
actions performed

S1 O

(O Checkpoint

@ Stabilize
S3

Send \

S2 D
Send \

Sections chosen for rollback depends upon communication
actions performed

Nodes record context
information (continuations) and
edges reflect dependencies

Establish dependencies among
threads and their actions:

(a) thread spawn

(b) stable section entry

(c) inter-thread communication
event

(d) stable section entry

(e) further communication

Characteristics

* Properties:

Safety: A stabilize action never yields an infeasible state.

Correspondence: Stabilization is never worse than global
checkpointing

* A rich abort semantics:
More expressive than classical transactional undo semantics

Set of participating threads is determined by (transitive)
cross-thread dataflow dependencies that occur within
monitored sections.

Basis for an open nested transactions
Fine-grained speculative computation

Avoids the need for non-local exception handling logic in
every potentially affected thread

e Overheads to maintain checkpoints small, roughly 6%

Overheads

e Implemented in MLton

Insertion of write barriers and eliminating read barriers

Compensations

hooks in the CML library to update the dependency graph

eXene: a windowing toolkit

Swerve: a web server

Threads | Channels| Events \S/Ci:; ee(i Sl,l\q::de: Gsriizh Ov:ruhlt;r;se %)
Triangle | 205 79 |87 88 88 19 .59
N-Body| 240 99 224 224 273 29 8l
Pretty 801 340 950 602 840 74 6.23
Swerve | 10532 231 902 9339 | 80293 | 5.43 6.60

Stabilizers are an on-the-fly checkpointing abstraction.

Improve robustness and expressivity of concurrency and
synchronization abstractions

Valuable for long-lived applications

Useful to help coordinate activities of dynamically-
related threads

Provides useful safety guarantees

Can be implemented with relatively small overhead

