
LOW-LEVEL TYPE SYSTEMS FOR MODULARITY AND

OBJECT-ORIENTED CONSTRUCTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Arthur Neal Glew

January 2000

c© Arthur Neal Glew 2000
ALL RIGHTS RESERVED

LOW-LEVEL TYPE SYSTEMS FOR MODULARITY AND OBJECT-ORIENTED
CONSTRUCTS

Arthur Neal Glew, Ph.D.
Cornell University 2000

Typed Assembly Language (Tal) is a formal language for an idealised machine augmented
with type annotations, typing rules, and a memory allocation primitive. Tal’s type system is
sound; that is, well typed Tal programs do not commit run-time type errors during execution.
This guarantee can be used to debug type-directed compilers and to build more general secu-
rity properties in an extensible system. This dissertation presents a basic version of Tal and
extensions to support the compilation of modules and object-oriented languages. First, it de-
scribes a modular version of Tal that consists of typed object files, linking operations, and link
compatibility conditions. Together these features provide for type-sound separate compilation
and substantially extend previous work on linking. Second, it shows how to use a new formula-
tion of self quantifiers to compile an efficient implementation of a single-inheritance class-based
object-oriented language into Tal. Third, it presents a new type constructor called a tag type,
and shows how to use them to compile downcasting and exceptions into Tal.

Biographical Sketch

Neal Glew was born inWellington, New Zealand, in 1972. He attended Bellevue Primary School,
Newlands Intermediate School, and Newlands College. During this time he was introduced to a
succession of home computers: first one based on a 6809, then one based on a Z80, and finally
a series of PCs. In 1990 he started a BSc in Mathematics and Computer Science at Victoria
University of Wellington, which he completed in November 1992. A year later he completed a
BSc(hons) in Computer Science, and received both degrees in June of 1994. During this time,
Neal wrote two custom software packages and successfully sold a number of copies. Neal began
his Ph.D. in August of 1994 at Cornell University. In 1996 he did a summer internship at
Grammatech, and in 1997 at the Systems Research Center of Digital Equipment Corporation
(now Compaq). For the fall of 1999, Neal will be an instructor at Cornell University, and
beyond that he knows not what.

iii

Acknowledgements

This dissertation describes work supported in part by NSF grants CCR-9317320 and CCR-
9708915, AFOSR grant F49620-97-1-0013, and ARPA/RADC grant F30602-1-0317. This dis-
sertation does not reflect the views of these agencies.

First and foremost I thank my advisers. Dexter Kozen has given me both the freedom to
pursue my own research and the occasional advice and guidance that I have needed. I have also
appreciated playing hockey, playing rugby, and enjoying a quiet beer with him. Greg Morrisett
has exposed me to a wealth of programming language theory, and has taught me by example
the skills of a researcher. I feel particularly indebted for his efforts on our MTAL paper to
improve my writing.

I have benefited greatly from interactions with other students at Cornell. I would especially
like to thank Dave Walker for many stimulating conversations, and for his and other TALC
project members’s many proof readings of my publications. I also thank my friends and relatives
for their emotional support and entertainment, which has made my life much richer.

Finally I thank my parents, without whom I would not be here. They have always pro-
vided me with loving support, encourged my inquisitiveness, given me access to resources, and
supported my career path no matter where it took me.

iv

Table of Contents

1 Introduction 1
1.1 Type-Directed Compilation . 1
1.2 Language-Based Security . 2
1.3 Tal . 2
1.4 Overview of the Dissertation . 4

2 Typed Assembly Language 5
2.1 The Tal Machine . 6
2.2 Instructions and Execution . 7
2.3 Types and Typing Rules . 9
2.4 Compiler . 12

3 Modular Typed Assembly Language 23
3.1 Untyped Object Files and Linkers . 24

3.1.1 Object Files . 24
3.1.2 Linking Untyped Object Files . 25
3.1.3 Static Executables . 25

3.2 Mtal0 . 26
3.2.1 Type Safety . 26
3.2.2 Object Files and Interfaces . 26
3.2.3 Linking . 27
3.2.4 Executables and Execution . 28

3.3 Mtal . 28
3.3.1 Abstract Types . 29
3.3.2 Abstract Type Constructors . 31

3.4 Dynamic Linking . 32
3.5 Related Work . 33

4 Object-Oriented Languages 35
4.1 Object Template Language . 37
4.2 Closure Conversion . 42

5 Object and Class Encoding 44
5.1 Object Encodings . 45
5.2 Class Encodings . 46
5.3 My Encoding . 47
5.4 Encoding Target . 50
5.5 Translation . 51

v

5.6 MooTal and Extended Compiler . 54
5.7 Extensions . 54

6 Type Tagging 57
6.1 Four Type Dispatch Constructs . 58
6.2 Translation Source . 59
6.3 Implementation . 62
6.4 Translation Target . 65
6.5 Translation . 67
6.6 Extended MooTal and Compiler . 68

7 TAL Implementation 70

8 Future Work 73

A MooTal 75
A.1 Notational Conventions . 75
A.2 Module Language . 77

A.2.1 Object Files . 77
A.2.2 Linking . 78
A.2.3 Executables . 80

A.3 Core Language . 80
A.3.1 Kinds . 80
A.3.2 Type Constructors . 81
A.3.3 Program States . 82
A.3.4 Heap Values . 84
A.3.5 Small Values . 85
A.3.6 Instructions . 87
A.3.7 Object Support . 91
A.3.8 Type Soundness . 94
A.3.9 Execution . 103

Bibliography 104

vi

List of Figures

2.1 Tal Syntax . 7
2.2 Iil Operational Semantics . 14
2.3 Iil Typing Rules . 15
2.4 Iil to Tal Compiler for Values . 18
2.5 Iil to Tal Compiler for Expressions 1 . 19
2.6 Iil to Tal Compiler for Expressions 2 . 20
2.7 Iil to Tal Compiler for Expressions 3 . 21
2.8 Factorial Example . 22

3.1 Modular Factorial . 27
3.2 Syntax Changes from Tal to Mtal . 29
3.3 File Example . 30
3.4 Stack Example . 32

4.1 Example Class Hierarchy . 36
4.2 O Operational Semantics . 39
4.3 O Typing Rules for Types . 40
4.4 O Typing Rules for Expressions . 41
4.5 Closure-Conversion Translation . 43

5.1 Iil Subtyping Rules . 50
5.2 Extended Iil Operational Semantics . 51
5.3 Extended Iil Typing Rules . 52
5.4 Object and Class Encoding, Types . 52
5.5 Object and Class Encoding, Terms . 53
5.6 Object Extended Iil to MooTal Compiler . 55

6.1 Tagging Source Operational Semantics . 61
6.2 Tagging Source Typing Rules . 61
6.3 Tagging Target Operational Semantics . 65
6.4 Tagging Target Typing Rules . 66
6.5 Tagging Translation . 67
6.6 Tagging Extended Iil to MooTal Compiler . 69

A.1 MooTal Syntax . 76
A.2 MooTal Operational Semantics . 88

vii

Chapter 1

Introduction

The goal of this dissertation is to show that it is possible to design types systems with low-level
abstractions for machine languages such that the output of a variety of compilation strategies
for a variety of source constructs will type check. More specifically, it will present a typed
assembly language (MooTal) and show how to compile a prototypical procedural language,
modules, objects, classes, and run-type type dispatch to MooTal. Type systems are very
good at checking certain safety properties and have been used effectively by programmers to
catch certain errors at compile time. As described below, type systems have been used more
recently to debug compilers, check safety of compilation, and provide security in extensible
systems. To realise these benefits fully, we need type systems not only for source language
and high-level intermediate languages but also for low-level intermediate and target languages.
My group at Cornell designed an initial Typed Assembly Language (Tal), and showed how to
compile a core functional language to Tal. My research extended this effort to support separate
compilation and the compilation of objects, classes, and run-time type dispatch, as described
further below. I will expand of these points in the next three sections and then outline the rest
of the dissertation.

1.1 Type-Directed Compilation

Traditional compilers parse a program, type check it, discard the type information, and gener-
ate target code. An alternative is to retain type information through compilation, and use it
to drive analysis and optimisation. Recently, there have been numerous efforts to build such
compilers [TMC+96, Sha97, TDMW97, BRTT93, PHH+93]. These compilers translate the
type information along with the code and use the type information to guide translation and
optimisation, enabling implementation techniques that would be impossible or difficult other-
wise [TMC+96]. Additionally, the type information is used to debug the compiler. After each
compilation stage, the intermediate form is type checked. If type checking fails, then there is a
bug in that stage (or the type checker). While this idea does not catch all errors, in practice it
is useful [MTC+96].

However, in all of these compilers, there is stage where type information is discarded. For
example, the TIL/ML compiler [TMC+96] retains type information only until code generation.
In order to realize the benefits of type-directed compilation all the way to target code, typed
target languages such as Tal are needed. With such languages, we could debug aspects of
compilation such as calling conventions, register allocation, and instruction scheduling—all
details that can be tedious to get right.

1

2

1.2 Language-Based Security

A number of modern systems allow extended functionality through foreign code. For example,
web pages may contain Java applets, which are code fragments intended to run inside the web
browser. However, these applets are written by someone the web surfer may not trust. The web
surfer may wish to run the applets with a guarantee of security, such as, “the applet cannot
trash my files.” The secure code problem is to check, instrument, and/or contain untrusted
code so as to guarantee desired security properties. As well as web applets, it also arises in
extensible web servers, extensible operating systems, and active networks.

Tal is one of many approaches to the secure code problem (Kozen provides an excellent
overview of language-based security [Koz99] and there are many systems [WLAG93, BSP+95,
LY96, Nec98, Koz98, etc.]). Extensible systems based on Tal would require extensions to
be written in Tal. Extensions that do not type check are rejected. Tal is type safe, so
the extensions are guaranteed not to commit run-time type errors. Extensible systems would
use this guarantee to interpose a security monitor between extensions and critical resources.
The security monitor can implement many different security policies. Since Tal is assembly
code, potentially any language could be compiled to Tal by any compiler, even an aggressive
optimising compiler. However, this goal will only be realised if Tal’s type system is expressive
enough to type check the code that compilers produce. The goal of the Tal project is to
achieve this expressiveness by identifying key abstractions at the machine level and designing
type mechanisms for them.

1.3 Tal

Typed Assembly Language was introduced by Morrisett et al. [MWCG98]. It is a statically-
typed variant of a conventional RISC assembly language motivated by the problems of type-
directed compilation and secure extensible systems. Tal has three important properties: first,
Tal is type safe; second, it is possible to compile real programming languages to Tal; third,
there is a connection source-level constructs and what Tal’s type systems checks for.

Morrisett et al. [MWCG99] describes the original Tal, proves type safety, and shows how
to translate System F [Gir71, Rey74] to Tal. The latter demonstrates (in theory) that ML-like
languages could be compiled to Tal, and that System F’s abstractions are related to Tal’s
abstractions. A major shortcoming of the original Tal was the absence of a stack abstraction.
Most compilers use a run-time stack to store activation frames, and modern processor architec-
tures have hardware support for a stack-based approach. Morrisett et al. [MCGW98a] extends
the original Tal to include a stack abstraction and provides additional typing constructs that
allow flexible use of the stack. Later work showed that a simple stack-based compilation strat-
egy is compatible with the type system. Morrisett et al. also show how to specify, as formal
type translations, various calling conventions. They include numerous variations: passing pa-
rameters and results on the stack or in registers, caller or callee argument reclamation, and
callee-saves registers.

To further show that Tal is a reasonable compiler target, and to investigate its practicality,
Morrisett et al. [MCG+99] implemented a version of Tal for Intel’s 32-bit architecture (IA32)
called Talx86. Talx86 includes a rich type-constructor language expressive enough for nu-
merous source constructs needed in a realistic language. Morrisett et al. also built a particular
type-directed compiler for a safe C-like language called Popcorn.

However, the Tal described so far lacks a number of important features. First, it considers

3

only whole programs—programmers cannot divide their programs into separate Tal files and
type check them in isolation, nor can they use abstract data types. Second, while procedural
and functional languages can be compiled to Tal, object-oriented languages cannot. Efficient
compiled object-oriented code will not type check because Tal’s type system cannot express
object encodings or run-time type dispatch. I will elaborate on these problems in the rest of
this section.

Modules To make project management feasible, large software projects are divided into sep-
arate compilation units, and increasingly such projects are realised as a set of components
rather than monolithic programs. These compilation units and components are compiled and
built separate from other compilation units and components, requiring only the interfaces of
the components they refer to. For Tal to be effective as a typed target language, programmers
must be able to produce and type check Tal code for a separately compiled unit. The original
Tal design allowed only complete programs, so I designed a module system to allow incomplete
Tal fragments. A Tal module is based on conventional object files and includes code, data,
and a list of imported and exported labels and their types. The module system also defines link
compatibility: conditions sufficient to ensure that linking two fragments together produces well-
formed output. The module system also provides a theory of conventional linking, extending
previous work by Cardelli [Car97]. A theory of linking and link-compatibility conditions are
vital to language-based security, as these systems rely on the type-safety guarantee especially
the linking checks.

Object Encodings Objects are an important and popular construct. They provide data
encapsulation, abstraction, and extensibility conveniently in one package. As machines do
not have objects, some compiler stage must translate objects into more primitive constructs,
usually functions and records. These translations are known as object encodings, and there are
many examples in the literature. Not many of these encodings have all the desired theoretical
properties, nor, as I shall argue in Chapter 5, are they adequate for implementation. The
essence of the problem is typing self (self in Smalltalk, this in Java). None of the existing
approaches are able to capture self’s type without adding run-time overhead. To solve this
problem, I devise a new formulation of self quantifiers and use it to type self.

A problem related to object encodings is class encodings: translating classes into more prim-
itive constructs. Some class encodings translate classes into objects; others translate classes and
objects simultaneously into records and functions. Several class encodings have been proposed,
but they differ from what most compilers do. I start with an efficient encoding for single-
inheritance class-based languages and show how to type it using self quantifiers and F-bounded
polymorphism [CCH+89]. Together these two encodings provide a basis for the compilation of
object-oriented languages to Tal.

Downcasting and Other Type Dispatch I have investigated one other object oriented
construct: run-time type dispatch. An example is Java’s downcasting operation (c)e. Suppose
the variable glew has static type Person, but actually contains an instance of GraduateStudent.
Then the expression (Student)glew evaluates glew to an object and checks if that object is an
instance of Student or one of its subclasses. In this case it is, so the expression’s result is this
object with static type Student. If it were not, then an exception would be thrown. A typical
implementation of this construct includes in every object a pointer to the class from which it
was instantiated. To perform the cast, the object’s run-time class is retrieved and compared

4

against the target class of the cast. If this comparison succeeds, then so does the cast. For
the type system to change the type of the object, it must infer the change from the successful
comparison of the two classes. To do this, the type system must know that the classes represent
type information and must be able to link the object to its class. I devised a solution to this
problem I call type tagging. The solution applies to other run-time type-dispatch mechanisms
including ML-style exception matching, hierarchical extensible sums, and multimethod dispatch
(as in Cecil [Cha97] and Dylan [SMS96]).

1.4 Overview of the Dissertation

In this dissertation I describe Typed Assembly Language and my contributions to it. I begin
with a description of the original work on Tal [MWCG98, MWCG99, MCGW98a, MCGW98b],
which forms the basis for my own contributions. The bulk of the dissertation contains my the-
oretical extensions to Tal. The first is an extension to support separate compilation and
abstract types. It provides both separate type checking and a theory of linking. The second
is an object closure-conversion translation and a proof of its correctness. While similar work
exists for lambda calculi, the object-oriented framework is a simpler setting, and the translation
formalises the well known connection between objects and closures. The third is a new object
and class encoding, including the type machinery necessary at the Tal level to support the
compilation of many class-based object-oriented languages. The fourth is a tagging construct
and its implementation inTal. This construct is at the core of a number of type dispatch mech-
anisms such as class case, class cast, ML-style and Java-style exception matching, hierarchical
extensible sums, and multimethods. After my contributions I describe Talx86 [MCG+99], an
implementation of Tal for IA32. This implementation addresses many practical concerns that
the theoretical work does not, and provides some evidence that typed target languages are
practical and that type-directed compilation to them is feasible.

The dissertation describes several different typed assembly languages. Rather than formalise
all of them, I present one formalised typed assembly language, which I call MooTal (Modular
and Object Oriented Tal) and describe the relevant fragment of it in each chapter. A reference
description of MooTal appears in Appendix A along with full technical details.

Chapter 2

Typed Assembly Language

Typed Assembly Language (Tal) was introduced by Morrisett et al. [MWCG98, MWCG99,
MCGW98a, MCGW98b]. It is an idealised machine language augmented with typing rules. The
goals are: First, type-correct programs do not commit run-time type errors. Second, typing is
decidable. Third, it is possible to compile realistic source languages into type-correct Tal. To
satisfy these goals, Tal includes typing annotations and a memory management primitive that
conventional machine languages lack. This chapter will explain these annotations, the typing
rules, and how the machine is formalised. Then, it will present a small low-level language and
show how to compile it into Tal.

Notational Conventions There is some set of labels, registers, and type constructors vari-
ables. Labels � are used to name both types and values for intermodule references, and are
used as the addresses of memory. The set of registers (ranged over by r) could be a countably
infinite set of virtual registers or a finite set of physical registers. Type constructor variables are
ranged over by α and β. Integers are ranged over by i. Syntactic objects are considered equal
up to α-equivalence. The capture-avoiding substitution of x for y in z is written z{x := y}.
An unordered map that maps xi to yi is written {x1:y1, . . . , xn:yn} for type-level constructs
and {x1 �→ y1, . . . , xn �→ yn} for term-level constructs. It is a syntactic restriction that the
xi be distinct. The domain of a map X is written dom(X), the value of X at x is written
X(x), and map update is written X{x:y} or X{x �→ y}. Syntactic objects are considered
equal up to reordering of unordered maps. An ordered map is written x1:y1, . . . , xn:yn; it is a
syntactic restriction that the xi be distinct. The notation X, x:y denotes x:y appended to X ;
X1, X2 denotes X2 appended to X1. A vector of objects from syntax class x is written �x, for
example, �α stands for α1, . . . , αn; the notation

−−−−−→
α:κ ≤ c will be used to denote sequences like

α1:κ1 ≤ c1, . . . , αn:κn ≤ cn. Generally typing judgements have the forms C � x, C � x : X , or
C � x1Rx2 to mean that in context C, x is well formed, x has “type” X , or x1 is R related to
x2 (R might be equality, subtyping, compatibility, or disjointness). Typing rules have the form

(n)
J1 · · · Jn

J
(P)

where n is the rule name, P is a side condition, J is the conclusion judgement, and J1 through
Jn are the hypothesis judgements. The meaning of the rule is that if J1 through Jn are derivable
and P holds then J is derivable. Sometimes the hypotheses will be indexed as in C � xi : Xi

where there are x1 through xn and X1 through Xn somewhere else in the typing rule. I will

5

6

not write out explicitly what i ranges over; it should be clear. In particular, in:

C � xi ≤ yi C � xj
C � x1, . . . , xm ≤ y1, . . . , yn (m ≥ n)

i ranges over 1..n and j ranges over 1..m.

2.1 The Tal Machine

A typical modern machine consists of a processor with a register file and an arithmetic and
logic unit, a memory system, and an I/O system. It operates by fetching and then executing
instructions from memory at addresses given by the program counter. Instruction execution
might involve fetching values from registers and memory, performing an arithmetic operation,
and storing the result back either to a register or to memory. The Tal machine is similar
in that it includes a memory system, a register file, and a current sequence of instructions to
execute. One step of the Tal machine involves executing the first instruction of the current
instruction sequence. Unlike a real machine, the Tal machine does not have an I/O system.
Like the lambda calculus, it just computes a result and halts.

Tal’s memory system is divided into two parts, the heap and the stack. The heap stores
the program’s static code, static data, and dynamically allocated memory. The stack stores
function activation records (which store parameters, return addresses, and local variables for
invocations of functions). The stack is actually part of the register file: a special stack-pointer
register stores the stack. Thus, a Tal program state is formalised as a triple (VH , R, I) where
VH is the heap, R is the register file, and I is the current instruction sequence. The metavariable
P ranges over arbitrary Tal program states.

The heap is divided into blocks; intuitively, you can think of these blocks as those dynam-
ically allocated by a memory-management primitive. The blocks are addressed using labels
and, to help the type checker, must be annotated with their types. Thus heaps, ranged over
by the metavariable VH , have the form {�1 �→ h1:c1, . . . , �n �→ hn:cn} where the �i are the
addresses of the blocks, the hi are the contents of the blocks called heap values, and the ci
are the types of the blocks.1 A heap value consists of a type-variable abstraction part and the
heap value proper. The type-variable abstraction part has the form Λ[t1, . . . , tn] where the ti
are type-variable declarations and abstracts over type variables that may appear free in the
type annotations in the heap value proper. Type-variable declarations are ranged over by the
metavariable t and, for now, have the form α:κ where α is a type variable, and κ is its kind.2

Heap values proper come in two forms: code and data. Code has the form code I where I is a
sequence of instructions, and data has the form 〈w1, . . . , wn〉 where wi are word values.

The register file maps Tal’s registers to word values. Additionally, a register file maps the
stack pointer sp to the stack. Thus, a register file has the form {sp �→ S, r1 �→ w1, . . . , rn �→ wn}
where S is a stack, ri are registers, and wi are word values. A stack is either empty, written se,
or consists of a word value w pushed onto another stack S, written w :: S.

The word values include integers, labels, stack pointers, written sptr(i) where i is an offset
in words from the bottom of the stack, junk, nonsense, and coercions. Because the type system
teats heaps and stacks differently, Tal has two different word values represented uninitialised
data. Junk, written ?c, represents uninitialised heap data, and is annotated with c, the type

1Tal’s type level includes types and more general type constructors. The usual metavariable for type con-
structors is c rather than τ .

2A kind is a “type” for a type.

7

Kinds κ ::= T | M | S
Variances φ ::= + | − | ◦ | 0
Type Variable Declaration t ::= α:κ
Types c ::= α | ∀t.c | int | ns | ∗c | sptr(c) |

code Γ | 〈cφ1
1 , . . . , c

φn
n 〉 |

se | c1 :: c2 | c1 ◦ c2
Register File Types Γ ::= {sp:c, r1:c1, . . . , rn:cn}
Type Variable Contexts ∆ ::= α1:κ1, . . . , αn:κn
Heap Types Ψ ::= {�1:c1, . . . , �n:cn}

Coercions δ ::= [c]
Small Values v ::= i | � | r | ?c | ns | sptr(i) | δ(v)
Word Values w ::= i | � | ?c | ns | sptr(i) | δ(v)
Instructions ι ::= aop rd, v1, v2 | bop r, v |

malloc r, 〈c1, . . . , cn〉 | mov r, v |
mov rd, [rs + i] | mov [rd + i], rs |
mov sp, sp+ i | mov r, sp | mov sp, r |
mov rd, [sp+ i] | mov [sp+ i], rs

Instruction Sequences I ::= ι; I | halt[c] | jmp v

Heap Values ĥ ::= code I | 〈w1, . . . , wn〉
h ::= Λ[t1, . . . , tn]ĥ

Stacks S ::= se | w :: S
Register Files R ::= {sp �→ S, r1 �→ w1, . . . , rn �→ wn}
Heaps VH ::= {�1 �→ h1:c1, . . . , �n �→ hn:cn}
Executables E ::= (VH , �)
Program States P ::= (VH , R, I)

Figure 2.1: Tal Syntax

of the word value that may eventually initialise the that part of the heap. Nonsense, written
ns, represents uninitialised stack data, and it does not require an annotation because any word
value may replace it. Finally, coercions are one of the type annotations. They have the form
δ(w) where δ is the coercion itself, and w is the word value being coerced. The meaning of a
coercion is w except the type is changed by δ from w’s type to something else. For now there
is just one coercion, type application, written [c], which instantiates a polymorphic type.

An executable for the Talmachine, ranged over by the metavariableE, has the form (VH , �)
where VH the initial heap of the executable and � is the entry label. The initial program state
for an executable (VH , �) has VH as its heap, a register file with an empty stack {sp �→ se}, and
an instruction sequence that jumps to �. To summarise the machine so far, the full syntax for
Tal appears in Figure 2.1. Next I will discuss the instructions and execution of the machine.

2.2 Instructions and Execution

The Tal instruction set includes conventional assembly operations such as arithmetic, condi-
tional and unconditional branches, loads, and stores. Additionally, for allocating a new heap

8

block, it has one special instruction not found on real machines. The execution of one machine
instruction is formalised as a reduction relation between program states, written P1 �→ P2; the
transitive reflexive closure of this relation is written P1 �→∗ P2, and P ��→ denotes that P cannot
make a transition.

An instruction sequence is either a terminal instruction halt[[]c] or jmp v, or a sequence ι; I
consisting of an instruction ι followed by the rest of the instructions I . The terminal instruction
halt[c] halts the machine where c is the type of the result, which by convention is in register r1.
The terminal instruction jmp v is an unconditional jumps to v, an operand. Operands, ranged
over by metavariable v, include literals and registers; formally, v is either a register or one of
the word-value forms.

The instructions, ranged over by metavariable ι, are: The arithmetic instruction aop r, v1, v2
performs the operation aop on the operands v1 and v2 and stores the result into r. The
conditional branch instruction bop r, v tests condition bop of r, and if the condition holds, it
jumps to v. The allocation instruction malloc r, 〈c1, . . . , cn〉 creates a new heap block of size
n and stores the block’s address into r. The fields of the block may eventually hold values of
types ci. The move instruction mov r, v stores v into r. The load instructionmov rd[rs+i] loads
the ith field of the heap block addressed by rs into rd. The store instruction mov [rd + i], rs
stores rs into the ith field of the heap block addressed by rd. The instruction mov sp, sp + i
allocated or deallocates space on the stack where i is the number of words to remove from the
stack (add if i is negative).3 The instruction mov r, sp moves the stack pointer into r. The
instruction mov sp, r moves r into the stack pointer. The stack load instruction mov rd, [sp+ i]
loads the word ith from the top of the stack into rd. The stack store instruction mov [sp+ i], rs
stores rs into the word ith from the top of the stack.4

Operands evaluate to word values. Given a register file R and an operand v, R̂(v) is the
“value” of v. It maps literals to themselves and registers to their values in R:

R̂(v) =



v v = i, �, ?c, ns, sptr(i)
R(r) v = r
δ(R̂(v′)) v = δ(v′)

As an example of the definition of the reduction relation, consider an arithmetic operation.
If the arithmetic operation aop corresponds to the binary operation ||aop|| on integers, then
the reduction rule is:

(VH , R, aop r, v1, v2; I) �→ (VH , R{r �→ R̂(v1)||aop||R̂(v2)}, I)

Where R{r �→ w} is map update (it maps r to w and other registers as R does).
As another example, consider an unconditional branch. Intuitively, the operand v should

contain a pointer to a heap block containing an instruction sequence. However, the heap block
can be polymorphic, in which case the operand will include a number of type instantiation co-
ercions. The final machine state’s instruction sequence will be the instruction sequence pointed
to by v instantiated by the coercions in v:

(VH , R, jmp v) �→ (VH , R, I{α1, . . . , αn := c1, . . . , cn})
where R̂(v) = [cn](· · · [c1](�) · · ·);VH (�) = Λ[α1:κ1, . . . , αn:κn]code I

3As with most machines, Tal’s stack grows downward from the top of memory.
4Stal [MCGW98a, MCGW98b] includes instructions to load and store from the stack via pointers in general

registers. These instructions can be used to implement displays and other stack-allocated data. Because these
features are unimportant for this dissertation, I omitted these instructions for simplicity.

9

The notation x{y := z} stands for the capture-avoiding substitution of z for y in x. Note that
[cn](· · · [c1](�) · · ·) is a word value that is � with n type application coercions applied to it, the
types ci instantiate the polymorphic code addressed by �.

As a final example, consider allocation. A new label is chosen, and the heap is updated to
map the new label to a tuple of junk values. The destination register is mapped to the new
label:

(VH , R,malloc r, 〈c1, . . . , cn〉; I) �→ (VH {� �→ 〈?c1 , . . . , ?cn〉}, R{r �→ �}, I)
where � /∈ dom(VH)

Full details of the reduction relation appear in the appendix (or the original Tal and Stal
papers [MWCG98, MWCG99, MCGW98a, MCGW98b]).

2.3 Types and Typing Rules

All of Tal’s values are given types, including heap values, stacks, and word values. Tal’s types
are classified by kinds, and Tal has a three-tiered system like Fω [Gir71, Gir72].5 The kinds κ
are T for word types, M for heap value types, and S for stack types.

There are many judgements in Tal’s type system. The judgements used in this chapter are
summarised in the following table:

Judgement Meaning
∆ �tc c : κ c has kind κ
∆ � c1 = c2 : κ c1 and c2 are equal
�VHT Ψ Heap type Ψ is well formed
Ψ;∆; Γ � v : c Word value/operand v has type c
Ψ;∆ �ĥ ĥ : c Heap value proper ĥ has type c
Ψ �h h : c Heap value h has type c
Ψ;∆1; Γ1 �i ι : ∆2; Γ2 Instruction typing (see below)
Ψ;∆; Γ �I I Instruction sequence I is well formed
Ψ1 �VH VH : Ψ2 VH has heap type Ψ2

�c
E E Executable E is well formed
�P P Program state P is well formed

Where ∆ is a type variable context, Ψ a heap type, and Γ a register file type. A type variable
context, ranged over by metavariable ∆, is a list of pairs of type variables and their kinds. A
heap type, ranged over by metavariable Ψ, is a finite mapping from labels to their types. A
register file type, ranged over by metavariable Γ, has the form {sp:c, r1:c1, . . . , rn:cn}. It states
that the stack should have type c and that registers ri should have type ci.

There are two judgements for types: one for the kind of a type constructor (kinding) and
one for equality of two type constructors. The kinding judgement ∆ �tc c : κ asserts that type
c has kind κ in context ∆. For example, Tal type variables and polymorphic types have the
following kinding rules:

∆ �tc α : κ
(∆(α) = κ)

∆, t �tc c : κ
∆ �tc ∀t.c : κ

5MooTal, the final language of this dissertation, will include the kind and type constructor language of Fω.

10

Equality judgements have the form ∆ � c1 = c2 : κ and assert that c1 and c2 are equal types
of kind κ in context ∆. The rules are mostly congruence rules that can be derived from the
kinding rules and appear in the appendix. However, there are some computational rules for the
stack types (see below).

The Tal types for word values are the integer type int, the nonsense type ns, the heap-
pointer types ∗c, and the stack-pointer types sptr(c). For pointer types, c is the type of the
heap value or stack that is pointed to.

The most novel types in Tal are those for heap values. Code sequences are given the type
code Γ where Γ is a register file type. The code sequence expects the register file to have type Γ
before it is executed, and Γ can be thought of as a code precondition. Tuples are given the type
〈cφ1

1 , . . . , c
φn
n 〉 where the ci are word value types, and the φi are variances. Variances specify

what operations may be performed on the fields. Read-only fields (+) may only be loaded,
write-only fields (−) may only be stored, read-write fields (◦) may be loaded and stored, and
uninitialised fields (0) may only be stored. An uninitialised field becomes a read-write field
after a store to it. In this way, Tal conservatively tracks initialisation.

Finally, Tal has stack types: se describes an empty stack, c1 :: c2 describes a word value of
type c1 pushed onto a stack of type c2, and c1 ◦ c2 describes a stack of type c1 on top of a stack
of type c2. Stack types are the only kind with interesting equality rules; these rules formalise
that ◦ is an append operation:

∆ �tc c : S
∆ � se ◦ c = c : S

∆ �tc (c1 :: c2) ◦ c3 : S
∆ � (c1 :: c2) ◦ c3 = c1 :: (c2 ◦ c3) : S

Next consider the typing rules for term level constructs. Heaps are given heap types by the
judgement Ψ1 �VH VH : Ψ2 where Ψ1 describes the types of the labels that VH may refer to.
If VH defines �i to be hi and hi has type ci in context Ψ1 then VH will have type {�i:ci}:

Ψ �h hi : ci
Ψ �VH {�1 �→ h1:c1, . . . , �n �→ hn:cn} : {�1:c1, . . . , �n:cn}

The rule for executables and program states will check �VHT Ψ and Ψ �VH VH : Ψ where VH
is the heap of the executable or program state. In effect this rule checks the heap in the context
of its own heap type. A heap value proper is given a memory type is a straightforward way:

Ψ;∆; Γ �I I

Ψ;∆ �ĥ code I : code Γ

Ψ;∆ � wi : c
φi
i

Ψ;∆ �ĥ 〈w1, . . . , wn〉 : 〈cφ1
1 , . . . , c

φn
n 〉

Ψ;∆ � w : c
Ψ;∆ � w : cφ

∆ � c1 = c2 : T
Ψ;∆ � ?c1 : c02

If a heap value proper ĥ has type c under type definitions t1 through tn, then the heap value
Λ[t1, . . . , tn]ĥ has the polymorphic heap-pointer type ∀t1. . . .∀tn.∗c.

Ψ; t1, . . . , tn �ĥ ĥ : c

Ψ �h Λ[t1, . . . , tn]ĥ : ∀t1. . . .∀tn.∗c

Register files are given register file types in a straightforward manner. Similarly, stacks are
given stack types. The rules for word values and operands are also straightforward. All these
rules are in the appendix.

11

Instruction sequences are typed by the judgement Ψ;∆; Γ �I I which asserts that I is well
formed if the heap has type Ψ and the register file has type Γ. Instructions are typed by the
judgement Ψ;∆1; Γ1 �i ι : ∆2; Γ2 which asserts that in the context Ψ;∆1; Γ1 the instruction
is well formed and produces a new context Ψ;∆2; Γ2. I show a few instruction typing rules to
give a flavour for them. All the Tal typing rules appear in the appendix (or the original Tal

and Stal papers [MWCG98, MWCG99, MCGW98a, MCGW98b]).
A simple example is arithmetic:

Ψ;∆; Γ � v1 : int Ψ;∆; Γ � v2 : int

Ψ;∆; Γ �i aop r, v1, v2 : ∆; Γ{r:int}

Control flow requires the destination to be a heap pointer to code with a precondition at
least as weak as the current register file type:

Ψ;∆; Γ � v : ∗code Γ′ ∆ �RT Γ ≤ Γ′

Ψ;∆; Γ �I jmp v

Register file subtyping ∆ �RT Γ ≤ Γ′ requires Γ to define all the registers that Γ′ does and with
the same type. Later this will be subsumed by full subtyping.

Memory allocation returns a new tuple of uninitialised values:

∆ �tc ci : T
Ψ;∆; Γ �i malloc r, 〈c1, . . . , cn〉 : ∆; Γ{r:〈c01, . . . , c0n〉}

The store instruction has two rules: one requires the field to be write only or read write,
the other requires the field to be uninitialised and updates the field to be read write (c =
〈cφ0

0 , . . . , c
φi−1

i−1 , c
◦
i , c

φi+1

i+1 , . . . , c
φn
n 〉).

Ψ;∆; Γ � rd : 〈cφ0
0 , . . . , c

φn
n 〉 Ψ;∆; Γ � rs : ci

Ψ;∆; Γ �i mov [rd + i], rs : ∆; Γ
(0 ≤ i ≤ n; φi ∈ {−, ◦})

Ψ;∆; Γ � rd : 〈cφ0
0 , . . . , c

φn
n 〉 Ψ;∆; Γ � rs : ci

Ψ;∆; Γ �i mov [rd + i], rs : ∆; Γ{r:c} (0 ≤ i ≤ n; φi = 0)

Stack adjustment is governed by two two rules: one for allocating, one for freeing.

Ψ;∆; Γ �i mov sp, sp+ i : ∆; Γ{sp: ns :: · · · :: ns︸ ︷︷ ︸
i

:: c} (Γ(sp) = c; i ≤ 0)

∆ � c = c1 :: · · · :: ci :: c′ : S
Ψ;∆; Γ �i mov sp, sp+ i : ∆; Γ{sp:c′} (Γ(sp) = c; i > 0)

Moving a stack pointer from a general register to the stack pointer register illustrates a
subtlety of Tal’s typing rules. When the stack pointer was moved into the register, it had
some stack type. However, the stack now might be in a different state, and the type rules have
to prevent, amongst other things, an out-of-range stack pointer from being moved into sp. Tal

does this by requiring a validity check on stack types before they are used: the stack type must
be a tail of the stack pointer register’s type (see [MCGW98a] for further details).

Ψ;∆; Γ � r : sptr(c2) ∆ � c = c1 ◦ c2 : S
Ψ;∆; Γ �i mov sp, r : ∆; Γ{sp:c2} (Γ(sp) = c)

12

Finally, an executable is well formed, judgement �c
E E, when its heap has some heap type

Ψ, and Ψ gives an appropriate type c for the entry label (i.e., ∗code {sp:se}). A program state
is well formed, judgement �P P , when its heap has some heap type Ψ, the register file has some
register file type Γ in context Ψ, and the instruction sequence is well formed in context Ψ; ε; Γ
(ε denotes an empty sequence).

Tal’s type system is sound (proven by Morrisett et al. [MWCG99] and in the appendix):

Theorem 2.1 If �P P and P �→∗ P ′ ��→ then P ′ has the form (VH , R, halt[c]).

Tal’s type soundness guarantees that certain things will not happen during execution. For
example, the code will never jump to something that is not code; the code will never load or
store to an offset that is out of bounds for a heap block or the stack.

2.4 Compiler

To partially support the claim thatTal’s type system should be expressive enough to type check
the output of typical compilers, this section presents a compiler for a core procedural language
Iil (Imperative Intermediate Language) and shows how to compile it to Tal. Iil contains
the key features of a procedural language, and other base types, control-flow constructs, and
data structures can easily be incorporated. Iil also has the necessary constructs to serve as an
intermediate language in a compiler for first-class functions, objects, classes, and type-dispatch
constructs. Later chapters will use Iil with some extensions to show that these constructs can
be compiled to an extended Tal. The syntax of Iil is:

Type Definitions t ::= α

Types τ, σ ::= α | int | exn | (�τ)→ τ | 〈�i:τφi
i 〉i∈I | ∀t.τ

Variances φ ::= + | − | ◦
Expressions e, b ::= x | x← e | i | e1 p e2 | if r e then b1 else b2 fi |

fix f [�t](−→x:τ):τ.b | e(�e) |
〈−−−→� = e〉 | Λ[�t]〈−−−→� = v〉 | e.� | e1.�← e2 |
e[τ] | let −−−→x = e in e2 | raise(e) | try e1 with x.e2

Executables E ::= e

The notation �X denotes a vector of objects drawn from the syntax category X . For τ1, . . . , τn,
I write �τ ; for x1:τ1, . . . , xn:τn, I write −→x:τ ; for x1 = e1 and · · · and xn = en, I write −−−→x = e.

The type exn is for exception packets. For now, there are no introduction forms for exception
packets, nor do I specify a translation for this type. I discuss exception packets in Chapter 6.
The type (τ1, . . . , τn) → τ describes functions that take n parameters of types τ1 through
τn and return a result of type τ . They are introduced by functions, which have the form
fix f [�t](x1:τ1, . . . , xn:τn):τ.b where f is a variable that refers to the whole function, �t are the
function’s type parameters, xi are the funtion’s value parameters of type τi, τ is the return type,
and b is the body of the function. It is a syntactic restriction that f may not appear on the left-
hand side of an assignment (x← e). The type parameters are given by type definitions, ranged
over by metavariable t, which, for now, just list a type variable, ranged over by metavariable α.
Chapter 5 will add another form of type definition that allows type variables to have recursive
subtyping bounds. Functions must be closed, that is, they cannot have any free type or value
variables. Tuple types 〈�i:τφi

i 〉i∈I list the field names �i, types τi, and variances φi. Iil’s
variances are simpler than Tal’s and include only read only (+) , write only (−), and read

13

write (◦). Ordinary tuples have the form 〈−−−→� = e〉 where �i are the field names, and ei their
initial values. In addition, there are polymorphic tuples Λ[�t]〈−−−→� = v〉. These tuples abstract
over type parameters �t, must consist of values for their field initialisers, must have read-only
fields (polymorphism interacts badly with mutability [Wri95]), and must be closed (they will
be compiled to static data). Although restricted, these polymorphic tuples will be used in a
class and object encoding in Chapter 5.

The expression x← e evaluates e to a value v, assigns v to x, and results in v. Arithmetic
operations have the form e1 p e2, and the meaning of p, written ||p||, is a binary operator on
integers. For convenience, assume that there is a mapping from a p to an aop. Arithmetic
conditions if r e then b1 else b2 fi evaluate a condition r on the integer valued expression e,
executing b1 if the condition is true, and b2 otherwise. Again the meaning of r, written ||r||,
is a unary predicate on integers, and there is a mapping from an r to a bop. Exceptions are
raised with raise(e), and try e1 with x.e2 handles the exceptions raised in e1 by binding x to the
exception packet and executing e2.

The informal description given above is formalised as an operational semantics in Figure 2.2
and typing rules in Figure 2.3. The state of an Iil computation consists of a store that maps
mutable variables to their current values, and a heap that maps locations, ranged over by
metavariable L, to mutable tuples. An evaluation context, ranged over by metavariable E,
selects the next subterm to evaluate in a left to right evaluation order. It contains exactly one
hole, written {}, and the substitution of e for the hole in E is written E{e}. Given a heap
H and value v, the auxilary function Ĥ(v) performs any type applications that might be in
v returning an instantiated value. The empty sequence is written ε; ftv(τ) is the free type
variables of τ . I use the abbreviations ∀[]τ = τ and ∀[α, �α]τ = ∀α.∀[�α]τ . There are two typing
judgements ∆ �Iil τ (τ is a well-formed type) and ∆; Γ �Iil e : τ (e has type τ) where ∆ is a
type variable context and Γ is a value variable context. Type variable contexts are just a list
of valid type variables. Value variable contexts are lists of pairs of variables and types.

There are many ways to translate Iil into type-correct Tal code, as Tal’s type system
captures the key features of assembly language. To illustrate this expressiveness, the rest of
this section presents a simple translation. The basic idea is to use stack-based compilation: The
current expression is translated into code that computes the value of the expression, placing
the result into register r1. Intermediate results are saved by pushing them onto the stack.
The calling convention places the arguments on the stack, the first argument first, and places
the return address on the stack after the arguments. The callee frees the return address and
arguments from the stack before returning. To deal with exceptions, a register re points to an
exception frame on the stack. This frame has the address of code to jump to when an exception
is raised. Before jumping to this code, everything above and including the exception frame is
discarded from the stack, and and the exception packet is placed in register r1. Register re is
the only callee-save register.

I formalise these ideas as a type-directed translation from Iil to Tal. First, the type
translation and some type macros used throughout the translation are:

ht(τb) = (∗code {r1:[[exn]]t, sp:τb}) :: τb
sc(τa, τb) = ∗code {sp:τa ◦ ht(τb), re:sptr(ht(τb))}
ec(τa, τb, τ) = ∗code {sp:τa ◦ ht(τb), re:sptr(ht(τb)), r1:τ}

[[α]]t = α
[[int]]t = int
[[exn]]t (See Chapter 6)

14

Values v ::= i | fix f [�α](−→x:τ):τ.b | L | v[τ]
Contexts E ::= {} | x← E | E p e | v p E | if r E then b1 else b2 fi |

E(�e) | v(�v, E, �e) | 〈−−−→� = v, � = E,
−−−→
�′ = e〉 | E.� |

E.�← e | v.�← E | E[τ] | raise(E) | try E with x.e |
let −−−→x = v and x = E and

−−−→
x′ = e in b

Frames F ::= E without try E with x.e
Stores S ::= −−−→x = v
Heap Values h ::= Λ[�t]〈−−−→� = v〉
Heaps H ::= −−−→

L = h
Program States P ::= letrec H, S in e

letrec H, S in E{ι} �→ letrec H ′, S ′ in E{e}
ι e S ′ H ′ Side Conditions
h L S H{L = h} L /∈ dom(H)
x S(x) S H

x← v v S{x = v} H
i1 p i2 i1||p||i2 S H
if r i then b1 else b2 fi b1 S H ||r||i
if r i then b1 else b2 fi b2 S H not ||r||i
v(v1, . . . , vn) b{f := v} S{�x = �v} H xi /∈ dom(S); Ĥ(v)=

fix f [](xi:τi)1≤i≤n:τ.b
v.�k vk S H Ĥ(v) = 〈�i = vi〉i∈I

k ∈ I
L.�k ← v v S H{L = h′} H(L) = 〈�i = vi〉i∈I

k ∈ I
h′ = 〈�i = v′i〉i∈I
v′i =

{
vi i �= k
v i = k

let −−−→x = v in b b S{�x = �v} H xi /∈ dom(S)
try v with x.b v S H
try F{r} with x.b b S{x = v} H x/∈dom(S); r=raise(v)

Ĥ(v) =



H(L) v = L
(fix f [�α](−→x:τ):τ.b){α := σ} v = v′[σ]; Ĥ(v′) = fix f [α, �α](−→x:τ):τ.b
(Λ[�α]〈−−−→� = v〉){α := σ} v = v′[σ]; Ĥ(v′) = Λ[α, �α]〈−−−→� = v〉
v otherwise

Figure 2.2: Iil Operational Semantics

15

∆ �Iil τ
(ftv(τ) ⊆ ∆)

∆; Γ �Iil x : τ
(Γ(x) = τ)

∆; Γ �Iil e : τ
∆; Γ �Iil x← e : τ

(Γ(x) = τ)

∆; Γ �Iil i : int

∆; Γ �Iil e1 : int ∆; Γ �Iil e1 : int

∆; Γ �Iil e1 p e2 : int

∆; Γ �Iil e : int ∆; Γ �Iil b1 : τ ∆; Γ �Iil b2 : τ
∆; Γ �Iil if r e then b1 else b2 fi : τ

ε �Iil σ �α; f :σ,−→x:τ �Iil b : τ
∆; Γ �Iil fix f [�α](−→x:τ):τ.b : σ (σ = ∀[�α](�τ)→ τ)

∆; Γ �Iil e : (τ1, . . . , τn)→ τ ∆; Γ �Iil ei : τi
∆; Γ �Iil e(e1, . . . , en) : τ

∆; Γ �Iil ei : τi
∆; Γ �Iil 〈�i = ei〉i∈I : 〈�i = τ◦i 〉i∈I

�α; ε �Iil vi : τi
∆; Γ �Iil Λ[�α]〈�i = vi〉i∈I : ∀[�α]〈�i = τ+

i 〉i∈I
∆; Γ �Iil e : 〈�i = τφi

i 〉i∈I
∆; Γ �Iil e.�k : τk

(k ∈ I ; φk ∈ {+, ◦})

∆; Γ �Iil e1 : 〈�i = τφi
i 〉i∈I ∆; Γ �Iil e2 : τk

∆; Γ �Iil e1.�k ← e2 : τk
(k ∈ I ; φk ∈ {−, ◦})

∆; Γ �Iil e : ∀α.τ ∆ �Iil σ

∆; Γ �Iil e[σ] : τ{α := σ}
∆; Γ �Iil ei : τi ∆; Γ, x1:τ1, . . . , xn:τn �Iil e : τ
∆; Γ �Iil let x1 = e1 and · · · and xn = en in e : τ

∆; Γ �Iil e : exn
∆; Γ �Iil raise(e) : τ

∆; Γ �Iil e1 : τ ∆; Γ, x:exn �Iil e2 : τ
∆; Γ �Iil try e1 with x.e2 : τ

Figure 2.3: Iil Typing Rules

16

[[(τ1, . . . , τn)→τ]]t = ∀[ρ1:S, ρ2:S]sc(ec(ρ1, ρ2, [[τ]]t) :: [[τn]]t :: · · · :: [[τ1]]t :: ρ1, ρ2)
[[〈�i:τφi

i 〉i∈1,...,n]]t = ∗〈[[τ1]]φ1
t , . . . , [[τn]]

φn
t 〉

[[∀t.τ]]t = ∀[[t]]td.[[τ]]t
[[α]]td = α:T

The type ht(τb) is the type of a stack with an exception frame at the top where τb is the type of
the rest of the stack. The type sc(τa, τb) describes command continuations where τa and τb are
the types of the stack above and below respectively the current exception frame. Expression
continuations have type ec(τa, τb, τ) where τ is the type of value expected by the continuation.
The translation of an Iil type τ is [[τ]]t; its definition is straightforward except for function types.
A function abstracts two type variables ρ1 and ρ2 that represent the caller’s stack between the
arguments and the exception frame, and below the exception frame, respectively. A function
is a command continuation that expects a return address on top of its arguments on top of
the caller’s stack. The return address is an expression continuation that expects the function’s
return value.

Compiling expressions requires generating new heap blocks to hold the code for functions
nested within the expression and to hold the data of polymorphic tuples nested within the
expression. Therefore, the translation of an expression will be a function that takes and re-
turns a compilation state.6 A compilation state, ranged over by metavariable CS, is a triple
({�1, . . . , �n},VH , J) consisting of a heap VH containing the heap blocks generated so far, a
set of labels �i that address blocks that have been or will be generated, and a labelled code
sequence J to preceed the expression currently being compiled. A labelled code sequence, ranged
over by metavariable J, is either � �→ code [�t]c indicating the start of a code sequence, or Jι
which is a labelled code sequence J following by an instruction ι.

To make the statement of the translation look natural, in particular, like a sequence of
instructions, I will use some notation that hides all of the manipulation of compilation states.
The funciton id just maps a computation state to itself. There are a number of composition
operations all denoted by “;”. They are defined as follows:

(f ; g)(L,VH , J) = g(f(L,VH , J))
(f ; ι)(L1,VH 1, J1) = (L2,VH 2, J2ι)

where (L2,VH 2, J2) = f(L1,VH 1, J1)
(f ; I ; J)(L1,VH 1, J1) = (L2,VH 2 ∪ {extract(J2, I)}, J)

where (L2,VH 2, J2) = f(L1,VH 1, J1)
extract(� �→ code [�t]c, I) = � �→ Λ[�t]code I : ∀[�t]c
extract(Jι, I) = extract(J, ι; I)

Where f and g are functions from computation states to computation states, ι is an instruction,
I is an instruction sequence, and J is a labelled code sequence. The function extract(·, ·) takes
a labelled code sequence and an instruction sequence to follow it and constructs a heap value
and label.

The translation of conditions must generate fresh labels to label the code for the else branch
and the merge point; similarly, other control flow constructs require fresh labels. The following
function achieves this where f is a function that takes the fresh label and returns a function
from computation states to computation states.

new(f)(L,VH , J) = f(�)(L∪ {�},VH , J) where � /∈ L
6The translation is based on a monadic-style translation described by Morrisett et al. in a draft journal verson

of their technical report [MCGW98b].

17

The translation of functions and polymorphic tuples need to generate a new heap value in
the middle of an instruction sequence. The following function achieves this where the argument
is the heap value to be add to the current heap.

lift(J; f ; I)(L1,VH 1, J1) = (L2,VH 2 ∪ {extract(J2, I)}, J1)
where (L2,VH 2, J2) = f(L1,VH 1, J)

lift(� �→ h:c)(L,VH , J) = (L,VH ∪ {� �→ h:c}, J)

A final detail of the translation concerns where the source variables are placed. Source
variables that are bound to functions by the fix form are placed in the heap, and the translation
should map them to a label. All other sources are placed on the stack. Therefore, a variable
location, ranged over by metavariable loc, is either a label or an integer that is the offset in
words from the location of the return address (positive for parameters and negative for local
variables). A variable map, ranged over by metavariable vm, is a finite map from Iil variables
to variable locations. The translation takes a variable map as an argument so that it knows
where the variables that are in scope are located.

The translation of an Iil value is a Tal word value, but like expressions, the translation
may need to generate new heap blocks for function bodies. To accomplish this, the translation
of values, written [[v]]v(k), takes a static continuation k, which is a function that given a Tal
word value returns a function (from computation states to computations states) that generates
the translation of the context in which v appears. The translation [[v]]v(k) returns a function
that generates the value and the context in which it appears. The definition of [[·]]v appears in
Figure 2.4. The translation of an expression [[v]]e(�t, vm, τa, τb, h) is a function from computation
states to computation states, where ti are Tal type variable declarations, vm a variable map,
τa and τb the types of the stack above and below respectively the current exception frame,
and h the height of the stack (number of words on top of the return address). It is given in
Figures 2.5–2.7. It is a type-directed translation, but rather than include the Iil typing rules,
I use τ for the type of e, τ ′ for the type of e′, and τi for the type of ei. Instantiation of a value
by Tal type-variable declarations is used frequently in the translation:

inst(v, α1:κ1, . . . , αn:κn) = [αn](· · · [α1](v) · · ·)

Finally, the translation of an executable is:

[[e]]E = (VH , �main)
where (,VH ,) =

(lift(
�main �→ code []∗code {sp:se};
push �uncaught ;mov re, sp;
[[e]]e(ε, ε, se, se, 0);
halt[[[τ]]t]
);
lift(
�uncaught �→ Λ[]code halt[[[exn]]t] : ∗code {r1:[[exn]]t, sp:se}

))({�main, �uncaught}, {}, �dummy �→ []∗code {})

An example of the translation appears in Figure 2.8. It uses some peephole optimisations
to keep the example short.

18

[[i]]v(k) = k(i)
[[fix f [�t](x1:τ1, . . . , xn:τn):τ ′.b]]v(k) =

new(λ�f .
lift(
�f �→ code [�t′]sc(τ ′a, τ ′b);
[[b]]e(�t′, vm′, τ ′a, τ ′b, 0);
pop r2;
mov sp, sp+ n;
jmp r2

);
k(�f)

)

where �t′ =
−→
[[t]]t, ρ1:S, ρ2:S

vm′ = f �→ �f , xi �→ i

τ ′a = ec(ρ1, ρ2, [[τ ′]]t) :: τargs
τ ′b = ρ2

τargs = [[τn]]t :: · · · :: [[τ1]]t :: ρ1

[[v[τ]]]v(k) = [[v]]v(λw.k(w[[[τ]]t]))

Figure 2.4: Iil to Tal Compiler for Values

Iil contains the core of a procedure language. A real language would have more base
types, sum or union types, arrays, and more elaborate control structures. Most of these can
be incorporated into the Tal framework. I describe them and the issues that arise in the
context of an implementation of Tal done at Cornell in Chapter 7. A real language might
also have a module system and a separate compilation property. The issues that arise with
incorporating modules into Tal are described in Chapter 3. Functional languages and object-
oriented languages have, in addition to Iil, first-class functions, closure conver, objects, and
classes. These will be discussed in Chapters 4 and 5.

19

x
id ;mov r1, � vm(x) = �

x

id ;mov r1, [sp+ h+ i] vm(x) = i
x← e′

[[e′]]e(�t, vm, τa, τn, h); vm(x) = i
mov [sp+ h+ i], r1

v

[[v]]v(λw.mov r1, w)
e1 p e2

[[e1]]e(�t, vm, τa, τb, h);
push r1;
[[e2]]e(�t, vm, int :: τa, τb, h+ 1);
pop r2; aop r1, r2, r1

if r e′ then b1 else b2 fi
new(λ�else.new(λ�end .

[[e′]]e(�t, vm, τa, τb, h);
bop r1, inst(�else , �t);
[[b1]]e(�t, vm, τa, τb, h);
jmp inst(�end , �t);

�else �→ code [�t]sc(τa, τb);
[[b2]]e(�t, vm, τa, τb, h);
jmp inst(�end , �t);

�end �→ code [�t]ec(τa, τb, [[τ]]t)
))

e′(e1, . . . , en)
new(λ�ret .

[[e1]]e(�t, τa, τb, h); push r1; ;; Compute arguments
· · · τ ia = [[τi]]t :: · · · :: [[τ1]]t :: τa
[[en]]e(�t, vm, τn−1

a , τb, h+ n− 1);
push r1;
[[e′]]e(�t, vm, τna , τb, h+ n); ;; Compute function
push inst(�ret , �t); jmp [τb]([τa](r1)); ;; Do call

�ret �→ code [�t]ec(τa, τb, [[τ]]t)
)

Figure 2.5: Iil to Tal Compiler for Expressions 1

20

〈�1 = e1, . . . , �n = en〉
[[e1]]e(�t, τa, τb, h); ;; Compute fields
push r1; τ ia = [[τi]]t :: · · · :: [[τ1]]t :: τa
· · ·
[[en]]e(�t, vm, τn−1

a , τb, h+ n− 1);
push r1;
malloc r1, 〈[[τ1]]t, . . . , [[τn]]t〉; ;; Allocate record
pop r2;mov [r1+ n− 1], r2; ;; Initalise fields
· · ·
pop r2;mov [r1+ 0], r2

Λ[�t]〈�1 = v1, . . . , �n = vn〉
new(λ�.

[[v1]]v(λw1.
· · ·
[[vn]]v(λwn.

lift(� �→ Λ[
−−→
[[t]]td]〈w1, . . . , wn〉:[[τ]]t);

mov r1, �
) · · ·)

)
e′.�k

[[e′]]e(�t, vm, τa, τb, h); τ ′ = 〈�i:τφi
i 〉i∈0,...,n

mov r1, [r1+ k]
e1.�k ← e2

[[e1]]e(�t, vm, τa, τb, h); τ1 = 〈�i:τφi
i 〉i∈0,...,n

push r1;
[[e2]]e(�t, vm, [[τ1]]t :: τa, τb, h+ 1);
pop r2;
mov [r2+ k], r1

Figure 2.6: Iil to Tal Compiler for Expressions 2

21

e′[σ]
[[e′]]e(�t, vm, τa, τb, h);
mov r1, r1[[[σ]]t]

let x1 = e1 and · · · and xn = en in e′

[[e1]]e(�t, τa, τb, h); ;; Compute lets
push r1; τ ia = [[τi]]t :: · · · :: [[τ1]]t :: τa
· · · vm′ = vm, xi �→ −h − i
[[en]]e(�t, vm, τn−1

a , τb, h+ n− 1);
push r1;
[[e′]]e(�t, vm′, τna , τb, h+ n); ;; Compute body
mov sp, sp+ n

raise(e′)
[[e′]]e(�t, vm, τa, τb, h);
mov sp, re;
pop r2; jmp r2

try e1 with x.e2
new(λ�with.new(λ�end .

push re; ;; Save exception frame
push inst(�handle , �t); ;; Install handler
mov re, sp;
[[e1]]e(�t, vm, se, τ ′b, h+ 2); ;; Compute body

τ ′b = (sptr(ht(τb)) :: τa) ◦ ht(τb)
mov sp, sp+ 1; ;; Uninstall handler
pop re; ;; Restore exception frame
jmp inst(�end , �t);

�with �→ code [�t]∗code {r1 : exn, sp : τ ′b};
pop re; ;; Restore exception frame
push r1; ;; Bind x
[[e2]]e(�t, vm′, τ ′a, τb, h+ 1); ;; Compute handler

vm′ = vm, x �→ −h − 1
τ ′a = [[exn]]t :: τa

mov sp, sp+ 1;
jmp inst(�end , �t);

�end �→ code [�t]ec(τa, τb, [[τ]]t)
))

Figure 2.7: Iil to Tal Compiler for Expressions 3

22

The Iil source is:

(fix f(n : int) : int.if 0 ≤ n then 1 else n ∗ f(n− 1) fi) 6

The Tal executable is (VH , �main) where τa = ec(ρ1, ρ2, int) :: int :: ρ1 and VH is:

�main �→ Λ[]code
push �uncaught ;mov re, sp;
push 6;
push �halt ;
jmp �f [se, se]
: ∗code {sp : se}

�halt �→ Λ[]code
halt[int]
:∗code {sp : se ◦ ht(se), re : sptr(ht(se)), r1 : int}

�uncaught �→ Λ[]code
halt[[[exn]]t]
:∗code {r1 : [[exn]]t, sp : se}

�f �→ Λ[ρ1 : S, ρ2 : S]code
mov r1, [sp+ 1];
bg r1, �false[ρ1, ρ2];
mov r1, 1;
jmp �end [ρ1, ρ2]
: ∀[ρ1 : S, ρ2 : S]∗code {sp : τa ◦ ht(ρ2), re : sptr(ht(ρ2))}

�false �→ Λ[ρ1 : S, ρ2 : S]code
mov r1, [sp+ 1]; push r1;
sub r1, r1, 1; push r1;
push �ret [ρ1, ρ2]; jmp �f [int :: τa, ρ2]
: ∀[ρ1 : S, ρ2 : S]∗code {sp : τa ◦ ht(ρ2), re : sptr(ht(ρ2))}

�ret �→ Λ[ρ1 : S, ρ2 : S]code
pop r2;
mul r1, r2, r1;
jmp �end [ρ1, ρ2]
: ∀[ρ1:S, ρ2:S]∗code {sp : (int :: τa) ◦ ht(ρ2), re : sptr(ht(ρ2)), r1 : int}

�end �→ Λ[ρ1 : S, ρ2 : S]code
pop r2;
mov sp, sp+ 1; jmp r2
: ∀[ρ1 : S, ρ2 : S]∗code {sp : τa ◦ ht(ρ2), re : sptr(ht(ρ2)), r1 : int}

Figure 2.8: Factorial Example

Chapter 3

Modular Typed Assembly Language

A critical problem with Tal is that it formalises only complete programs—there is no notion
of a compilation unit, nor of separate type checking. However, to keep soft development man-
agement, nontrivial software is divided into a number of compilation units that are compiled
separately into object files. To use Tal in such a separate compilation run requires that ob-
ject files be checkable in isolation with just the interfaces for the other object files. Tal lacks
such a separate type-checking property. To support separate compilation, this chapter presents
one one to extend Tal to include object files as modules, such that separate type checking is
possible. The design of this module system led me into the area of linking; I discuss this next.

Linking separately compiled program units is an important task that is typically omitted
from language definitions. In large part, this omission is due to low-level architecture and
compiler dependencies that seem outside the realm of language design. However, language-
based security, mentioned in the introduction, is based upon the strong safety guarantees that
language definitions provide. Language-based security systems use linking and loading as a
fundamental part of their operation, so it is critical to define precisely the consistency checks
a linker must perform. As an example, web applets are written in Java Virtual Machine byte
code (JVML [LY96]). As the JVM supports dynamic linking and loading of applets, a critical
component of the JVM definition is the description of well-formed compilation units and link
compatibility. Unfortunately, this component is vaguely specified and has been a source of well
publicised security holes [DFWB97].

Recently, Cardelli [Car97] proposed a calculus of compilation units for the simply-typed
lambda calculus and presented a set of rules for determining link compatibility. Cardelli’s work
specified high-level abstractions for modules and interfaces and provided a set of inference rules
for determining that program fragments, when compiled under certain typing assumptions,
met a set of consistency requirements necessary to ensure that the resulting linked program
was well-formed and hence would not go wrong when evaluated.

It seemed natural to extend Tal with the ideas of Cardelli to give a detailed treatment of
type-safe linking. However, though Cardelli’s calculus is an elegant formulation of some of the
high-level issues involved in linking, it abstracts important low-level details such as binding and
α-variance of labels; it also omits certain critical features, notably support for cyclic inter-object
file references, user-defined type abstraction, and dynamic linking. The goal of this chapter is
to build upon Cardelli’s work and provide a suitable treatment of these issues. In particular, I
extend core TAL with a language of typed object files and formalise the concepts of linking and
link compatibility. The goals of the design are to model important properties of conventional
object files and linkers (e.g., Unix’s ld or Win32’s link), and to provide a module structure that

23

24

supports separate type-checking of object files and separate compilation of high-level language
features such as the abstract types, signatures, structures, and functors of SML.

My design for typed object files borrows heavily from the previous work on modules for
high-level languages and hence there are only a few important innovations. However, I believe
this to be a virtue as it demonstrates that the programming language community has identified
most of the critical issues for any module language, and it allows us to concentrate on those
issues specific to object files.

I proceed as follows: In Section 3.1, I present the abstractions of conventional untyped object
files and linkers (e.g., Unix’s ld) and discuss the issues of link compatibility in this simplified
setting. In Section 3.2, I introduce a simple module language Mtal0, which, in the spirit
of Cardelli, provides support for separate compilation, separate type-checking, and a stronger
notion of link compatibility. I extend Mtal0 in Section 3.3 with support for abstract types in
the style of Clu or Modula-2, higher-order type constructors in the style of Objective Caml, and
translucent types in the style of Harper and Lillibridge [HL94] and Leroy [Ler94]. The resulting
language, Mtal (pronounced metal), is sufficiently expressive that we can compile ML-style
modules, including functors, to the target language. Finally, in Section 3.4 I discuss extending
my model to include dynamic linking and dynamic loading.

3.1 Untyped Object Files and Linkers

I begin with a model of typical untyped object files and the process of linking. For the duration
of this section imagine an untyped variant of Tal, where there are no typing annotations, types,
or typing rules.

3.1.1 Object Files

Abstractly, an object file consists of three components:

1. A heap VH .

2. An import set I: a set of labels not defined in the heap of the object file, but possibly
referenced by terms in the heap.

3. An export set E : a subset of the labels defined in the heap.
This description of object files could be used with heaps mapping labels to the terms, typed
or untyped, of any language, but in order to provide specific examples, this section uses an
untyped assembly language.

I use [I ⇒ VH : E] to denote an object file and give the well-formedness conditions with
the following inference rule, where fl(e) denotes the set of free labels occurring in a term e:

E ⊆ dom(VH) I ∩ dom(VH) = ∅ ∀� ∈ dom(VH) : fl(VH (�)) ⊆ dom(VH) ∪ I
�O [I ⇒ VH : E]

The set of labels that are defined in the heap but not in the export set are said to be local
labels, as the scope of these labels is the object file only. Following standard convention for
fixed-scope identifiers, we consider object files to be equivalent up to a systematic renaming
(α-conversion) of local labels. The justification for this implicit α-conversion is that real object
files represent local labels as relative offsets from the base address of the object file. This base
address is adjusted during the linking and/or loading process to place object files in different

25

address ranges and hence the local labels are implicitly adjusted. In contrast, exported labels
do not α-vary so that the linker can resolve cross references among object files.

3.1.2 Linking Untyped Object Files

Linking is the process of taking two (or more) object files and combining their heaps, import
sets, and export sets in a suitable fashion to produce a new object file. However, even if the
input object files are well-formed, the output may not be. This motivates the notion of link
compatibility. To object files O1 and O2 are link compatible, written � O1

lc↔ O2, when the
following rule holds:1

E1 ∩ E2 = ∅
� [I1 ⇒ VH 1 : E1]

lc↔ [I2 ⇒ VH 2 : E2]

When two object files are link compatible, we may link them to produce a new object file
as follows:

�O [I1 ⇒ VH 1 : E1]
�O [I2 ⇒ VH 2 : E2]

� [I1 ⇒ VH 1 : E1]
lc↔ [I2 ⇒ VH 2 : E2]

dom(VH 1) ∩ dom(VH 2) = ∅
(dom(VH 1)− E1) ∩ I2 = ∅
(dom(VH 2)− E2) ∩ I1 = ∅

� [I1 ⇒ VH 1 : E1] link [I2 ⇒ VH 2 : E2];
[(I1 ∪ I2) \ (E1 ∪ E2)⇒ (VH 1 ∪ VH 2) : (E1 ∪ E2)]

Because of the bottom three conditions, in applying the link rule, α-variants of the object files
must be chosen such that their local labels are disjoint. It follows from the definitions that if
� O1 linkO2 ; O then �O O (i.e., the resulting object file is well-formed).

3.1.3 Static Executables

The final operation the linker performs is to produce an executable. An executable, ranged
over by metavariable E, is just a closed heap paired with an entry label defined in that heap,
written (VH , �). Thus, an executable is well-formed according to the following rule:

� ∈ dom(VH) ∀�′ ∈ dom(VH) : fl(VH (�′)) ⊆ dom(VH)
�E (VH , �)

Given a well-formed object file and a distinguished label from its export set, we may produce
a well-formed executable, written � O, � prg

; E, only when the import set of the object file is
empty:

�O [I ⇒ VH : E] I = ∅ � ∈ E
� [I ⇒ VH : E], � prg

; (VH , �)

To load and run an executable, the operating system creates a new process with the heap
as its initial memory image and jumps to the entry label passing in some parameters.2 Hence,

1In this section on untyped object files and linking, many side conditions will be written above the line because
otherwise the rules would look very awkward. In the next section, side conditions will are written on the right
side of the line.

2On Unix system the parameters are the command line arguments and the environment. On GUI systems
like Win32, the parameters are GUI handles for the application and/or the main window and the environment.

26

ignoring the parameters, an executable is mapped to an initial program state, written � E exec
; P ,

by taking the heap of the executable, an empty register file, and a single-instruction sequence
that jumps to the code bound to the entry label of the executable:

�E (VH , �)

� (VH , �) exec
; (VH , {sp �→ se}, jmp �)

3.2 Mtal0

The goal of this chapter is to formalise typed object files combining the development in Sec-
tion 3.1 with Cardelli’s high level, typed linking ideas [Car97]. As a step towards this goal, this
section defines Mtal0, a simple, typed object file language; the next section will extend Mtal0

to full Mtal by adding abstract types (and abstract type constructors). While the module
language is independent of the core language, Mtal0 is based on Tal for concreteness. In the
following sections, I briefly review the benefits of type safety, and then build a notion of typed
object files on top of Tal.

3.2.1 Type Safety

The main motivation for static typing is the property that a well typed program never performs
an illegal operation, such as jumping to data instead of code. To achieve this goal for Mtal0, I
must design linking and execution to be type preserving. Then, a set of type-correct and link-
compatible object files will link to form a type correct executable. Loading this type correct
executable will produce a type correct initial program state. By Tal’s type safety, the execution
resulting from this type correct initial state will not perform illegal operations. Thus, to prove
that Mtal0 is type safe, I must prove that linking, executable formation, and initial state
formation are type preserving.

An extensible system writer may desire other guarantees from Mtal0. For example, if an
extension is checked with a fixed import interface, the Mtal0 type system guarantees that the
extension can access only the labels mentioned in that interface. The extensible system can use
this fact to ensure that a security monitor interposed between the extension and the underlying
system is not circumvented. An overview of the necessary guarantees and security properties
of extensible systems is beyond the scope of this dissertation, but Leroy and Rouaix [LR98]
provide a discussion of some of these issues.

3.2.2 Object Files and Interfaces

Mtal0’s object files extend untyped object files with types. A Mtal0 object file is a triple
[ΨI ⇒ VH : ΨE] where VH is a Tal heap, ΨI is an import interface, and ΨE is an export
interface. An interface is a heap typing, that is, {�1; c1, . . . , �n; cn}. Figure 3.1 shows an example
Mtal0 program consisting of two object files, fact.tal and main.tal. The intention is that
an integer n is passed in register r1 to the entry label main. The main object file calls the other
object file’s fact label which computes and returns the factorial of its argument. The main
object file then halts with n! in register r1. The keywords import and export are used to show
the import and export interfaces respectively.

In addition to the checks made in untyped object files, the well formedness condition for

27

fact.tal: main.tal:
export fact: τfact import fact: τfact
fact �→ Λ[ρ:S]code export main: ∗code {sp:se, r1:int}

mov r2, r1 main �→ Λ[]code
mov r1, 1 mov ra, ret1
jmp loop[ρ] jmp fact[se]

: τfact : ∗code {sp:se, r1:int}
loop �→ Λ[ρ:S]code ret1 �→ Λ[]code

ble r1, ra halt[int]
mul r2, r1, r2 : ∗code {sp:se, r1:int}
sub r1, r1, 1
jmp loop[ρ]

: ∀ρ:S.∗code {sp:ρ, r1:int, r2:int, ra:τret}

Where τfact = ∀ρ:S.∗code {sp:ρ, r1:int, ra:τret} and τret = ∗code {sp:ρ, r1:int}.
Figure 3.1: Modular Factorial

Mtal0 object files requires type checking:

�VHT ΨI �VHT ΨA ≤ ΨE ΨI ∪ ΨA �VH VH : ΨA dom(ΨI) ∩ dom(ΨA) = ∅
�O [ΨI ⇒ VH : ΨE]

The heap has an actual type ΨA and is checked in the context ΨI ∪ ΨA as it may refer to
imported labels or to itself. The heap must define labels different from the imports, that is, ΨA

and ΨI must have disjoint domains. The heap must provide the exported labels at the types
specified, �VHT ΨA ≤ ΨE .3

A typed object file can be checked in isolation. While it contains type information about
labels in other object files, it does not contain any term level information about those labels. Put
another way, Mtal0 has a separate-type-checking property and thus Mtal0 supports separate
compilation in the following fashion: If a source-level module can be type checked using only
source-level interfaces for other modules, then it can be compiled to a typed object file without
needing the implementations of the other modules.

3.2.3 Linking

Crucial to typed link compatibility is interface compatibility, �VHT Ψ1 ∼ Ψ2. In particular, if
two interfaces mention the same label then they must give it compatible types as stated in the
following rule:4

∀� ∈ dom(Ψ1) ∩ dom(Ψ2) : Ψ1(�) = Ψ2(�)
�VHT Ψ1 ∼ Ψ2

Given interface compatibility, link compatibility is easily defined:

�VHT ΨI1 ∼ ΨI2 �VHT ΨI1 ∼ ΨE2 �VHT ΨI2 ∼ ΨE1 dom(ΨE1) ∩ dom(ΨE2) = ∅
� [ΨI1 ⇒ VH 1 : ΨE1]

lc↔ [ΨI2 ⇒ VH 2 : ΨE2]
3�VHT ΨA ≤ ΨE means that ΨA is a subinterface of ΨE , formally, ∀� ∈ dom(ΨE) : ΨA(�) = ΨE(�). When

subtyping is added, subinterface will mean ∀� ∈ dom(ΨE) : ΨA(�) ≤ ΨE(�).
4In Mtal0, compatible types are equal types. When subtyping is added, compatibility of types could be a

weaker condition, see the appendix for details.

28

The two object files have compatible imports and exports, and the exports must (as before) be
disjoint. The link operation is defined in the same way as the untyped link operation but uses
typed object files and typed judgements. Again, if � O1 linkO2 ; O then �O O. This theorem
is much stronger than in the untyped case as it asserts that no type errors are introduced by a
linking operation.

Mtal0 has a separate link-checking property. That is, link compatibility is defined entirely
in terms of the imported and exported interfaces of the two modules and is independent of the
modules’s heaps. A type-safe linker will load each object file and type check it separately, then
perform the linking, doing checks that involve only the interface information; the code need not
be rechecked.

3.2.4 Executables and Execution

An executable is a closed Tal heap and a label. The heap must be well formed and the label
must have an appropriate type:

�VHT Ψ Ψ �VH VH : Ψ
�ce

E (VH , �)
(Ψ(�) = ce)

where ce is the type the entry convention gives the entry label. The factorial example’s intended
entry convention has ce = ∗code {sp:se, r1:int}. The entry convention is an important low-level
detail of how programs get executed, which we can formally specify as a Mtal0 type.

We can check when an object file is complete, written � O, � : ce complete, as follows:

�O [ε⇒ VH : ΨE]
� [ε⇒ VH : ΨE], � : ce complete

(ΨE(�) = ce)

However, programmers and language designers want to reason about when a collection of object
files together forms a complete program. That is, they want a set of checks to ensure that when
those object files are linked the result will be a complete program according to the judgement
above. Informally, each object file’s imports must be contained within the exports of the other
object files and the entry label must be exported by one of the object files with type ce. Glew
and Morrisett [GM99a] formalised these checks.

The production of an executable and the process of execution is the same as in the untyped
language. However, the consistency checks are sound: the formation of an executable implies
that the executable is well formed, and the formation of an initial state implies that the initial
state is well formed. Theorem 2.1 states that well formed intial states do not commit run-time
type errors during execution.

3.3 Mtal

Mtal0 is a typed low-level language with a formalised notion of link compatibility. It extends
the work of Cardelli making important low level concerns explicit, and it very closely models
the operation of real linkers. However,Mtal0 does not address other shortcomings of Cardelli’s
language. I will progressively add constructs to Mtal0 in the following sections to obtain a full
language Mtal. Mtal is a subset of MooTal, the complete typed assembly language of this
dissertation. A complete description (of both), including syntax, operational semantics, and
typing rules, appears in the appendix. The syntax changes from Tal to Mtal are summarised
in Figure 3.2.

29

Kinds κ ::= · · · | κ1 → κ2

Type Constructors c ::= · · · | � | λα:κ.c | c1 c2
Type Heap Types Φ ::= {�1:κ1, . . . , �n:κn}
Interfaces Int ::= (Φ,Ψ)

Coercions δ ::= · · · | rollc | unroll
Type Constructor Heaps CH ::= {�1 �→ c1:κ1, . . . , �n �→ cn:κn}
Object Files O ::= [IntI ⇒ CH ,VH : IntE]
Executables E ::= (CH ,VH , �)
Program States P ::= (CH ,VH , R, I)

Figure 3.2: Syntax Changes from Tal to Mtal

3.3.1 Abstract Types

Mtal0 provides many type safety guarantees but does not provide type abstraction guarantees.5

Consider a security monitor for file access that exports an operation open that takes a string
and returns a file handle. Suppose further that the file handle pairs the extension’s access rights
with an operating system file handle, each represented as an integer. In a system without type
abstraction, the implementation must expose the representation of the file handle giving open
the type string → 〈int, int〉. Because clients see this type, not a type like string → file,
they can ignore the abstraction and use integer operations to modify the access rights directly.
Following high-level module designs which address this issue, I add to Mtal the ability to
declare abstract types in interfaces and use them in the types given to labels.

AMtal interface, ranged over by metavariable Int , is a pair (Φ,Ψ) consisting of a type part
Φ and a value part Ψ. The type part, also called a type heap typing, is a finite map from type
labels to kinds. Object files are quadruples [IntI ⇒ CH ,VH : IntE] consisting of an import and
export interface, but there are now two heaps: one for types and one for values. Type heaps
are finite mappings from labels to types and their kinds. Program states are also extended to
include a type heap.

The file example is shown in Figure 3.3. It exports an abstract type file which is used in
the types of the values that it exports. The concrete type of file is a pair of integers, and the
example sketches the relevant details of the implementation of the operations.

Definitions of typed object files, link compatibility, linking, executable formation, and ex-
ecution similar to that in Sections 3.1 and 3.2 can be repeated for Mtal; I mention just the
highlights.

Just as value heaps can contain cyclic references, type heaps can contain cyclic references
also, introducing the possibility of recursive types. Following standard type theory, in a type
heap CH a type label � is isomorphic to CH (�); for example, file is isomorphic to ∗〈int+, int+〉.
There are two ways to reflect this isomorphism in the type system. The first way implicitly treats
� and CH (�) as equal types. This makes a decision procedure for type equality considerably
more complex [AC93]. I choose the second way and introduce explicit roll and unroll operations
that witness the isomorphism � ∼= CH (�). For example, roll coerces ∗〈int+, int+〉 to file; unroll
does the opposite.

5Technically the original Tal has existential and polymorphic types which can be used to implement type
abstractions. However, because of the “local” scope of the quantifiers, this is too cumbersome in practice.

30

export type file : T;
export val open : ∀ρ:S.∗code {sp:ρ, r1:string, ra:∗code {sp:ρ, r1:file}}
export val readline : ∀ρ:S.∗code {sp:ρ, r1:file, ra:∗code {sp:ρ, r1:string}}
. . .
; A file is access rights plus O/S handle
; Access rights: bit 0 read, bit 1 write, ...
file �→ ∗〈int+, int+〉
open �→ Λ[ρ:S]code

; Call O/S open on r1 putting result in r2.
; Determine access rights and store in r3 preserving r2.
malloc r1, 〈int, int〉
mov [r1+ 0], r3
mov [r1+ 1], r2

; Coerce r1 from ∗〈int, int〉 to file
mov r1, rollfile(r1)
jmp ra

: ∀ρ:S.∗code {sp:ρ, r1:string, ra:∗code {sp:ρ, r1:file}}
readline �→ Λ[ρ:S]code

; Coerce r1 from file to 〈int+, int+〉
mov r1, unroll(r1)

; Check read allowed
mov r2, [r1+ 0]
band r2, r2, 1
bz r2, error

; Read allowed place O/S handle in r1
mov r1, [r1+ 1]
; Call O/S read line on r1 putting result in r1
jmp ra

: ∀ρ:S.∗code {sp:ρ, r1:file, ra:∗code {sp:ρ, r1:string}}
. . .

; Client
import type file : T
; Since file is abstract the client cannot coerce file to 〈int, int〉 or vice versa.

Figure 3.3: File Example

31

The value heap of an object file is checked using its type heap. For example the code that
implements open and readline in the file example is checked using the type heap {file �→
∗〈int+, int+〉:T}. Furthermore, roll� can be used only if the type heap defines �, and similarly
for unroll. So the code for open can perform a rollfile operation, and the code for readline
can perform an unroll operation on a value of type file. A client of the file module, however,
will import file as an abstract type of kind T. Since the client’s type heap is disjoint from
its import interface (a type checking requirement), the client’s code will be checked without
a definition for file. Thus, it will not be able to perform an rollfile operation nor an unroll
operation on a value of type file. Consequently, the roll and unroll operations are used not
only to mediate recursive types, but also to enforce encapsulation of abstract types like file.

In this respect, my treatment of label types is similar to the “generative” datatypes of ML.
Unlike ML, however, my abstract type labels have global scope. This simplifies link consistency
and provides a means to split mutually-recursive type definitions across compilation units as
with Units [FF98] and Mixin Modules [DS98]. The price paid, however, is that programmers or
compilers must ensure that two compilation units that are to be linked together do not define
the same type label.

The implementation (described in Chapter 7) includes two extensions omitted from Mtal.
In our implementation of interfaces, a type label may be declared abstract, given a definition, or
given a bound. When given a definition, a type label is like the translucent types described by
Harper and Lillibridge [HL94] and by Leroy [Ler94]. The definition is included along with the
type heap of an object file during the type checking of the object file’s value heap. When given a
bound, a type label is like a partially abstract type. The typing rules allow a bounded type label
to be unrolled to its bound but do not allow a roll operation on that type label. This approach
is based upon standard type theory on singleton kinds6 and power kinds [Car88b] respectively.
However, as I only support globally-scoped type labels, the setting is greatly simplified because
I do not need both internal and external names for types as Harper and Lillibridge describe.
Again, the price paid is that programmers or compilers must manage the flat name space.

In summary, Mtal chooses to treat type labels as globally scoped identifiers. This simplifies
the treatment of separately-compiled recursive types, generative abstract types, and translucent
types but at the price of a flat name space. Since traditional linkers only provide a flat name
space for value labels, I felt that the symmetry at the type-level, together with the simplification
of these language features, justified the cost.

3.3.2 Abstract Type Constructors

Good modular programming requires more than just abstract types. For example, there is a
large class of container abstractions whose types are parameterised by the types of the objects
they contain. For instance, a stack datatype exports an abstract type constructor taking one
argument (the type of the elements to be placed in the stack). To handle such constructors,
Mtal’s types are extended to a type constructor language and its kinds are extended to include
functions, resulting in a three tiered system very similar to Fω [Gir71, Gir72].

Figure 3.4 shows how the stack abstraction might look as a Mtal interface. It declares an
abstract type constructor stack$t which takes the element type and returns the type of the
stacks. Each of the operations is polymorphic over the element type α and the stack arguments
and results have type stack$t α (the application of the stack type constructor to α). An

6Robert Harper, personal communication, July 1998.

32

Interface:

type stack$t : T → T
val stack$empty :

∀α:T.∀ρ:S.∗code {sp:ρ, ra:∗code {sp:ρ, r1:stack$t α}}
val stack$isempty :

∀α:T.∀ρ:S.∗code {sp:ρ, r1:stack$t α, ra:∗code {sp:ρ, r1:bool}}
val stack$push :

∀α:T.∀ρ:S.∗code {sp:ρ, r1:α, r2:stack$t α, ra:∗code {sp:ρ, r1:stack$t α}}
val stack$pop :

∀α:T.∀ρ:S.∗code {sp:ρ, r1:stack$t α, ra:∗code {sp:ρ, r1:stack$t α}}
val stack$top :

∀α:T.∀ρ:S.∗code {sp:ρ, r1:stack$t α, ra:∗code {sp:ρ, r1:α}}

Figure 3.4: Stack Example

implementation of this interface will have to give a concrete type for stack$t, for example:

stack$t �→ λβ:T . 1 + 〈β+, (stack$t β)+〉

To deal with this higher-order recursive type, the roll and unroll coercions must be able to
operate “under” type application and type projection. Details are in the appendix.

A final note: ML-style module systems include functors, which are functions from modules
to modules. Harper et al. [HMM90] showed how to compile functions into a type part, which is a
function from the types of the source module to the types of the destination module, and a value
part, which is a function polymorphic in the source module types that types the values of the
source module to the values of the destination module. Their scheme requires the type system
of Fω . Because Mtal includes the type system of Fω , some functor systems can be compiled
to Mtal. Extending these results to include type sharing requires singleton kinds [SH00].

3.4 Dynamic Linking

Modern operating systems and languages provide dynamic linking and dynamic loading. Dy-
namic linking allows the linker to produce “executables” that contain references to labels that
will be resolved at the time the operating system loads the executable into a process’s address
space. Each executable contains a set of names for dynamically linked libraries, and for each
name a set of labels it imports from that library. When the executable is loaded, the operating
system searches for appropriate libraries and links them with the executable to form the initial
process image. In our model, dynamically linked executables can be represented by normal
object files. Indeed, the only difference between the dynamic and static linking in the model
is that the final steps of linking and the formation of the “real” executable are delayed until
load-time.

Dynamic loading involves linking object files or libraries into the process image during
execution. A program might contain references to labels in these dynamically loaded object
files. It must ensure that it loads an appropriate object file before using these references.
However, it can delay loading until right before use, and if it does not use the references, it
need not load the object file. With dynamic loading there is also the possibility of unloading,

33

that is, removing a linked object file from the process image during execution, making references
to that object file unusable.

Incorporating dynamic loading into my model is an area of future work. I will briefly discuss
some issues that arise. Dynamic loading introduces new failure modes and many interface
choices. For example, we could make it the responsibility of an executable to explicitly load
definitions for labels before they may be dereferenced. Failure can then be isolated to points
where dynamic loading explicitly occurs. Alternatively, as in Java, we could support implicit
loading upon reference to an undefined label. Failure in this model can potentially occur at
any label dereference.

An important technical issue with dynamic loading is that we must extend our evaluation
relation to support execution on program states with unresolved labels. Type or kind infor-
mation for those labels must be maintained at run-time in order to ensure consistency when
dynamic loading is performed. This begs the question of exactly how much type and interface
information must be retained and whether it is under program control or operating system con-
trol. The presence of this information enables further possibilities, particularly introspection
or reflection: the ability of a program to query what labels are defined and at what types.

Recently, Crary et al. [CHW99] have proposed a model of safe dynamic linking. Their work
chooses a particular simple dynamic linking primitive and shows how to build a more extensive
dynamic linking service upon the simple primitive.

3.5 Related Work

This chapter is taken from Glew and Morrisett [GM99a]. The work it describes is closely
related to Cardelli’s work on linking [Car97] and builds on the type theory of high-level modules
including work by Leroy [Ler94] and by Harper and Lillibridge [HL94]. More recently, Flatt
and Felleisen [FF98] have proposed a new advanced module system. Their system includes a
first class notion of modules called units. Units can import and export named types and values.
The named types and values of one unit can be connected to the named types and values
of other units. Programmers can abstract over Units, and linking is a first class primitive.
Mtal is similar but describes what operating systems provide at the low level, whereas Flatt
and Felleisen concentrate on source level module systems. Dean [Dea97] has investigated the
dynamic linking and loading aspect of Java; his work focuses on the class loader and how its
operation interacts with static typing. His work is a very abstract description of this interaction
and does not describe actual linking and link compatibility.

My work is also related to the security of extensible systems. I formalise the checks necessary
for linking, but do not address orthogonal security concerns. For example, extensible systems
must authenticate principals and determine which interfaces extensions from those principals
may link against. Other systems, such as the SPIN project [SFPB96], have addressed these
concerns and their ideas could be combined with Mtal’s.

Finally, I alluded to the importance of abstract types to building secure extensible systems.
The designer of security monitors uses certain guarantees of abstract types. One guarantee is
that the client cannot manufacture values of the abstract type, but must call the implementa-
tion. Another guarantee is that the client cannot manipulate values of the abstract type except
by calling operations in the provided interface. The proof of type safety for Mtal does not
directly guarantee these properties of abstract types. They must be proven as an additional re-
sult. Recently, Zdancewic et al. [ZGM99] proposed a new syntactic proof technique and showed
how to use it to prove these kinds of properties. I believe that their ideas could be adapted

34

to Mtal and used to show suitable properties of abstract types useful for secure extensible
systems.

Chapter 4

Object-Oriented Languages

The previous chapter discussed how to extend Tal to deal with separate compilation. The
next few chapters will discuss extending Tal to support the compilation of object-oriented
constructs. The main problem is that the typical implementations used by compilers produce
output that will not type check in Tal’s type system. Other schemes exist that do produce
output that type checks, but these schemes have higher overheads in that they require extra
fields, extra projections, or additional function calls. Tal aims to support many compilation
strategies including, in particular, the typical strategies that compilers use. The remaining
technical chapters will identify new typing constructs that enable Tal to type check the output
of these strategies. Before getting into detail, I review basic object-oriented concepts to make
terminology precise and to delineate the landscape I will and will not address.

The central concept of object-oriented languages is a construct called an object that combines
data and code. An object consists of a number of fields containing data and a number of
methods each of which has associated code. When a method of an object is invoked, the
associated code is run, and it has access to the object itself through a self variable (Smalltalk’s
self and Java’s this). Different objects can respond to methods with different code, thus
method invocation is often termed dynamic dispatch, as it dynamically selects which code to
run. Abadi and Cardelli [AC96] formalise a number of variants of a pure object calculus with
method invocation, field selection, and field update operations. In their calculi, objects are
created by object constructors, which list the fields and methods and provide initial values for
the fields and code for the methods. They present a number of variants with first, second,
and higher order type systems, applicative and imperative semantics, etc. Abadi and Cardelli’s
calculi are pure-object calculi in that they do not have classes. Most object-oriented languages
have classes or an equivalent construct such as delegation or prototypes. As I had time only to
investigate classes and not delegation or prototypes, this dissertation will focus exclusively on
class-based object-oriented languages.

In a class-based language, objects are created by instantiating classes. Classes, like object
constructors, specify the fields and methods of their instances and provide initial values for the
fields and code for the methods. Unlike object constructors, they also allow for inheritance.
A class may optionally extend another class1, called its superclass. Such a class inherits all
the fields of its superclass and will respond to all the methods listed in the superclass and in
the class itself. The methods fall into three categories: those declared only in the superclass
are said to be inherited, those declared in both the superclass and the class itself are said
to be overridden—the instances will respond to the method with the class’s code—and those

1In multiple inheritance languages, a class may extend several other classes.

35

36

class Window {
field extent : Rectangle;
method handleEvent(Event):bool {· · ·};
method contains(Point):bool {· · ·};

}
class ContainerWindow extends Window {

field children : array(Window);
method handleEvent(Event):bool {· · ·};
method addChild(Window) {· · ·};

}

Figure 4.1: Example Class Hierarchy

declared only in the class itself are said to be new methods. Thus, programmers can code basic
functionality in superclasses and code more refined functionality in subclasses, sharing the basic
code amongst the extensions.

A small example of classes appears in Figure 4.1. This example is a fragment of toolkit for
graphical user interfaces. The actual method bodies are elided. The class Window represents
windows on the user’s screen. It consists of a field extent that stores a rectangle for the part
of the screen the window occupies, a method handleEvent for handling user input such as key
presses and mouse movements, and a method contains that determines if a screen coordinate
is within the window’s boundaries. The class ContainerWindow extends Window and represents
composite windows. It inherits the extent field and contains method, but it overrides the
handleEventmethod (perhaps to distribute the event to the child windows), and it adds a field
and a new method.

The primary role of classes is to provide a template for the construction of objects; I will
call this the template role. Classes also play a number of other roles:

• Classes often name a type. The class Window has a corresponding type name Window that
is an object type for all the instances of Window and its subclasses.

• Closely related to the previous role, classes provide for run-time type dispatch or run-time
class dispatch. For example, Java has the operation (ContainerWindow)e that checks that
e is actually an instance of the class ContainerWindow or one of its subclasses.

• Classes provide constructors. Objects can only be created by invoking one of these con-
structors so a class can ensure that an object gets properly initialised, can establish object
invariants, and can maintain class invariants.

• A class has an associated object, called a class object. This object usually contains class
fields that are shared by all of instances of a class.

Which roles a class plays and their particular details vary from language to language. But
to support the compilation of object-oriented languages to Tal, Tal must provide typing
constructs that allow natural compilation strategies for all of these roles. My dissertation
research has concentrated on two of these roles: the template role and run-time class dispatch.
Furthermore, I consider only single-inheritance classes and right-extension2 object types. This

2Right-extension subtyping means that fields are ordered and that a type with more fields on the right end is
a subtype of type with less fields.

37

chapter defines a core language for object templates and objects, the next chapter translates
this language into an extension of Iil, and the following chapter discusses class dispatch. The
next section presents the core language. Objects in the language might contain references to
variables bound in outer-nested objects. Since these free variables lead to free variables in the
translated functions and Iil requires all functions to be closed, the compiler employs closure
conversion to make all objects closed before they are translated to Iil. Closure conversion is
discussed in the second section of this chapter.

4.1 Object Template Language

In this section I define an object template language,O. This language captures the template role
of classes and the basic operations on objects available in class-based object-oriented languages.
The two important abstractions are object and object templates. An object template captures
the role of a class as a template for creating objects. A class’s template is built starting from its
superclass’s template and by adding fields and by adding or overriding methods. The syntax
for O is:

Types τ, σ ::= α | objt r
Template Types T ::= tempt r

Rows r ::= [mi:si; fj:σ
φj

j]i∈I,j∈J
Variances φ ::= + | − | ◦
Signatures s ::= [�α](�τ)→ τ
Expressions e, b ::= x | let t = te in e | t[fj = ej]j∈J |

e.m[�τ](�e) | e.f | e1.f ← e2
Template Expressions te ::= t | et | te+f :σφ | te.f←σφ | te←+[mi=Mi]i∈I
Method Definitions M ::= x[�α](−→x:τ).b:τ

Rows are used in object types to describe objects and in template types to describe the
objects the templates will create. The row [mi:si; fj:σ

φj

j]i∈I,j∈J describes objects with methods
mi that have signatures si, and fields fj that have types σj and variances φj (O’s variances are
the same as Iil’s). The indices i and j range over index sequences I and J, and I will write
I ≤ J to mean J is a prefix of I .3 The signature [α1, . . . , αm](τ1, . . . , τn)→ τ specifies methods
that take m type parameters α1 through αm, that take n value parameters of types τ1 through
τn, and that return a result of type τ .

Object templates provide a pattern for the creation of an object. For this dissertation, they
contain the methods the object will have and a list of the fields the object will have, but not
the initial values of the fields. An object template for objects described by row r has type
tempt r. Object templates are constructed by starting with the empty template et, which has
no methods or fields, and by adding fields and methods. A field f of type τ and variance φ
is added to an object template e with e + f : τφ. A field f of an object template e can be
changed to have type τ and variance φ with e.f ← τφ; the new type and variance pair must
be a subtype of the old one.4 As methods can be mutually recursive, several methods can be
added in one operation. Methods mi with definitions Mi are added to an object template e
with e ←+[mi = Mi]i∈I. If these methods already exist in the template, they are replaced by
the new definitions. A method definition x[�α](−→x:τ):τ.b takes type parameters �α, takes value

3It is unfortunate that prefix is often written the other way around, because I want ≤ to consistently mean
subtype.

4Abadi and Cardelli [AC96] provide a description of subtyping for pairs of types and variances.

38

parameters �x of types �τ , and returns a result of type τ by executing body b where x is the self
variable (bound to the object itself).

As an example of the use of template operations, the templates for the example class hier-
archy could be built with the following code:

let Window =
et+ extent : Rectangle◦ ←+[handleEvent = · · · , contains = · · ·] in

let ContainerWindow =
Window+ children : array(Window)◦ ←+
[handleEvent= · · · , addChild = · · ·] in

Objects described by row r have type objt r, and are created by instantiating a template e
with the operation e[fj = ej]j∈J where ej is the initial value of field fj. Each field listed in e
must be given an initial value, and no other field can be given a value. Objects are manipulated
by method invocation e.m, field selection e.f , and field update e1.f ← e2. The following
example creates an instance of Window, creates an instance of ContainerWindow, and adds the
former as a child to the latter.

let w1 = Window[extent = r1] in
let w2 = ContainerWindow[extent = r2, children = array()] in
w2.addChild[](w1)

The operational semantics of the template language appears in Figure 4.2. It is a deter-
ministic, left to right, call by value, context based, reduction semantics. As with Iil, a heap
is used to store the current values of mutable things, in O’s case the objects. A heap maps
locations to objects consisting of a list of methods and associated method bodies and a list of
fields and their associated values. Also similar to Iil, the operational semantics uses evaluation
contexts E to determine the next thing to evaluate in a left to right evaluation order. As
examples of the reduction rules consider the the fourth and eight reduction rules. The fourth
rule says that to evaluate the template expression te+f :σφ, te is evaluated to a template value
temp[mi:Mi; fj:σ

φj

j]i∈I,j∈J consisting of methodsmi with bodiesMi and fields fj of types σj and

variances φj. The result is a new template value temp[mi:Mi; fj:σ
φj

j , f :σ
φ]i∈I,j∈J with the same

methods, method bodies, and fields as before, but with an extra field f on the right with type σ
and φ. Additionally, f (the new field) must not be one of the existing fields, as reflected in the
side condition f /∈ fj∈J . The eight rule says that to evaluate the method invocation expression
e.mk[�τ](�v), the expression e is evaluated to a location L. The current heap H must make L to
an object obj[mi=Mi; fj=vj]i∈I,j∈J and the method body corresponding to mk, Mk, must have
the form x[�α](−→x:τ):τ.b. The result of the expression the result of substituting the actual type
arguments �τ for the type parameters �α, the actual arguments �v for the value parameters �x, and
the object itself (i.e., L) for the self variable x into the code b of the method body, that is, the
expression b{�α, x, �x := �τ , L, �v}.

The typing rules for the template language appear in Figures 4.3 and 4.4. To simplify the
presentation of the typing rules, there are a number of syntactic constraints. First, the method
names in a row must be distinct, and similarly for fields names, method names in e←+[mi =Mi],
and field names in e[fj = ej]. Second, the type variables in ∆ must be distinct, and similarly
for variables in Γ. In type rules with contexts of the form ∆, α, it is implicit that α /∈ ∆.

At the type level there are judgements for well formedness of types ∆ �O τ , rows ∆ �O r,
and signatures ∆ �O s, and judgements for subtyping ∆ �O τ1 ≤ τ2, subrows ∆ �O r1 ≤ r2,
subsignatures ∆ �O s1 ≤ s2, and varianced subtyping ∆ �O τφ1

1 ≤ τφ2
2 . Template types have

39

Values v ::= L

Template Values tv ::= temp[mi =Mi; fj : σ
φj

j]i∈I,j∈J
Contexts E ::= {} | let t = TE in e | let t = tv in E |

t[
−−−−→
fj = vj, f = E,

−−−−→
f ′j = e] | E.m[�τ](�e) |

v.m[�τ](�v, E, �e) | E.f | E.f ← e | v.f ← E
TE ::= {} | TE + f :σφ | TE.f ← σφ | TE ←+[mi =Mi]i∈I

Heap Values h ::= obj[mi =Mi; fj = vj]i∈I,j∈J
Heaps H ::=

−−−→
L = h

Program States P ::= letrec H in e

letrec H in E{ι} �→ letrec H ′ in E{e}
Where tv = temp[mi =Mi; fj:σ

φj

j]i∈I,j∈J, h = obj[mi =Mi; fj = vj]i∈I,j∈J, and:

ι e H ′ Side Conditions
let t = tv in v v H
t tv H E(t) = tv
et temp[;] H
tv + f :σφ tv′ H f /∈ fj∈J ; tv′ =

temp[mi =Mi; fj:σ
φj

j , f :σ
φ]i∈I,j∈J

tv ← fk:σφ tv′ H tv′ = temp[mi =Mi; fj:σ′j
φ′

j]i∈I,j∈J

k ∈ J; σ′jφ
′
j =

{
σ
φj

j j �= k
σφ j = k

tv ←+[mi=M ′
i]i∈K tv′ H tv′ = temp[mi=M ′′

i ; fj:σ
′
j
φ′

j]i∈I′,j∈J
I ′ = (I, K − I)
M ′′

i =
{
Mi i /∈ K
M ′

i i ∈ K
t[fj = vj] x H{x = h} x /∈ dom(H);E(t) = tv
L.mk[�τ](�v) b{ρ} H H(L) = h; k ∈ I

Mk = x[�α](−→x:τ):τ.b
ρ = (�α, x, �x := �τ , L, �v)

L.fk vk H H(L) = h; k ∈ J
L.fk ← v v H{L = h′} H(L) = h; k ∈ J

h′ = obj[mi =Mi; fj = v′j]i∈I,j∈J

v′j =
{
vj j �= k
v j = k

Figure 4.2: O Operational Semantics

40

∆ �O τ ∆ �O r ∆ �O τ1 ≤ τ2 ∆ �O r1 ≤ r2 ∆ �O s1 ≤ s2

∆ �O τ
(ftv(τ) ⊆ ∆)

∆ �O r
(ftv(r) ⊆ ∆)

∆ �O α ≤ α α ∈ ∆
∆ �O r1 ≤ r2

∆ �O objt r1 ≤ objt r2

∆ �O r1 ∆ �O s1i ≤ s2i ∆ �O σ1
j
φ1

j ≤ σ2
j
φ2

j

∆ �O r1 ≤ r2


 rk = [mi:ski ; fj:σ

k
j
φk

j]i∈Ik,j∈Jk

I1 ≤ I2

J1 ≤ J2




∆, �α �O σi ≤ τi ∆, �α �O τ ≤ σ
∆ �O [�α](x1:τ1, . . . , xn:τn)→ τ ≤ [�α](x1:σ1, . . . , xn:σn)→ σ

Figure 4.3: O Typing Rules for Types

trivial subtyping, and object types have right-extension breadth subtyping, covariant depth
subtyping for methods,5 and depth subtyping for fields given by their variances.6 Methods are
covariant in their results and contravariant in their arguments.

At the term level there are judgements for typing expressions ∆; Γ; Θ �O e : τ , template
expressions ∆; Γ; Θ �O

te te : T , and method definitions ∆; Γ; Θ �O
M M : τ � s. The empty

template has the empty template type. Field extension requires the template not to have the
field and adds the field at the right. Field update requires the template to have the field, the
new type and variance pair to be a subtype of the old pair, and updates the field. The rule for
method extension and update is the most complicated. The old template has type tempt r, and
the new template has type tempt r′ where r′ reflects the modified methods’s new signatures
and the new methods. The new signatures for modified methods must be subsignatures of the
old signatures. The new object type objt r′ is used as the type for self in checking the new and
modified method definitions.

Template instantiation requires a template of type tempt r and produces an object of type
objt r. It checks that each field is given an initial value of the appropriate type. Method invo-
cation requires an object with the requested method, checks that the type arguments are well
formed, checks that the arguments have the appropriate type, and produces a result accord-
ing to the method’s return type with the type arguments substituted for the type parameters.
Field selection requires an object with the requested field and that the field be readable. Field
update requires an object with the requested field and that the field be writable, and results in
an object of the original type.

The typing rules are sound with respect to the operational semantics. The proof uses
standard techniques—I have proven a similar language sound [Gle99a].

The language, although simple, can encode a number of higher-order constructs, such as
the object constructors of Abadi and Cardelli and higher-order functions. These encodings are
presented below as syntactic sugar for the language (variables that appear only on the right
hand side are fresh):

obj[mi =Mi; fj = ej :σ
φj

j]i∈I,j∈J = let t = et+j∈J fj:σ
φj

j ←+[mi =Mi]i∈I in t[fj = ej]j∈J

5Covariant depth subtyping means that if τ1 ≤ τ2 then obj[m:τ1;] ≤ obj[m:τ2].
6If τ1 ≤ τ2 then obj[;f :τ+

1] ≤ obj[; f :τ+
2], obj[; f :τ−

2] ≤ obj[; f :τ−
1], and so on. See the rules for precise details.

41

∆; Γ; Θ �O e : τ ∆; Γ; Θ �O
te te : T ∆; Γ; Θ �O

M M : τ � s

Θ ::= t1:T1, . . . , tn:Tn

∆; Γ; Θ �O e1 : τ2 ∆ �O τ1 ≤ τ2
∆; Γ; Θ �O e1 : τ2 ∆; Γ; Θ �O x : τ

(Γ(x) = τ)

∆; Γ; Θ �O
te te : T ∆; Γ; Θ, t:T �O e : τ

∆; Γ; Θ �O let t = te in e : τ

∆; Γ; Θ �O
te t : tempt r ∆; Γ; Θ �O ej : σj

∆; Γ; Θ �O t[fj = ej]j∈J : objt r
(r = [mi:si; fj:σ

φj

j]i∈I,j∈J)

∆; Γ; Θ �O e : objt[mi:si, m:[α1, . . . , αm](τ1, . . . , τn)→ τ ;]i∈I
∆ �O σi ∆; Γ; Θ �O ei : τi{�α := �σ}

∆; Γ; Θ �O e.m[σ1, . . . , σm](e1, . . . , en) : τ{�α := �σ}
∆; Γ; Θ �O e : objt[; fj:σ

φj

j , f :σ
φ]j∈J

∆; Γ; Θ �O e.f : σ
(φ ≤ +)

∆; Γ; Θ �O e1 : objt[; fj:σ
φj

j , f :σ
φ]j∈J ∆; Γ; Θ �O e2 : σ

∆; Γ; Θ �O e1.f ← e2 : σ
(φ ≤ −)

∆; Γ; Θ �O
te t : T

(Θ(t) = T)
∆; Γ; Θ �O

te et : tempt[;]

∆; Γ; Θ �O
te te : tempt [mi:si; fj:σ

φj

j]i∈I,j∈J ∆ �O σ

∆; Γ; Θ �O
te te+ f :σ

φ : tempt [mi:si; fj:σ
φj

j , f :σ
φ]i∈I,j∈J

(f /∈ fj∈J)

∆; Γ; Θ �O
te te : tempt [mi:si; fj:σ

φj

j]i∈I,j∈J ∆ �O σ

∆; Γ; Θ �O
te te← fk:σφ : tempt [mi:si; fj:σ′j

φ′
j]i∈I,j∈J

(
k∈J; σ′jφ

′
j=

{
σ
φj

j j �= k
σφ j = k

)

∆; Γ; Θ �O
te te : tempt [mi:si; fj:σ

φj

j]i∈I,j∈J ∆; Γ; Θ �O
M Mi : r′ � s′i ∆ �O s′i ≤ si

∆; Γ; Θ �O
te te←+[mi =Mi]i∈K : tempt [mi:s′′i ; fj:σ

φj

j]i∈(I,K−I),j∈J

where s′′i = si for i ∈ I −K, and s′′k = s′k for i ∈ K.

∆, �α; Γ, x:objt r,−→x:τ �O b : τ
∆; Γ; Θ �O

M x[�α](−→x:τ):τ.b : r � [�α](�τ)→ τ

Figure 4.4: O Typing Rules for Expressions

42

fix f [�α](−→x:τ):τ.b = obj[apply = f [�α](−→x:τ):τ.b;]
λx:τ1.b:τ2 = fix f [](x:τ1):τ2.b
e[�τ](�e) = e.apply[�τ](�e)

4.2 Closure Conversion

O allows objects to have free variables that are bound by outer-nested objects. For example,
consider the code:

obj[apply = s1[]().obj[apply = s2[]().s1.apply[]():τ ;]:τ ;]

Where τ = objt[apply:obj[;];]. In the inner object the method body of apply has a free variable
s1 that is bound by the outer object’s apply method. The inner object could exist after the
outer object’s apply method has terminated, yet to execute the inner object’s apply method the
value of the variable s1 is needed. Somehow the compiler must transmit the value of s1 from the
time the outer apply method executes to the time the inner apply method executes. To do this,
compilers employ a translation called closure conversion, which converts code into closed code
and auxiliary data structures. This process is particularly important in the implementation of
functional programming languages, because functions with free variables are commonly used in
this style. The process is also important given the recent addition of inner classes to Java.

In previous work [Gle99b, Gle99c], I present a direct object closure conversion, prove it
correct, and relate closure to single method objects. I will now adapt this translation to the
template language, thus also providing partial evidence that Tal supports the compilation
of functional programming languages. Unfortunately, because of right extension subtyping,
adapting my translation to the full template language is not possible without significant modi-
fications. Therefore I will impose a restriction on the input to closure conversion: if a template
has free variables in its methods, then field extension is no longer allowed. This restriction does
not exclude either first-class functions or the equivalent of Java’s inner classes, as both of these
are final templates (in the sense of Java’s final classes).

The idea behind object closure conversion is simple: as objects contain both code and data,
closure conversion just adds extra fields to the objects to store the values of the free variables
of the object’s methods. For example, the object above is closure converted to:

obj[apply = s1[]().obj[apply = s2[]().s2.f.apply[]():τ ; f = s1]:τ ;]

The free variable s1 is now stored in an extra field f , and the body of the inner apply method
refers to it by the field selection s2.f . The typing translation is the identity. While different
objects of the same type will, in general, have different sets of free variables with different
types, the extra fields can be hidden by subsumption. Also, method invocation, the analogue of
function application, does not need translation. Functional closure conversion requires a type
translation and does need to translate applications. For objects these issues arise in encoding
objects into records and functions, the subject of the next chapter.

The closure-conversion translation is formalised in Figure 4.5. It uses the function fv(M)
that returns the free variables of M annotated with their types. Determining the types of the
free variables requires knowing the type context Γ used to type check M , so the translation
is type directed. The translation uses a parameter φ to remember for each template variable
in scope the extra fields that were added to the template and the variables that should be
used to initialise them. This information is used at instantiation points to add additional field
initialisers for the fields that store free variables. A template expression translates into a pair

43

φ ::= t1 �→ −−−−−→
f1 = x1, . . . , tn �→ −−−−−→

fn = xn

[[x]]e(φ) = x

[[let t = te in e]]e(φ) = let t = te′ in [[e]]e(φ{t �→ −−−→
f = x})

where (te′;−−−→f = x) = [[te]]te(φ)
[[t[fj = ej]j∈J]]e(φ) = t[fj = [[ej]]e(φ), φ(t)]
[[e.m[�τ](e1, . . . , en)]]e(φ) = [[e]]e(φ).m[�τ]([[e1]]e(φ), . . . , [[en]]e(φ))
[[e.f]]e(φ) = [[e]]e(φ).f
[[e1.f ← e2]]e(φ) = [[e1]]e(φ).f ← [[e2]]e(φ)

[[t]]te(φ) = (t; φ(t))
[[et]]te(φ) = (et; ε)
[[te+ f :σφ]]te(φ) = (te′ + f :σφ; ε)

where (te′; ε) = [[te]]te(φ)
[[te.f ← σφ]]te(φ) = (te′.f ← σφ;

−−−→
f = x)

where (te′;−−−→f = x) = [[te]]te(φ)
[[te←+[mi =Mi]i∈I]]te(φ) = (te′ +1≤i≤n gi:σ+

i ←+[mi =M ′
i]i∈I;

−−−→
f = x,−−−→g = y)

where (te′;−−−→f = x) = [[te]]te(φ)
∪i∈Ifv(Mi) = y1:σ1, . . . , yn:σn
Mi = xi[�αi](−−→xi:τi):τi.bi
M ′

i = xi[�αi](−−→xi:τi):τi.[[bi]]e(φ){�y := −−→xi.g}
g1, . . . , gn are fresh

Figure 4.5: Closure-Conversion Translation

which consists of the new template expression and the list of extra fields and their variables.
The restriction of the input to the translation is reflected in the rule for field extension: it
requires the template being extended to have no extra fields.

The translation produces closed code, preserves typing, and preserves meaning. I prove
these properties for a similar pure object language [Gle99c].

Chapter 5

Object and Class Encoding

An important part of compiling object-oriented languages to target code is translating objects
into more primitive constructs. For reasons explained later, such translations will not type check
in Tal or will not be efficient. Efficient translations that type check require adding additional
typing constructs to Tal. This chapter will devise these additional typing constructs and
formulate a typed translation from O to Tal extended with these constructs. The essence
of the problem is apparent in the translation of objects to records and functions. Since Iil
has records and functions, and since Section 2.4 presented an Iil to Tal compiler, this chapter
concentrates on translatingO to Iil and on devising additional typing constructs for Iil. These
additions are what MooTal needs to support object-oriented languages.

Over the last fifteen years, much work has formulated translations from languages with
object primitives to variants of the typed lambda calculus; these translations are called ob-
ject encodings. However, the motivations of these encodings were theoretical: they precisely
specify the meaning of object constructs, and they are used to compare the expressiveness of
various object constructs versus various lambda calculus constructs. Notably absent from these
encodings is any search for an efficient one.

Another area of work has been on class encodings: how to encode class constructs into pure
object constructs or a class-based object-calculus directly into a lambda calculus. Again, the
concern is with precisely specifying the meaning of class constructs and whether classes provide
any additional expressiveness. These encodings also do not consider efficiency.

There is a well known efficient method for implementing objects called the self-application
semantics [Kam88]. In this semantics, an object is a data structure that contain functions
for each of the methods the object responds to. Method invocation involves selecting the
appropriate function and passing the object as an extra argument (hence self application).
This semantics is easy to express as an untyped object encoding, but only recently have typed
versions been formulated (see later in the chapter). Compilers for popular class-based object-
oriented languages, such as Java, typically use a variant of the self-application semantics. For
each class, a “vtable” is constructed that contains an entry for each method the class’s instances
respond to. This dissertation will call these “vtables” method tables. An object is a record with
an entry for its method table and an entry for each field. Method invocation involves selecting
the appropriate function from the method table and passing the object as an extra argument.
Thus is requires two record projections and a function application.

This chapter presents a new class and object encoding into an extension of Iil. The encoding
mirrors what compilers typically for Java, is efficient, and preserves typing, subtyping, and
operational semantics. The key idea is to type self application with a self quantifier and devise

44

45

the right formulation of self quantifiers. Abadi and Cardelli [AC96] present and discuss a self
quantifier, but their formulation is unable to type the self-application semantics. I present a
different set of rules for the self quantifier that is able to type the self-application semantics.
I believe this lends further insight into the area of object encodings, as it lends a natural
interpretation: the self variable is typed by self types, self types are modelled by a self quantifier,
and several object encodings can be seen as interpretations of the self quantifier.

Before motivating and presenting the new encoding I first elaborate on previous work on
object and class encodings.

5.1 Object Encodings

An object encoding is a translation from a language with a primitive notion of objects to one
without, typically a language that includes records and functions as primitives. An adequate
object encoding must preserve the meaning of programs. For typed translations it must also
preserve both typing and subtyping. An object encoding should also be efficient and fully
abstract. Another dimension for evaluating object encodings is the set of features that can be
encoded. Bruce et al. [BCP97] provide an excellent comparison of most of the known object
encodings.

The first typed object encoding was proposed by Cardelli [Car88a]. He encoded an object
as a record that can recursively refer to itself (often called a recursive record interpretation). At
the type level, he encoded an object type as the fix point of a record type whose elements are the
methods’s types. The encoding preserves meaning, typing, and subtyping, but it cannot encode
method update. The recursive types interpretation was pursued by Reddy [Red88, KR94],
Cook [Coo89, CHC90], the Hopkins Object Group [ESTZ95], and others.

Pierce and Turner [PT94] proposed a simple object and class encoding that requires only
existentials and not recursive types. They split objects into a private state component and
a public method suite. The functions that encode methods are passed the state but not the
method suite. Furthermore, if a method’s return type is the self type, then the function returns
only the state component, and the method invocation sites must pair the returned state with the
original method suite to construct the returned object. Their encoding is the only encoding with
a nonuniform translation of method invocation. Their encoding preserves meaning, typing, and
subtyping, but it cannot encode method update. The lack of method update did not concern
them as they were considering class-based languages. Finally, methods can be made private
and immutable fields can be made public, but mutable fields cannot be made public, as they
are not passed to the methods’s functions.

Bruce et al. [Bru94, BSvG95] designed a functional and an imperative class-based object-
oriented language, and the denotational semantics for this language can be seen both as an
object and class encoding. Like Pierce and Turner, they were concerned with class-based
languages. Their encoding is very similar to Pierce and Turner’s, but methods whose result
type is the self type return the whole object, not just the state component. Thus, they need
to wrap Pierce and Turner’s translation of an object type with an extra fix point. Bruce et al.
also argue for the use of matching rather than subtyping, which has many advantages but leads
to a different object and class model than Cardelli or Pierce and Turner’s.

Rémy [Rém94, RV97] uses a variant of Pierce and Turner’s encoding with row variables.
Row variables are used to specify polymorphism over the type of self and enable a natural
extension of ML to include objects and classes without sacrificing type inference. However, this
system does not include subsumption, and an object must be explicitly coerced from a subtype

46

to a supertype.
Finally in 1996 Abadi, Cardelli, and Viswanathan [ACV96] discovered an adequate typed

object encoding for objects with method invocation and method update. Their encoding uses
bounded existentials and recursive types to effectively encode a self type. However, the tech-
nique they chose requires an additional projection and an additional field that are needed purely
for typing purposes.

Abadi et al.’s encoding is also not fully abstract. In particular, the translation of method
update allows the target language to distinguish objects that were indistinguishable in the
source language. Viswanathan [Vis98] fixed this problem, but only by introducing considerably
more computation.

Recently, Hickey, Crary and League et al. have proposed typed encodings of the self-
application semantics. Hickey [Hic99] shows how to type the self-application semantics with the
Nuprl type theory. He uses an intersection type to make methods polymorphic over the type of
self. However, the Nuprl type theory is undecidable, so it is not clear how to use this encoding in
a type-directed compiler. Crary [Cra99] shows how to use an unbounded existential and binary
intersection types to type the self-application semantics. League et al. [LST99] show how to
type the self-application semantics using existentially-quantified row variables and recursive
types. They also show how to deal with classes, as described below. Both Crary and League et
al.’s ideas could be seen as encodings of the self quantifier proposed here. Abadi, Cardelli, and
Viswanathan’s encoding could also been seen as an encoding of a self quantifier. But rather
than reflecting the self quantifier proposed here, it reflects the self quantifier described by Abadi
and Cardelli [AC96].

5.2 Class Encodings

Abadi and Cardelli [AC96] show informally how to encode classes into their pure object calculi.
In their encoding, a class becomes an object with premethods for each of the instance’s methods
and a new method for instantiating the class. The new method copies the premethods into a
newly created object. Subclasses copy the premethods of the superclass that they inherit and
provide their own premethods for overridden and additional methods. F-bounded polymor-
phism is used to type the premethods. This encoding shows that classes add no expressiveness
to a pure object calculus, but taken at face value is not as efficient as the method table approach
used by most compilers, as it requires indirections or the unnecessary creation of closures.

Fisher and Mitchell along with other authors [Fis96, Mit90, FHM94, FM95a, FM95b, FM96,
BF98, FM98] have pursued a line of research into encoding classes as extensible objects. The
object calculi they consider have a method extension operation for adding a new method to
an already existing object. This construct does not appear in the object calculi usually con-
sidered for object encodings. Method extension interacts poorly with breadth subtyping and
so extensible object calculi need to have complicated type systems for tracking the absence of
methods. Often a distinction is made between prototype objects, which are extensible but do
not have breadth subtyping, and proper objects, which are not extensible but do have breadth
subtyping. Like Abadi and Cardelli’s class encoding, these encodings show that classes do not
add expressiveness. They also provide a good basis for the design and definition of languages.
However, also like Abadi and Cardelli’s encoding, they are not efficient if taken at face value.
In particular, class instantiation involves creating an empty object, then adding all its methods
to the object.

Pierce and Turner’s class encoding [PT94], unlike the above, encodes classes directly into

47

records and functions and not into objects. Essentially it encodes a class as a function f that
returns a record of functions for the public methods of the class. These latter functions take
the private state component and return the result of method they correspond to. However,
to dispatch to other public methods, these functions use f ’s argument, which is also a record
of functions for the public methods of the class. Instantiating a class involves taking the fix
point of f . However, subclasses may have more fields than superclasses, so f is parameterised
by functions to convert between the final representation and the one the current class defines.
Unfortunately these conversion functions persist beyond class instantiation time and in general
are evaluated every time a method is invoked, making this encoding particularly inefficient.

Bruce et al.’s class encoding [Bru94, BSvG95] essentially encodes a class as a pair of the
initial values of the private fields of the class and a function for the public methods. Additionally
the pair is polymorphic in the final object type and the type of the private fields. The function
for the public methods takes the final object and returns a record of the results of each method.
Similar to Pierce and Turner, class instantiation requires taking the fix point of the function
for the public methods to produce a function from the private state to the method suite, and
then packaging this with the initial private state. Taken at face value, this encoding is also not
efficient.

Recently, League et al. [LST99] showed how to encode a subset of the Java class model into
a variant of Fω [Gir71, Gir72]. A class is encoded as a method table (they call it a dictionary),
a function to initialise the class’s private fields, and a function to instantiate the class. Using a
combination of row polymorphism and existential types, they are able to encode class private
fields and their work can probably be extended to handle most of Java’s protection modifiers.
They also claim without proof that the encoding is fully abstract. Their paper focuses on Java
and is somewhat complicated by some of Java’s features. This dissertation attempts to be more
generic and to flesh out the key ideas.

Reppy and Reicke [RR96a] show how to encode classes as modules in the SML module
system extended with objects in the core language [RR96b]. Their encoding is essentially the
same as Abadi and Cardelli’s, but with some twists for handling protection. Vouillon [Vou98]
shows how to combine the classes and modules of Objective ML [RV97] into a single construct.
Essentially their modules have all the features of classes and objects that are necessary, so in a
sense there is no encoding.

My class encoding uses the method-table technique described in the introduction to this
chapter, encoding templates and objects into a language of records and functions. It does not
require the indirection of Abadi and Cardelli nor the representation conversion functions of
Pierce and Turner. It is similar to League et al. but is simpler and more generic, making the
key ideas more apparent.

5.3 My Encoding

The purpose of this chapter is to present an encoding of the template language into an extension
of Iil and then compile that extension into an extension of Tal. The encoding presented is
efficient in that it uses the self-application semantics and method-table techniques described
earlier and used by most compilers. Before getting into formal details, this section will discuss
the intuition behind the encoding, which will motivate the constructs that are added to Iil and
Tal. The following sections will present these extensions and the formal translation.

The main purpose of this section is to spell out the self-application semantics and method-
table techniques and to show how to type the result. The main problem is assigning a type

48

to self, so I will first devise types for (translations of) objects and method tables assuming the
type for self is known, and then show how to get the type for self. An object will be translated
into a record of type [[r]]rf(τ)1 where τ is the (yet to be determined) type of self and r is the
row describing the object. Part of the object is a method table shared with other instances of
the template from which the object was created. A method table has type [[r]]rm(τ) where τ
is the type of self and r describes the object. Both [[·]]rm(·) and [[·]]rf(·) are used to build the
translated types for objects and templates.

Under the self-application semantics, a method is compiled to a function taking an extra
argument, and during method invocation the object itself is passed as the extra argument. For
example, the method handleEvent of class Window, which has signature [](event) → bool, is
compiled to a function, named say Window::handleEvent, of the form:

λ(x:α, y:Event).b

where x is the extra self parameter, b is the body of the method, and α is, for now, a type
variable that stands for the type of self. This function has type (α, Event)→ bool.

In a class-based language, all instances of a class have the same methods. In order to save
space, objects share a structure with other instances of the class, the method table. A method
table is a record with one field for each method the object responds to. For example, the Window
class has a method table, named say Window::mtb:

〈handleEvent = Window::handleEvent, contains = Window::contains〉

and ContainerWindow would have a method table:

〈handleEvent = ContainerWindow::handleEvent,
contains = Window::contains,
addChild = ContainerWindow::addChild〉

Using the suggested typing of Window::handleEvent, Window’s method table has type:

[[Window]]rm(α) = 〈handleEvent:(α, Event)→ bool, contains:(α, Point)→ bool〉

The question is what to do with α. Abadi and Cardelli [AC96] observe that the methods in
these method tables are polymorphic in the final object type, and so can be given an F-bounded
polymorphic type (F bounds were introduced by Canning et al. [CCH+89]). Using the [[r]]rf(α)
type, Window’s method table gets type:

〈handleEvent : ∀α ≤ [[Window]]rf(α).(α, Event)→ bool,
contains : ∀α ≤ [[Window]]rf(α).(α, Point)→ bool〉

I will use this idea with one twist. Instead of making the methods polymorphic, I will make
the method table polymorphic. Thus Window’s method table has type:

∀α ≤ [[Window]]rf(α).〈handleEvent : (α, Event)→ bool, contains : (α, Point)→ bool〉
= ∀α ≤ [[Window]]rf(α).[[Window]]rm(α)

This means that a method table can be installed into an object simply by instantiating it
at an appropriate type. In general the translation of a template type, written [[temp r]]T, is

1The subscripts rf and rm indicate full object type and the method table type, respectively.

49

∀α ≤ [[r]]rf(α).[[r]]rm(α) and [[r]]rm(α) is a record type with one entry for each method in r which
is a function taking an α and the parameters of that method to the result of that method:

[[[mi:[�αi](�τi)→ τi; fj:σ
φj

j]i∈I,j∈J]]rm(α) = 〈mi:∀[�αi](α,
−−→
[[τi]]t)→ [[τi]]t〉i∈I

For single-inheritance languages, the method tables can be ordered such that a subclass’s
method table is a subtype, under right-extension subtyping, of its superclass’s method table.
Ordered records with right-extension subtyping have a natural and efficient implementation, so
most compilers for single-inheritance class-based languages use this technique.

An object is a record with an entry for its class’s method table and an entry for each of its
fields. For example, an instance of Window would have the form:

〈mtb = Window::mtb, extent = r1〉
and an instance of ContainerWindow would have the form

〈mtb = ContainerWindow::mtb, extent = r2, children = a〉
where ri is some rectangle and a some array of Windows.

The type of an instance of Window has the form

[[Window]]rf(α) = 〈mtb : [[Window]]rm(α), extent : Rectangle〉 (5.1)

Again, the problem is what to do with α. Naively, this is the object type itself, so a recursive
type should be used. Unfortunately this does not work. Instances of ContainerWindow, which
also have type Window, have a self type equal to:

〈mtb : [[ContainerWindow]]rm(α), extent : Rectangle, children : array(Window)〉
This type is a strict subtype of the type in 5.1. We need a way to make α refer to the actual
type of the object. My solution is to use a self quantifier. The type self α.τ contains values v
of type τ where α is the actual (or principle) type of v. Thus Window’s instances have type:

self α.〈mtb : [[Window]]rm(α), extent : Rectangle〉
In general [[obj r]]t = self α.[[r]]rf(α) and [[r]]rf(α) is a record type with an entry for a method
table and an entry for each field of r:

[[r]]rf(α) = 〈mtb:[[r]]rm(α), fj:[[σj]]
φj
t 〉j∈J where r = [mi:α.τi; fj:σ

φj

j]i∈I,j∈I

Again, for single-inheritance languages, the fields can be ordered such that a subclass’s fields
are a right-extension subtype of its superclass’s fields.

The only remaining problem is how to formalise self quantifiers. Abadi and Cardelli [AC96]
provide a formulation of self quantifiers, but their formulation leads to the need for “recoup”
fields and the inefficiencies of an extra field and extra projection. We need a new formulation of
self quantifiers that avoids the problems of recoup fields. I use ςα.τ to refer to their self types,
and self α.τ to refer to my formulation.

Abadi and Cardelli’s formulation involves two operations, one to introduce self quantifiers,
and one to eliminate them. The introduction form (they call “wrap”) is pack e, σ as ςα.τ , and
it produces an expression e packaged up with its actual self type σ. The typing rule is:

∆ �Iil σ ≤ τ{α := σ} ∆;B; Γ �Iil e : σ
∆;B; Γ �Iil pack e, σ as ςα.τ : ςα.τ

50

∆;B �Iil α ≤ α (α ∈ ∆)
∆;B �Iil int ≤ int ∆;B �Iil exn ≤ exn

∆;B �Iil τ2i ≤ τ1i ∆;B �Iil τ1 ≤ τ2
∆;B �Iil (τ11, . . . , τ1n)→ τ1 ≤ (τ21, . . . , τ2n)→ τ2

∆ �Iil 〈�i:τφ1i
1i 〉i∈I1 ∆ �Iil τφ1i

1i ≤ τφ2i
2i

∆;B �Iil 〈�i:τφ1i
1i 〉i∈I1 ≤ 〈�i:τφ2i

2i 〉i∈I2
(I1 ≤ I2)

∆, α;B �Iil τ1 ≤ τ2
∆;B �Iil ∀α.τ1 ≤ ∀α.τ2

∆, α;B �Iil τ21 ≤ τ11 ∆, α;B �Iil τ12 ≤ τ22

∆;B �Iil ∀α ≤ τ11.τ12 ≤ ∀α ≤ τ21.τ22

∆;B �Iil rec α.τ ≤ rec α.τ

∆, α;B �Iil τ1 ≤ τ2
∆;B �Iil self α.τ1 ≤ self α.τ2

∆;B �Iil τ1 ≤ τ2
∆;B �Iil τφ1 ≤ τ+

2

(φ ≤ +)
∆;B �Iil τ2 ≤ τ1
∆;B �Iil τφ1 ≤ τ−2

(φ ≤ −)
∆;B �Iil τ◦ ≤ τ◦

Figure 5.1: Iil Subtyping Rules

For σ to actually be e’s self type, e must have type σ. In addition e also must have type τ
with α replaced by e’s self type, that is, e must have type τ{α := σ}. The latter is achieved by
requiring that σ ≤ τ{α := σ}. The elimination form (they call “use as”) is unpack α, x = e1 ine2.
Intuitively, the expression e1 is a value packaged with its self type, and unpack unpacks the
value into x and the self type into α, then executes e2. Abadi and Cardelli’s typing rule is:

∆;B; Γ �Iil e1 : ςα.τ1 ∆, α;B, α ≤ ςα.τ1; Γ, x : τ1 �Iil e2 : τ2 ∆ �Iil τ2

∆;B; Γ �Iil unpack α, x = e1 in e2 : τ2

Recall that if e1 evaluates to the packaged value pack v, σ as ςα.τ1 then v has type σ, but the
above rule gives x type τ1 a supertype of σ. Thus, to get a value of type σ (which α is bound
to), τ1 must have a field of type α called a recoup field. However, this is unnecessary since x
really has type σ, and the above rule could be modified to reflect this by giving x type α. This
observation leads to my rule for self-type elimination:

∆;B; Γ �Iil e1 : self α.τ1 ∆, α;B, α ≤ τ1; Γ, x : α �Iil e2 : τ2 ∆ �Iil τ2

∆;B; Γ �Iil unpack α, x = e1 in e2 : τ2

Note, however, that the bound α ≤ τ1 has α on both the left and the right sides; that is, it is
a recursive or F bound. Since, the system uses F bounds for typing method tables, using them
in the unpack rule adds no additional complexity. In fact, this brings a nice symmetry to the
system, as F bounds are used in the typing of premethods and F bounds are used in the typing
of method invocation.

5.4 Encoding Target

According to the previous section, to encode O into Iil, we need to add an F-bounded form of
quantification, recursive types, and self quantifiers to Iil. In addition Iil must have subtyping
and subsumption to reflect the subtyping and subsumption of O. The subtyping rules for

51

Values v ::= · · · | rollτ (v) | packτ (v)
Contexts E ::= · · · | rollτ (E) | unroll(E) | packτ (E) | unpack α, x = E in b

ι e H ′ S ′ Side Conditions
unroll(rollτ (v)) v H S

unpack α, x = v in b b{α := τ ′} H S{x = rollτ
′
(v′)} v = packτ (rollτ

′
(v′))

Figure 5.2: Extended Iil Operational Semantics

Iil appear in Figure 5.1 and are standard except as noted below. The syntax for the other
extensions is:

t ::= · · · | α ≤ τ
τ ::= · · · | rec α.τ | self α.τ
e ::= · · · | rollτ (e) | unroll(e) | packτ (e) | unpack α, x = e1 in e2

A type definition of the form α ≤ τ is called an F bound, as α is bound in τ . These F bounds
and the recursive types, like the type names of Mtal, are mediated by explicit roll (rollτ (e))
and unroll (unroll(e)) coercions. Thus, α is not a subtype of τ but unrolls to τ . Similarly,
rec α.τ unrolls to τ{α := rec α.τ}, and the latter rolls to the former.

The type self α.τ contains values packaged with their self type by the packself α.τ coercion.
The value before packing has type τ where α is replaced by the self type of the value. In
general these self types are recursive, so the typing rule for pack allows only recursive self
types, and requires the unrolled form to be a subtype of τ with α replaced by the rolled form.
Consequently, a value of type self α.τ has the form packself α.τ (rollσ(v)) where σ is the self type.
The operational rule for unpack uses this fact to substitute the self type for α in e2. Otherwise,
the self quantifiers, pack coercion, and unpack expression follow the intuition and rules of the
previous section.

The extensions to the operational semantics for Iil appear in Figure 5.2. The additional
typing rules, including subsumption, appear in Figure 5.3.

5.5 Translation

The translation, which is type directed, appears in Figures 5.4 and 5.5. As with many other
translations in this dissertation, rather than present it as a function of typing derivations,
it is presented as a function of syntax with : τ annotations to indicate the necessary typing
information. The actual typing derivation used to translate a term affects only the typing
information of the translated term, and the term structure is solely determined by the term
structure of the source expression. Further, the proofs of type preservation and operational
correctness show that no matter which typing derivation is used, the translated term has the
translated type and simulates the behaviour of the source term, thus providing a coherence
argument (see [Gle99a] for details).

The translation uses the ideas developed in Section 5.3. For a row r there are two important
target types: [[r]]rm(τ) for method tables and [[r]]rf(τ) for the objects. The record type of a
method table is [[r]]rm(τ) where τ is the type of self. The record type of an object is [[r]]rf(τ)
where τ is the type of self. As discussed, a template type is polymorphic over self, so is

52

∆;B; Γ �Iil e : τ1 ∆;B �Iil τ1 ≤ τ2
∆;B; Γ �Iil e : τ2

τ unrollB(τ) roll(τ)
α B(α) no
rec α.σ σ{α := τ} yes

∆;B; Γ �Iil e : τ2
∆;B; Γ �Iil rollτ1(e) : τ1

(unrollB(τ1) = τ2; roll(τ))

∆;B; Γ �Iil e : τ1
∆;B; Γ �Iil unroll(e) : τ2

(unrollB(τ1) = τ2)

∆;B; Γ �Iil e : τ1 ∆;B �Iil τ2 ≤ τ{α := τ1}
∆;B; Γ �Iil packself α.τ (e) : self α.τ

(unrollB(τ1) = τ2)

∆;B; Γ �Iil e1 : self α.τ1 ∆, α;B, α ≤ τ1; Γ, x:α �Iil e2 : τ2 ∆ �Iil τ2

∆;B; Γ �Iil unpack α, x = e1 in e2 : τ2

Figure 5.3: Extended Iil Typing Rules

[[α]]t = α

[[obj r]]t = self α.[[r]]rf(α)
[[temp r]]T = ∀α ≤ [[r]]rf(α).[[r]]rm(α)
[[[mi:si; fj:σ

φj

j]]]rm(τ) = 〈mi:[[si]]s(τ)+〉i∈I
[[[mi:si; fj:σ

φj

j]]]rf(τ) = 〈mtb:[[[mi:si; fj:σ
φj

j]]]rm(τ)
+, fj:[[σj]]

φj
t 〉j∈J

[[[α1, . . . , αm](τ1, . . . , τm)→ τ]]s(σ) = ∀α1. . . .∀αm.(σ, [[τ1]]t, . . . , [[τn]]t)→ [[τ]]t

Figure 5.4: Object and Class Encoding, Types

53

mt ::= 〈−−−→� = v〉
ϕ ::= t1 �→ (x1, mt1), . . . , tn �→ (xn, mtn)

[[x]]e(ϕ) = x
[[let t = te:temp r in e]]e(ϕ) = let x = (Λ[�α, α ≤ [[r]]rf(α)]mt)[�α] in

[[e]]eϕ{t �→ (x,mt)}
where x, α fresh

[[te]]te(ϕ, α) = mt
�α = ftv(mt)− {α}

[[t:temp r[fj = ej]j∈J]]e(ϕ) = pack[[obj r]]t(rollrec α.[[r]]rf(α)(e))
where e = 〈mtb = mt, fj = [[ej]]e(ϕ)〉j∈J

mt = x[rec α.[[r]]rf(α)]
ϕ(t) = (x,)

[[e.m[τ1, . . . , τp] = unpack α, x = [[e]]e(ϕ) in
(e1, . . . , en)]]e(ϕ) unroll(x).mtb.m[[[τ1]]t] · · · [[[τp]]t]

(x, [[e1]]e(ϕ), . . . , [[en]]e(ϕ))
[[e.f]]e(ϕ) = unpack α, x = [[e]]e(ϕ) in unroll(x).f
[[e1.f ← e2]]e(ϕ) = unpack α, x = [[e1]]e(ϕ) in

unroll(x).f ← [[e2]]e(ϕ)

[[t]]te(ϕ, τ) = mt where ϕ(t) = (x,mt)
[[et]]te(ϕ, τ) = 〈〉
[[te+ f :σφ]]te(ϕ, τ) = [[te]]te(ϕ, τ)
[[te.f ← σφ]]te(ϕ, τ) = [[te]]te(ϕ, τ)
[[te←+[mi =Mi]i∈K = 〈mi = v′′i 〉i∈(I,K−I)

:temp r]]te(ϕ, τ) where [[te]]te(ϕ, τ) = 〈mi = vi〉i∈I
v′′i =

{
vi i ∈ I −K
v′i i ∈ K

[[Mi]]m(ϕ, τ, r) = v′i
[[M]]m(ϕ, σ, r) = (fix [�β, α ≤ [[r]]rf(α), �α]

(x′:α, x1:[[τ1]]t, . . . , xn:[[τn]]t).
let x = pack[[obj r]]t(x′) in [[b]]e(ϕ))[�β, σ]
where M = x[�α](x1:τ1, . . . , xn:τn):τ.b

�β = ftv(M)

Figure 5.5: Object and Class Encoding, Terms

54

translated to ∀α ≤ [[r]]rf(α).[[r]]rm(α, ◦), and an object type uses a self quantifier, so is translated
to self α.[[r]]rf(α).

At the term level, a template is translated into a record corresponding to its method table.
The translation of let template expressions binds value variables to these records, which are
polymorphic in the type of self. Thus the translation needs to remember for each template
variable both the value variable bound to its translation and the target record it is translated
to. An environment ϕ records this information. A complication arises because Iil polymorphic
records and functions must be type-variable and value-variable closed. The translation assumes
object closure conversion has been applied, but in addition it needs to close over the free type
variables of polymorphic records and functions. The ideas of Morrisett et al. [MWCG98] are
used. Briefly, v is closed by transforming it to (∀[�α]v)[�α] where �α = ftv(v).2 An expression e’s
translation is [[e]]e(ϕ); a template expression te’s translation is [[ϕ, τ]]tete, where τ is the target
type of self; a method body M ’s translation is [[M]]m(ϕ, τ, r), where τ is the target type of self
and r describes the objects in which M appears.

The translation is both type preserving and operationally correct. I prove correct a sim-
ilar object encoding from an object language with covariant self types and no type or value
parameters into a similar language without explicit roll and unroll [Gle99a].

5.6 MooTal and Extended Compiler

To compile the extended Iil to Tal, I first extend Tal to a language called MooTal. The
extensions in MooTal mirror the extensions made to Iil, and are needed to order to still be
able to type check compiled Iil code. First, MooTal has subtyping as follows: Code types are
contravariant, much like function types are contravariant in their argument types. Tuple types
have right-extension breadth subtyping, and depth subtyping given by their field variances. The
heap and stack pointer types are covariant. Second, MooTal has recursively-bounded type
definitions, recursive types, self types, and the associated coercions. Finally, MooTal has an
unpack instruction unpack α, r, v, which unpacks the value v, places it in r, and binds α to the
self type for the remaining instructions. These additional features of MooTal parallel those
of Iil. The technical details, including operational semantics and typing rules, appear in the
appendix, but are summarised here:

t ::= · · · | α:κ ≤ c
c ::= · · · | rec α:κ.c | self α:κ.c
δ ::= · · · | rollc | unroll | packc

ι ::= · · · | unpack α, r, v

The extended translation for the compiler of Section 2.4 appears in Figure 5.6.

5.7 Extensions

This dissertation considers only single-inheritance languages. A natural extension would be to
consider multiple inheritance or the related notion of mixins.3 The essential change would be
the addition of operations to combine two or more templates into a new template. The exact
semantics of this operation with respect to conflicts between the templates would need to reflect

2Recall that ftv(v) calculates the free type variables of v.
3Flatt et al. [FKF98] present an excellent mixin design, and they have references to earlier work.

55

[[α ≤ τ]]td = α:T ≤ [[τ]]t
[[rec α.τ]]t = rec α:T.[[τ]]t
[[self α.τ]]t = self α:T.[[τ]]t

[[rollτ (v)]]v(k) = [[v]]v(λw.roll[[τ]]t(w))
[[packτ (v)]]v(k) = [[v]]v(λw.pack[[τ]]t(w))

rollτ (e)
[[e]]e(∆, vm, τa, τb, h);
mov r1, roll[[τ]]t(r1)

unroll(e)
[[e]]e(∆, vm, τa, τb, h);
mov r1, unroll(r1)

packτ (e)
[[e]]e(∆, vm, τa, τb, h);
mov r1, pack[[τ]]t(r1)

unpack α, x = e1 in e2
[[e1]]e(∆, vm, τa, τb, h); τ1 = self α.τ ′1
unpack α, r1, r1; ∆′ = ∆, α:T ≤ [[τ ′1]]t
push r1; vm′ = vm, x �→ −h − 1
[[e2]]e(∆′, vm′, α :: τa, τb, h+ 1)

Figure 5.6: Object Extended Iil to MooTal Compiler

56

the intended semantics of multiple inheritance with respect to conflicts between superclasses.
How to translate classes into templates then depends upon how to handle diamond inheritance.
If D inherits from both B and C, and B and C both inherit from A, then D could have one
or two “copies” of A. If the desired semantics is two copies, then each class would translate
into a template that is the combination of its direct superclasses’s templates modified by the
declarations in the class itself. If the desired semantics is one copy, then each class would
translate into both a direct and full template. The direct template would contain just the
declarations of the class itself. The full template would be the combination of all the class’s
ancestors’s direct templates. An object would be created by instantiating the appropriate class’s
full template.

Another property of object and class encodings not discussed in this chapter is full abstrac-
tion. In a secure extensible system, the security monitor coder would be using a high-level
language, for our purposes an object-oriented language. She will think in terms of the abstrac-
tions of that language, in particular, the abstraction of an object. She will consider all the
operations that the untrusted code could do to an object and ensure that none of these oper-
ations will violate the security policy. However, if the secure extensible system is checking the
untrusted code at the level of Iil or Tal, then there may be operations that are possible on the
object that were not possible in the high-level language. Full abstraction is the absence of such
operations. Formally, if two O expressions are contextually equivalent, then their translations
are are contextually equivalent in Iil. The Abadi, Cardelli, and Viswanathan encoding [ACV96]
is not fully abstract. Viswanathan [Vis98] has proposed another object encoding that is fully
abstract, but his encoding is very inefficient. I conjecture that the encoding presented in this
chapter is fully abstract and intend to try to prove this in the future.

Chapter 6

Type Tagging

This chapter describes the final extension to Tal that provides support for the compilation of
run-type type dispatch. Run-type type dispatch is important to real object-oriented languages.
An example is Java’s downcasting operator [GJS96]. The expression (c)e1 tests if e’s run-time
class is a subclass of c, and if not throws an exception. Java also has a class case construct,
but only for examining the class of an exception packet. The try statement try blk catch
(classname1 x1) blk1 · · · catch (classnamen xn) blkn first executes blk , and if blk throws
an exception, matches that exception’s run-time class against classname1 through classnamen.
If classnamei is the first matching class, xi is bound to the exception, and blk i is executed. The
ability to examine run-time classes is crucial to Java’s exception mechanism, and is generally
useful in a number of other situations.

In typed languages, type refinement is a key property of downcasting: After dispatching on
the run-time class of a value, that value’s static type changes to reflect the new type information.
For example, in Java, if Student is a subclass of Person and x is declared to have type Person,
then in the expression (Student)x, while x has static type Person the whole expression has
the refined type Student.

Downcasting is one example of a construct that dispatches on a value’s run-time type. The
literature contains work addressing a number of similar constructs. Abadi et al. [ACPP91]
introduce a type dynamic with a type case construct, formalise its semantics and typing rules,
and prove soundness. The intermediate language λML

i [HM95, Mor95] treats another type-case
construct, also formalising it and proving soundness. Crary, Weirich, and Morrisett [CWM98,
CW99] show how to formalise λML

i ’s type case in a type-erasure interpretation rather than
the type-passing interpretation used in other works. Their languages λR and LXvcase do
not have term constructs that dispatch on types, but instead their languages have typing
machinery for checking the implementation of type dispatch. Thus, in some sense they address
the implementation of type dispatch, unlike the other works mentioned.

This work on type dynamic and type case does not extend to object oriented languages
as it neglects two important features: subtypes and the creation of “new” (i.e., generative)
types. For these features, the only previous work is that of Reppy and Riecke [RR96b] and
Harper and Stone [HS97]. Reppy and Riecke describe an extension of SML with objects.
Included in their language are hierarchically organised object type constructors and a case
mechanism for dispatching on an object’s run-time class. They formalise this construct and
prove it sound. They sketch an implementation, but do not formalise the implementation.
Harper and Stone give an alternative semantics for SML. To model exception declarations,

1Java also has an instanceof operator that tests if a cast would succeed.

57

58

they include an extensible sum construct called tags. This chapter also has a tag construct
very similar to theirs, but my tags can deal with class hierarchies, whereas their can only deal
with top-level classes.

This chapter reworks the ideas of Reppy and Reicke with a more general presentation, and
extends it to include a translation of the tag construct into an extended version of MooTal.
As Reppy and Riecke observe, class case is very similar to exception matching and to pattern
matching of hierarchical extensible sums. Thus, my construct explains class cast and class
constructs, ML-style exceptions, and hierarchical extensible sums, and could be used in a typed
compilation of multidispatch languages such as Cecil [Cha97].

I begin the chapter by describing in detail the programming language constructs being
addressed. From these constructs I extract a core mechanism and add it to Iil, forming the
source language of this chapter. Next, I informally discuss the implementation and typing issues
that arise. This leads to another extension of Iil, the target language of this chapter, and a
formal translation from the source language to the target language. Finally, I extend MooTal
and the Iil to Tal compiler of Section 2.4.

6.1 Four Type Dispatch Constructs

Consider the following four language constructs:

Class Casting and Class Case: In Java, and in other class-based languages, objects are
created by instantiating a class, and a reference to that class is stored in the object when
it is created. Java has a downcasting operation (c)e that evaluates e to an object and
then tests to see if that object’s class is in the subhierarchy under class c. If so, the cast
expression evaluates to the object, but has static type c, which is generally a refinement
of e’s type. If not, an exception is thrown. More generally, these languages might provide
a class case mechanism for testing membership in one of several classes. Java has this
operation for the particular case of handling exceptions.

Exceptions: At first glance, ML-style exceptions might not seem related to downcasting, but
in fact, there is a strong connection. Exception declarations are similar to classes in
that they create a new exception name with an associated type. Exception packets, like
objects, are created from an exception name, and that name is stored in the packet.
Exception matching, then, is like downcasting: Known exception names are compared
against the name in an exception packet, and successful comparisons allow access to the
carried value at the type of the known exception name. Unlike classes, which are arranged
hierarchically, ML-style exception names are not hierarchical. On the other hand, Java
implements exception packets by using objects, and the declaration of new exception
names is achieved by subclassing throwable.

Hierarchical Extensible Sums: ML-style exceptions are also an example of extensible sums.
The exception type is like a global sum type that can be extended by user declarations.
Each user-declared exception name is a new branch in the sum. A hierarchical extensible
sum allows the sum branches to be arranged in a hierarchy. For example, a programmer
might define a hierarchical extensible sum type for the primitives of a compiler interme-
diate language. She might define a constructor of this sum, intbin, for binary integer
operators, and then subconstructors under intbin for the addition operation, the subtrac-
tion operation, and so on. The intermediate language’s type checker could match against
intbin, since all these operators have the same typing rule, whereas a code generator

59

would match against the more specific constructors to determine the correct instruction to
generate. Reppy and Riecke [RR96b] describe hierarchical extensible sums in connection
with their class-case mechanism that generalises ML-style exceptions. Reppy and Fisher
are incorporating a form of hierarchical extensible sums in the language Moby [FR99], a
research vehicle for ML2000.

Multimethods: Java has single dispatch: Methods can be thought of as functions that are
specialised on their first argument’s class. Multimethods (e.g., Cecil [Cha97]) are a gener-
alisation of this paradigm: A multimethod is a function that is specialised on any, possi-
bly all, of its arguments’ classes. Implementing multimethods requires calling specialised
code after determining which specialisation applies. The latter could be implemented by
comparing the arguments’ run-time classes against patterns of known classes. In a type-
directed compilation framework, when one of these comparisons succeeds, the types of the
arguments must be refined to match the types required by the specialised code. These
comparisons are instances of the class case construct described above. Multimethods are
similar to Castagna et al.’s overloaded functions [CGL95], except the latter are considered
in a structural rather than named typed system.

The core mechanism in all of these examples is a tagging mechanism. Exception names,
classes, and the constructors of an extensible sum are all examples of tags that are placed with
or within values. Associated with these tags are types that correspond to the tagged values.
The language has a tag if/case construct with type refinement in the successful branches.
Furthermore, in the case of classes and hierarchical sums, the tags form a tag hierarchy and
the associated types are in a subtype hierarchy parallel to the tag hierarchy. Usually, the tests
of a tag case are not “is tag t1 equal to tag t2” but “is tag t1 in the subhierarchy under tag
t2”. I shall call “testing if a tag is under another in the tag hierarchy” a tag check. In the next
section, I will add this core mechanism to Iil.

6.2 Translation Source

This section adds a tagging mechanism to Iil that abstracts the core operation of the type
dispatch constructs described in the previous section. The desired operations are: creating
hierarchies of type tags, tagging a value with a tag, and comparing the tag of a tagged value
against known tags.

A new tag is created by one of two operations: newtag(τ) or subtag(τ, e). In both cases
the new tag is for tagging values of type τ and has type tag(τ). The newtag(·) form creates a
top level tag, and the subtag(·, e) form creates a subtag of tag e. For example, the ML-style
exception declaration exception Failure of string could be coded in the tagging language as:

let Failure = newtag(string) in

For expository purposes, examples will use constructs not in Iil, such as strings and floating
point numbers. For an example of subtags, assume string[10] is the type of strings of length
10, and is a subtype of string. The subexception declaration exception MyFailure extends
Failure of string[10] could be coded as:

let MyFailure = subtag(string[10],Failure) in

Values are tagged with the operation mktagged(e1, e2) where e1 is the tag and e2 the value
to be tagged. The result is a value of type tagged. For example, exception packet creation

60

let ep = Failure “unimplemented” could be coded as:

let ep = mktagged(Failure, “unimplemented”) in

Tagged values are compared with known tags using the operation if tag(e1) ≤ e2 then x.b1
else b2 fi where e1 is a tagged value and e2 is a tag. Informally, the tag in e1 is extracted and
compared, along with all its ancestors in the tag hierarchy, to e2. If any ancestor is equal to
e2, b1 is executed with x bound to the value in e1. Otherwise b2 is executed. For example,
exception matching such as:

match ep with
Failure(x) -> printf “Computation failed: %s” x

| -> printf “Some other exception”

could be coded as:
if tag(ep) ≤ Failure then
x.printf “Computation failed: %s” x

else
printf “Some other exception”

fi

Adding these operations to Iil, the extended syntax is:

τ ::= · · · | tag(τ) | tagged
e ::= · · · | newtag(τ) | subtag(τ, e) | mktagged(e1, e2) |

if tag(e1) ≤ e2 then b1 else b2 fi

The operational semantics is given in Figure 6.1. The key part of the semantics is modelling
the identity of tags. Intuitively, the heap of an Iil program state stores the identities and
details of all tags created in the execution so far. I add to heap values tag definitions tag(τ, s),
which consist of the type being tagged τ and the optional supertag s, which is either ε for no
supertag or a variable that is the identity of the supertag.

The most interesting reduction rules are the rules for if tag(·) ≤ · then · else · fi. A tag check
of x1 against x2 is formalised by the predicate tagchkH(x1, x2), where H is the heap containing
the tag definitions, x1 is the address of the unknown tag, and x2 is the address of the known
tag. The definition of this predicate says that either x1 and x2 are the same tag or x1 has
a supertag x3 and the predicate tagchkH(x3, x2) holds. (Technically, tagchk ·(·, ·) is the least
predicate that is a fix point of an appropriate recursive definition.)

The source language is erasable in that the type τ in newtag(τ), subtag(τ, e), tag(τ, ε), and
tag(τ, v) is not needed at run-time.

The typing rules appear in Figure 6.2. Subtyping for tag and tagged types is trivial. The
rule for subtags requires that e be a tag for type τ ′ and that τ be a subtype of τ ′. The latter
requirement ensures that types associated with tags form a subtype hierarchy in parallel to the
tag hierarchy. The rule for mktagged(e1, e2) requires that e1 be a type tag for τ and e2 have
type τ . The rule for if tag(e1) ≤ e2 then x.b1 else b2 fi requires e1 to have type tagged, e2 to
be a tag for some type σ, b1 to type check in a context with x of type σ, and b2 to type check.

The typing rules are sound with respect to the operational semantics. The proof uses the
standard techniques. The only interesting case is in the type preservation of a successful tag
comparison. In that case, a tag of type tag(σ1) is compared against one of type tag(σ2). If the
comparison succeeds, the next program state has a store of the form S{x := v′} where S has the
desired type if x has type σ2. However, v′ has type σ1, so we need to show that ∆ �Iil σ1 ≤ σ2,
which follows from this lemma:

61

Extended Iil syntax:

v ::= · · · | mktagged(v1, v2)
E ::= · · · | subtag(τ, E) | mktagged(E, e) | mktagged(v, E) |

if tag(E) ≤ e then x.b1 else b2 fi | if tag(v) ≤ E then x.b1 else b2 fi
h ::= · · · | tag(τ, ε) | tag(τ, x)

Reduction rules:

ι e H ′ Side Conditions
newtag(τ) x H{x = tag(τ, ε)} x /∈ dom(H)
subtag(τ, y) x H{x = tag(τ, y)} x /∈ dom(H)
if tag(v) ≤ x2 then x.b1 else b2 fi b1 H x /∈ dom(S)

S ′ = S{x = v′}
v = mktagged(x1, v

′)
tagchkH(x1, x2)

if tag(v) ≤ x2 then x.b1 else b2 fi b2 H v = mktagged(x1, v
′)

not tagchkH(x1, x2)

Tag checking:

tagchkH(x1, x2)
def= (x1 = x2) ∨ (H(x) = tag(τ, x′1) ∧ tagchkH(x′1, x2))

Figure 6.1: Tagging Source Operational Semantics

∆ �Iil tag(τ) ≤ tag(τ) ∆ �Iil tagged ≤ tagged

∆ �Iil τ

∆; Γ �Iil newtag(τ) : tag(τ)
∆; Γ �Iil e : tag(τ ′) ∆ �Iil τ ≤ τ ′
∆; Γ �Iil subtag(τ, e) : tag(τ)

∆; Γ �Iil e1 : tag(τ) ∆; Γ �Iil e2 : τ
∆; Γ �Iil mktagged(e1, e2) : tagged

∆; Γ �Iil e1 : tagged ∆; Γ �Iil e2 : tag(σ) ∆; Γ, x : σ �Iil b1 : τ ∆; Γ �Iil b2 : τ
∆; Γ �Iil if tag(e1) ≤ e2 then x.b1 else b2 fi : τ

Figure 6.2: Tagging Source Typing Rules

62

Lemma 6.1 If
tagchkH(x1, x2),
�Iil H : Γ,

ε; Γ �Iil x1 : tag(σ1), and
ε; Γ �Iil x2 : tag(σ2)

then ∆ �Iil σ1 ≤ σ2.

6.3 Implementation

Real machines do not have the primitives newtag(τ), subtag(τ, e), mktagged(e1, e2), and if
tag(e1) ≤ e2 then x.b1 else b2 fi. Compiler writers must select data structures to represent the
tags and algorithms to implement tag checks. The goal of this section is to formalise a typed
translation that eliminates these primitives. For now, think of the target of this translation as
Iil with physical pointer equality and some typing machinery that I will develop in this section.
This typing machinery is general enough to type strategies for implementing the tag primitives
other than the one presented here [Gle99d].

Consider first how a compiler would translate the examples in the previous section, ignoring
types. To create the new tag Failure, the compiler would dynamically allocate a new block of
memory. Throughout its lifetime, the address of the block is different from the address of any
other dynamically allocated memory block, so the compiler can use this address as a unique
identifier for the tag. The compiler needs to record the position of Failure in the tag hierarchy,
so it stores a null pointer into the newly allocated block to indicate that Failure is at the top
level of the hierarchy. I will use ML’s none constructor to represent the null pointer, and ML’s
some(v) to represent a non-null pointer to v. Similarly, to create MyFailure the compiler would
allocate a new block of memory and store some(Failure) in it.

To create the tagged value ep, the compiler would create a pair consisting of Failure and
the literal string. So the first three examples might become:

let Failure = 〈none〉 in
let MyFailure = 〈some(Failure)〉 in
let ep = 〈Failure, “unimplemented”〉 in

To translate the last example, the compiler would extract the tag in ep, which is the address
of some dynamic memory block, and compare it against Failure. If they are equal, x would
be bound to the second component of ep and b1 executed. Otherwise, the supertag would
be extracted and the process repeated until there is no supertag, in which case b2 would be
executed. The translated code might be:

let z = ep.1 in
loop1 : if z = Failure then let x = ep.2 in b1

else match z.1 with none → b2
| some(z′)→ (z ← z′; goto loop1)

Now consider designing a type system to annotate the code above. The key difficulty is
giving x the correct type. In general, the type of a tagged value like ep is unknown, yet if the
comparison z = Failure succeeds, the type of ep.2 is string, and this fact is needed to give x
type string. What makes this difficult is that z and Failure are values unrelated to ep.2. In
order to make this connection clear, the target type system needs to do two things: First, it

63

needs to generate type equalities from physical pointer comparisons; second, it needs to link z
and ep together, so that type information generated by the comparison will change ep’s type.

A solution to the second problem is to use type variables to link tags to values being tagged.
For example, ep’s type could be 〈tag(α), α〉 for a yet to be determined type constructor tag(·)
and some type variable α. Then comparing z, which has type tag(α), to Failure, which has
type tag(string), will cause the type checker to change α to string in the successful branch, thus
changing ep.2’s type to string also.

A solution to the first problem lies in the following observation. The compiler is using
the address of the memory block allocated for Failure as a name for the type string. It never
uses the same address as a name for two different types, so if two addresses are equal, the
types they name must be equal. To reflect this behaviour, the target type system must track
which addresses are names for types and which types they name. The compiler gives the target
language type tag(τds, τt) to these pointers. These types resemble the source language type
tag(τt), as both are for tags for type τt. However, whereas tags were primitives in the source
language, they are explicit datastructures in the target language, and τds reflects the type of
these datastructures. In particular, a value v is in the type tag(τds, τt) if v also has type τds
and the programmer declared v to be a tag for type τt.

Now consider the datastructures used, and the type τds for the examples. Failure is a linked
list of Failure’s ancestors, and each pointer in this linked list is being used as a name for the
type string. Linked lists have type rec β.〈β?〉 (where τ? is an option type). So Failure has type
tag(string), where:

tag(τ) = rec β.tag(〈β?〉, τ)
The tagged value ep is a pair of such a tag and a string, except that string is abstracted over,
thus ep has type ∃α.〈tag(α), α〉. To get the initial value of z, ep is unpacked, introducing α
into the type context and giving z the type tag(α). If z = Failure succeeds, then the type that
z tags and the type that Failure tags must be the same, that is, α is string. The target type
system will use this in type checking let x = ep.2 in b1. Since ep.2 has type α and α is string,
x will get type the correct type.

Two complications arise with this basic scheme. The first is ensuring that a pointer is used
to name only one type. If the same pointer is used to name two different types, run-time type
errors could occur. To see this, assume that there is an operation mktag(e, τ) that declares that
value e is a tag for τ , and consider the following malicious code:

let x1 = 〈none〉 in
let x2 = mktag(x1, string) in
let x3 = mktag(x1, float) in
let y = 〈x2, “hello”〉 in

The variables x1, x2, and x3 are all bound to the same pointer, which points to a tuple with a
single element none. However, the type system types x2 as a tag for strings and x3 as a tag for
floats. The code uses x2 to created a tagged “hello” value, which is bound to y. Now consider
the following innocent code:

fun foo[α](z : 〈rec β.tag(α, 〈β?〉), α〉) =
if z.1 = x3 then sin(z.2) else 1.0 fi

The body of foo compares z.1, a tag for α, to x3, a tag for float. In the then branch, z.2 is
refined to type float and the sine computation type checks. However, suppose foo was applied
to string and y. Since y.1 is x2, which equals x3, the then branch is executed. But z.2 is a string

64

and the sine computation fails. The target type system must ensure that x1 can be declared a
tag for at most one type.

One way to ensure a value is declared a tag for at most one type is to use a linear type
system. If v is of linear type τ1, then v can be “used” only once. Then it is sufficient for
mktag(e, τ) to require e : σ1 for some σ. However, this requires all the machinery of linear type
systems in the target language. A simpler solution, pursued in this dissertation, is to allow
mktag(e, τ) only at points where new heap values are created. For example, 〈−−−→� = e〉 creates a
new heap value; the target operation mktag(〈−−−→� = e〉, τ) does the same thing but gives the result
type tag(〈−→�:τ〉, τ) where �e : �τ .

The other complication concerns the interaction between subtyping and tag types. In par-
ticular, if tag(. . . , τ1) ≤ tag(. . . , τ2), then what is the relationship between τ1 and τ2? (The
first position is covariant, i.e., τ1 ≤ τ2 implies tag(τ1, τ) ≤ tag(τ2, τ).) As we shall see, different
and conflicting relationships are required by the process of creating subtags and the process of
extracting from tagged values. The solution is to use variances to state the relationship that
holds.

First some terminology. The value mktag(e, τ) is said to have been created as a tag for τ .
For example, Failure was created as a tag for string.

One requirement on the relationship arises from the creation of subtags. For example, using
the scheme above, the translated code for the subtag MyFailure is:

let MyFailure = mktag(〈some(Failure)〉, string[10]) in

This code type checks as follows: MyFailure should have the type tag(string[10]), and the right
hand side has this type if Failure has type tag(string[10]). In fact, Failure has type tag(string),
so we require that tag(string) ≤ tag(string[10]), that is:

rec β.tag(〈β?〉, string) ≤ rec β.tag(〈β?〉, string[10])

This would hold if tag(. . . , string) ≤ tag(. . . , string[10]), in other words, if the subtyping rule
were contravariant: if τ1 ≤ τ2 then tag(. . . , τ2) ≤ tag(. . . , τ1).

However, now consider tagged value destruction and the code from above:

z : rec β.tag(α, 〈β?〉), ep : 〈rec β.tag(α, 〈β?〉), α〉
if z = Failure then let x = ep.2 in b1 else . . . fi

Under the contravariant rule, Failure is a tag for type string[10], so the type system could
type check let x = ep.2 in b1 under the assumption that α is string[10]. Under this incorrect
assumption, x has type string[10], but ep.2, which evaluates to “unimplemented”, is actually a
thirteen character string. Thus for destruction, subtyping must not be contravariant.

I use a variances to track the subtyping rules used. A tag type has the form tag(τds, τ
φ
t),

and a value is in this type if it has type τds and was created to tag type σ. Furthermore, the
variance states the relationship between τt and σ. For covariance, τt is a supertype of σ, for
contravariance, τt is a subtype of σ, and for invariance, τt is σ. Using this new form, we can
revise the type for z to tag(. . . , α−), and the type for Failure to tag(. . . , string+). If z equals
Failure, we know that the types these tags were created for are equal. If σ is this type, we
further know that α ≤ σ, since z has the contravariant tag type, and that σ ≤ string, as Failure
has the covariant tag type. So α ≤ string and it safe to assume x : string in b1.

The key is the relationship between the static tag type and the run-time tag type. In
creating tagged values and subtags, we want the static tag type to be a subtype of the run-time

65

Extended syntax:

v ::= · · · | noneτ | some(v)
E ::= · · · | mktag(〈−−−→� = v, � = E,

−−−→
�′ = e〉, τ) | if E = e then b1 else b2 fi |

if v = E then b1 else b2 fi | some(E) | if? E then x.b1 else b2 fi

h ::= · · · | mktag(〈−−−→� = v〉, τ)
Reduction rules:

ι e H ′ S ′ Side Conditions
if L = L then b1 else b2 fi b1 H S
if L1 = L2 then b1 else b2 fi b2 H S L1 �= L2

if? noneτ then x.b1 else b2 fi b2 H S
if? some(v) then x.b1 else b2 fi b1 H S{x = v} x /∈ dom(S)

Figure 6.3: Tagging Target Operational Semantics

tag type, and for extracting from tagged values, we want the run-time tag type to be a subtype
of the static type, so that the type system conservatively refines types. The variance mechanism
tracks and ensures the correct relationships.

Using these ideas, I present the target language in the next section and a translation in the
following section.

6.4 Translation Target

The target of the translation is Iil, but instead of the extensions in Section 6.2, it has the
following extensions:

τ ::= · · · | tag(τ1, τφ2) | τ?
e ::= · · · | mktag(〈�i = ei〉i∈I , τ) | if e1 = e2 then b1 else b2 fi |

noneτ | some(e) | if? e then x.b1 else b2 fi

The operation 〈−−−→� = e〉 has been replaced by mktag(〈−−−→� = e〉, τ), which creates a new tuple in the
heap that can be used as a tag for the type τ ; it has type tag(〈−→�:τ〉, τ◦) where �e : �τ . The type
tag(τ1, τ

φ
2) contains values of type τ1 that are used as tags for the type τ2. The value in this

type may have been created as a tag for a subtype of τ2 if φ is +, a supertype of τ2 if φ is
−, but only τ2 if φ is ◦. Two values that are used to tag types can be compared for physical
pointer equality using the operation if e1 = e2 then b1 else b2 fi. This operation is asymmetric
as it is intended to compare a tag for an unknown type e1 with a tag for a known type e2. If
the two values are equal b1, is executed and e2’s tag type is used to refine e1’s; otherwise b2 is
executed. An option type τ? is either the value noneτ or the value some(v) for some v:τ ; the
operation if? e1 then x.b1 else b2 fi can be used to discriminate between the two.

The operational semantics appears in Figure 6.3. The heap value 〈−−−→� = v〉 has been replaced
by the heap value mktag(〈−−−→� = v〉, τ). Like in the source language, the heap is used to remember
identities, particularly the identities of the tuples created. Two tuples, or pointers, are equal if
they have the same address, that is, if they are the same variable. This leads to the rules for
the if construct.

66

∆;B �Iil τ11 ≤ τ21 ∆;B �Iil τφ1
12 ≤ τφ2

22

∆;B �Iil tag(τ11, τ
φ1
12) ≤ tag(τ21, τ

φ2
22)

∆;B �Iil τ1 ≤ τ2
∆;B �Iil τ1? ≤ τ2?

∆;B; Γ �Iil ei : τi ∆ �Iil τ

∆;B; Γ �Iil mktag(〈�i = ei〉i∈I, τ) : tag(〈�i:τ◦i 〉i∈I, τ◦)

(t1)

ε �Iil σ

∆;B; Γ �Iil e1 : tag(τ1, α−)
∆;B; Γ �Iil e2 : tag(τ2, σ+)
∆;B{α ≤ σ′}; Γ �Iil b1 : τ

∆;B; Γ �Iil b2 : τ

∆;B; Γ �Iil if e1 = e2 then b1 else b2 fi : τ
(unrollε(σ) = σ′)

(t2)

∆;B; Γ �Iil e1 : tag(τ1, σ−1) ε �Iil σ1

∆;B; Γ �Iil e2 : tag(τ2, σ+
2) ε �Iil σ2

(ε; ε �Iil σ1 ≤ σ2 ⇒ ∆;B; Γ �Iil b1 : τ)
∆;B; Γ �Iil b2 : τ

∆;B; Γ �Iil if e1 = e2 then b1 else b2 fi : τ

∆ �Iil τ

∆;B; Γ �Iil noneτ : τ?
∆;B; Γ �Iil e : τ

∆;B; Γ �Iil some(e) : τ?

∆;B; Γ �Iil e1 : σ? ∆;B; Γ, x : σ �Iil b1 : τ ∆;B; Γ �Iil b2 : τ
∆;B; Γ �Iil if? e1 then x.b1 else b2 fi : τ

Figure 6.4: Tagging Target Typing Rules

The target language has the type-erasure interpretation. In particular, the operation
mktag(e, τ) is operationally equivalent to e, and the annotation mktag(·, τ) on heap values
is not needed at run time.

The typing rules appear in Figure 6.4. The old typing rules for tuple projection and update
are revised to look for tagged tuple types. The two rules for tag comparison deserve mention.
Rule (t1) is for comparing an unknown tag against a known one. This is the rule used to type
the translation, which always unpacks an existentially quantified package, extracts from it a tag
for the quantified type, and compares it to a known tag. The rule requires the unknown tag e1
to be a tag for a supertype of some type variable α. The known tag must be for a monomorphic
type (Java and ML-style exceptions have this restriction). Thus, the rule requires e2 to be a
tag for a subtype of a closed type. However, rule (t1) is not closed under type substitution. In
particular, if a closed type is substituted for α, then the expression compares two tags for known
types, and the rule no longer applies. Thus to prove type substitution and type soundness, the
rule (t2) is used to type this case. It requires both e1 and e2 to be tags for known closed types
σ1 and σ2 respectively. If ε; ε �Iil σ1 ≤ σ2 does not hold then it is impossible for e1 to be equal
to e2, therefore b1 is only type checked when this condition holds. In fact, b1 will probably not
type check when this condition does not hold, as it may use values of type σ1 where values of
type σ2 are expected.

The static semantics is sound with respect to the operational semantics. I have proven
a similar language sound [Gle99d]. Standard techniques are used in the proof and the only

67

tag(φ, τ) = tag(〈tag ′(τ)〉, τφ)
tag ′(τ) = rec α.tag(〈α〉, τ−)?
tagged(τ) = rec α.〈tag(−, α), τ〉
[[exn]]t = [[tagged]]t
[[〈�i:τφi

i 〉i∈I]]t = tag(〈�i:[[τi]]φi
t 〉i∈I , int◦)

[[tag(τ)]]t = tag(◦, tagged([[τ]]t))
[[tagged]]t = self α.〈tag(−, α)〉

[[newtag(τ)]]e = mktag(〈rolltag
′(τ ′)(nonetag(−,τ ′))〉, τ ′)

where τ ′ = tagged([[τ]]t)
[[subtag(τ, e)]]e = mktag(〈rolltag

′(tagged ([[τ]]t))(some([[e]]e))〉, tagged([[τ]]t))
[[mktagged(e1, e2:τ)]]e = pack[[tagged]]t(rolltagged ([[τ]]t)(〈[[e1]]e, [[e2]]e〉))
tagchk(α, σ) = fix y1(y2:α, y2 : tag(−, τ), y3:tag(+, σ)) : σ?.

if y3 = y4 then some(unroll(unroll(y2)).2) else
if? unroll(y3.1) then y5.y1(y2, y5, y4)
else noneσ fi fi

[[if tag(e1) ≤ e2 : tag(σ) = unpack α, x1 = [[e1]]e in let x2 = [[e2]]e in
then x.b1 else b2 fi]]e if? tagchk(α, [[σ]]t)(x1, unroll(x1).1, x2) then

x.[[b1]]e else [[b2]]e fi

Figure 6.5: Tagging Translation

difficulty is with the tag comparison operation. In showing type preservation for a successful
tag comparison, I use the fact that ε; ε; Γ �Iil x : tag(−)σ1, τ1 and ε; ε; Γ �Iil x : tag(+)σ2, τ2
implies ε; ε �Iil σ1 ≤ σ2. Then by rule (t2) the then branch must type check. The other
difference is the type substitution lemma mentioned earlier.

6.5 Translation

The translation from the tagging language to the target language is given in Figure 6.5. It
is based on the ideas sketched earlier. However, as Iil does not have existentials, I use a self
quantifier to abstract over the type in a tagged value. This means that the tags actually describe
the tagged value, not the value itself, leading to recursive types.

The key to the type translation is the translation of tag types. A tag for the target type τ
is a tuple with a tag option, suggesting the type rec α.tag(〈α?〉, τ−). The contravariant form
is used because the ancestor tags might tag a supertype of τ . However, the tag might be used
for comparisons, where a covariant form is needed. Therefore, I unroll the type once, change
the outermost tag type to be both contravariant and covariant (i.e., invariant), and shift some
type constructors, giving tag(◦, τ) where tag(φ, τ) = tag(〈rec α.tag(〈α〉, τ−)?〉, τφ).

A tagged value in the target language will have type rec α.〈tag(−, α), [[τ]]t〉, where τ is the
type of the value being tagged; this type is abbreviated tagged([[τ]]t). A self quantifier is used to
abstract over τ , giving self α.〈tag(−, α)〉. Given this, we can see that a source tag type tag(τ)
is translated into tag(◦, tagged([[τ]]t)).

The operations newtag(τ), subtag(τ, e), andmktagged(e,) are translated as I described earlier
modulo all the typing annotations needed for recursive types, option types, and self quantifiers.

68

The tagchkH(x, y) predicate is reified as a recursive function tagchk(α, σ) that searches the
superchain and returns a σ option, where σ is the known type. The translation of the tag
comparison operation unpacks the tagged value, evaluates the known tag, uses the reified tag
check predicate to do the comparison, and then executes the appropriate translated branch.

Technically, the translation is type directed, as it needs type information in two places.
Thus the translation may not be defined for all source terms, but it is easy to show that it is
defined for all typeable source terms. Furthermore, because the tag type is invariant, it is easy
to show that there is only one type possible in the places where type information is required,
so the translation is coherent. Rather than presenting the translation as a function of typing
derivations, I have indicated the type information with a : τ notation on the source terms.

Unfortunately the rules for self quantifiers are not expressive enough for this translation. In
particular, the translation is valid only with following rule for subtag:

∆; Γ �Iil e : tag(τ)
∆; Γ �Iil subtag(τ, e) : tag(τ)

More powerful rules for self quantifiers could eliminate this restriction, I leave the details to
future work. Other than this, the translation is both type preserving and operationally correct.
A similar translation that uses existentials instead of self quantifiers is presented and proven
correct elsewhere [Gle99e, Gle99d].

6.6 Extended MooTal and Compiler

To compile the extended Iil into MooTal, MooTal needs to be extended with the type
machinery of the previous section and a physical pointer equality instruction. The option type
is fairly standard, and Chapter 7 describes how our implementation of Tal deals with it, so
I do not add it to MooTal. Instead I concentrate on the novel aspects of Iil. MooTal’s
heap pointer type ∗c1 is extended to include a tag type ∗tag(cφ2)c1. Heap values are extended
to include a tag type, and the malloc instruction is extended to include the tag type for the
new heap value. Finally, a new instruction tagcmp v1, v2, vb is added, which compares values
v1 and v2 that must be heap pointers. If they are equal, it jumps to the code pointed to by vb,
otherwise execution continues with the following instruction. These changes are summarised
below:

c ::= · · · | ∗tag(cφ1)c2
ι ::= · · · | malloc r, tag(c)〈c1, . . . , cn〉 | tagcmp v1, v2, vb
h ::= tag(c)Λ[t1, . . . , tn]ĥ

The typing rules and operational semantics parallel those of Iil, and details appear in the
appendix.

The Iil to Tal compiler of Section 2.4 is extended to include the new constructs as follows.
The type translation replaces the rule for tuples with:

[[tag(〈�i = τφi
i 〉i∈1,...,n, τ

φ)]]t = ∗tag([[τ]]φt)〈[[τ1]]φ1
t , . . . , [[τn]]

φn
t 〉

The extension of the expression translation appears in Figure 6.6. For the translation of if,
α is the unknown tag type of e1 and σ = unrollε(σ′), where σ′ is the known tag type of e2.

69

tag(〈�i = ej〉i∈1,...,n, τ)
[[e1]]e(∆, τa, τb, h); ;; Compute fields
push r1; τ ia = [[τi]]t :: · · · :: [[τ1]]t :: τa
· · ·
[[en]]e(∆, vm, τn−1

a , τb, h+ n − 1);
push r1;
malloc r1, tag([[τ]]t)〈[[τ1]]t, . . . , [[τn]]t〉 ;; Allocate record
pop r2;mov [r1+ n− 1], r2; ;; Initialise fields
· · ·
pop r2;mov [r1+ 0], r2

if e1 = e2 then b1 else b2 fi
new(λ�true.new(λ�end . ∆′ = ∆, α ≤ [[σ]]t

[[e1]]e(∆, vm, τa, τb, h);
push r1;
[[e2]]e(∆, vm, [[τ1]]t :: τa, τb, h+ 1);
pop r2;
tagcmp r2, r1, inst(�true,∆′);
[[b2]]e(∆, vm, τa, τb, h);
jmp inst(�end ,∆);

�true �→ code [∆′]sc(τa, τb)
[[b1]]e(∆, vm, τa, τb, h);
jmp inst(�end ,∆′);

�end �→ code [∆]ec(τa, τb, [[τ]]t)
))

Figure 6.6: Tagging Extended Iil to MooTal Compiler

Chapter 7

TAL Implementation

So far I have presented a theoretical languageMooTal and shown how to compile a substantial
class of procedural, functional, and object-oriented languages to it. However, the question
remains as to whether such a language could be used in practice and how effective the typing
annotations and type checker might be in a real system. To address these concerns, a group at
Cornell implemented a variant ofMooTal for Intel’s 32-bit architecture (IA32, implemented on
the 80386 through Pentium III processors) [Int97] called Talx86. The implementation consists
of a tool talc for checking Talx86 object files and programs and some experimental compilers
that target Talx86.

Our tool talc reads Talx86’s object files in a text format, type checks them, checks link
compatibility of object files, and checks program completeness for a collection of object files. It
also includes an assembler that produces typed binary object files in the native COFF or ELF
format (actually the type part is stored in a separate .to file). We include a run-time system
consisting of some operating-system glue code, the Boehm-Demers-Weiser conservative garbage
collector [BW88], and some array creation primitives. talc can link the assembled object files
with the run-time system to produce a Win32 or Linux executable.

Our experimental compilers include the popcorn compiler, a Scheme-like language compiler,
and the solc compiler. The popcorn compiler compiles a safe C-like language that includes
structs, discriminated unions, checked variable-sized arrays, parametric polymorphism, and
exceptions. The Scheme and popcorn compilers are implemented both in Objective Caml and
popcorn. The solc compiler compiles a small object-oriented language; it demonstrates the
effectiveness of MooTal’s object support. We are currently adding object-oriented features to
popcorn also.

For the remainder of the chapter, I describe in more detail Talx86 and its features for
supporting the compilation of realistic languages.

Base Types To support characters, shorts, and longs, Talx86 includes four base types: B1,
B2, B4, and B8. These correspond to 8, 16, 32, and 64 bit uninterpreted numbers. To deal with
these different sizes, Talx86’s kinds are more refined than Tal’s and include subkinds of T
and M for different size types. The kinds T1, T2, T4, and T8 are for 8, 16, 32, and 64 bit words
types and are subkinds of T. The kind Tm i is for memory types of i bytes and is a subkind of
M (written Tm in Talx86). Stack types could also be differentiated on size, but we have not
found a need for this. Loads and stores in Talx86 use byte offsets, and to determine which
field is being referred to requires knowing the sizes of the preceding fields. The type checker
determines these by examining the kinds of the types. However, some types, such as a type

70

71

variable of kind T, do not have a known size. The type checker rejects loads and stores where
the field cannot be determined due to types of unknown size. Type variables with more specific
kinds, such as T4, do have known sizes, and do not interfere with projection. This aspect of
Talx86 forces compilers to deal with the problems of polymorphism in the presence of longs
(e.g., by boxing longs when they are arguments to polymorphic functions).

Singletons To support both discriminated unions and arrays, Talx86 includes a singleton
type S(c) where c is a type constructor of a new kind Sint, the kind of integers. The type
constructor language also includes integers i and expressions on them, which all have this kind.
A value is of type S(c) when it is a 32-bit integer equal to c. This aspect of Talx86 has recently
been extended to allow reasoning about the relationships between various integer quantities,
particularly between the indexes and sizes of an array. The mechanism is general enough that
the type checker can verify for array index and subscript operations that the index is within
the bounds of the array. The specifics are not relevant to the rest of this dissertation, so I will
not discuss them further. Our ideas are based on those of Xi and Pfenning [XP98].

Memory Types The memory types in Talx86 are much more elaborate than in MooTal

and allow for the compilation of the three major data-structuring techniques: structures, dis-
criminated unions, and arrays. The design is general and can express many unboxed nested data
structures. MooTal’s tuple type is split into two type constructors in Talx86: ∗〈c1, . . . , cn〉
and cφ. The former is called a product type and describes memory that is the concatenation of
memory of types c1 through cn. The latter is a field type and describes memory that contains a
word value of type c with φ specifying the allowable operations. In addition there are the types
+〈c1, . . . , cn〉, array(c1, c2), and the heap pointer type ∗[i1, . . . , in]c. The first is a discriminated
union type, that is, one of ci; the second is an array type where c1 is the size and c2 the element
type; the third is like the heap pointer type ∗c, except that the value can also be one of the
integers i1 through in. To illustrate how these work, consider the ML datatype:

type l = Var of string | Abs of string*l | App of l*l | Abort

This might be translated into the Talx86 type:

l = rec l:T4.∗[0]+〈∗〈S(0)+, string+〉, ∗〈S(1)+, string+, l+〉, ∗〈S(2)+, l+, l+〉〉

This type is read as “a value that is equal to 0 or a pointer to a heap block of one of the types
∗〈S(0)+, string+〉, ∗〈S(1)+, string+, l+〉, or ∗〈S(2)+, l+, l+〉.” The last of the variants is read as
“a block of memory that consists of a read-only word value that equals 2, followed by a read-
only word value of type l, followed by a read-only word value of type l.” Strings are not built
into Talx86, but could be defined as string = ∃n:Sint.∗[]∗〈S(n)+, array(n,B1+)〉. This should
be read as “there exists an integer n such that the value is a pointer to a heap block that has
a read-only word value that equals n followed by n read-only word values each of which is an
8-bit number.”

All of these types are introduced by coercion from a singleton (e.g., S(0) into l) or an
equivalent product type (e.g.∗[]∗〈S(1)+, string+, l+〉 into l). The sum types are eliminated by
type refinement after appropriate values are compared against known integers. For example,
if register eax has type l and is compared against 6 followed by a jump on less than, then the
type checker will assume that eax has type ∗[0] in the branch and that eax has type ∗[] · · · in
the fall through. This refinement requires the mild assumption that all pointers are at least
some small integer (currently 4096). Similarly, if eax has type l without the 0 and [eax+ 0] is

72

compared against 1 followed by a jump on less than, then the type checker will assume eax has
type ∗[]+〈∗〈S(0)+, string+〉〉 in the branch and type ∗[]+〈∗〈S(1)+, string+, l+〉, ∗〈S(2)+, l+, l+〉〉
in the fall through. The former can be coerced back into a product type, and the second
and third fields can then be extracted. In an earlier version of Talx86, this type refinement
was achieved through special instructions, but recently we have added “named value types” to
Talx86 that allow us to conservatively track aliasing and the types of specific values such that
refinement of all aliases is possible. Again, I will not go into the specifics of this mechanism
any further.

The array type is eliminated by indexed moves, that is, moves of the form mov rd, [ra+ri+j]
or mov [ra + ri + j], rs where ra points to a heap block containing an array, j is the offset of
the array within the block, and ri contains the scaled index of the desired array element. The
current Talx86 checks that the array has type array(cn, c), that the index register has type
S(ci), and that 0 ≤ ci < sizeof (c)× cn.

Instructions A large portion of the IA32 instruction set is supported in Talx86. We sup-
port all of the arithmetic, bitwise, shift, and rotate instructions; condition and unconditional
jumps; call; return; various moves including load, store, and array subscript and update; stack
manipulation instructions; exchange; and various sign and zero extension instructions.

We do not support any privileged instructions, and assume a flat model.1 We do not
support a number of instructions that have to do with backwards compatibility with the 8086
through 80286 processors. Most of these could be easily added with the exception of the string
instructions. We do not support the concurrency operations like test-and-set and compare-and-
swap, but these can be added easily when we want to support multithreaded execution. We do
not currently support floating point or MMX instructions, but these are easy to add and we
intend to do so. Finally, software interrupts and CPUID are not supported. The latter is easy
to add were it useful, but the former are more challenging.

Interfaces A Talx86 interface can declare a type name to be abstract, bounded above by c,
or equal to c. This allows the programmer to express abstract, partially abstract, and concrete
named types.

Experience Our experience withTalx86 and the various compilers, while limited, has taught
us that building a practical typed assembly language is possible and that the size of type
annotations and type checking time are within reasonable limits. Further work remains, but
Grossman and Morrisett describe initial results [GM99b].

1The flat model assumption means that the segment registers cannot be referred to and are all assumed to
point to a single 4Gb virtual address space that all code, data, and stacks reside within. We also do not allow
any far jumps or calls.

Chapter 8

Future Work

This dissertation has presented Typed Assembly Language—a RISC-like assembly language
augmented with typing annotations, typing rules, and a memory allocation primitive. The
language was designed to be sound, and a proof of MooTal’s type soundness appears in the
appendix. Soundness means that during execution, a MooTal program will not commit a
type error, which implies many basic security properties such as memory safety and control
flow safety. This guarantee can be used in type-directed compilation and in secure extensible
systems. A type-directed compiler could target MooTal, and if its output passes the type
checker, certain correctness properties follow. Thus, running the type checker after compilation
provides a means to check for a certain class of errors in the compiler. A secure extensible
system can use MooTal as the language for extensions. A extension that passes the type
checker will not violate the basic security properties above, and in addition will not violate
certain abstractions, such as the abstractness of type names. These basic properties can be
used by a security monitor to provide more elaborate security properties.

Most of the dissertation was spent describing the constructs of MooTal and presenting
a formal compiler to demonstrate how to use these constructs in the compilation of various
common programming language features. I have shown how to compile products, functions,
objects, single inheritance classes, exceptions, run-time class dispatch, and the basic types and
control flow constructs of procedural, functional, and object oriented languages. I have hinted
at how our implementation deals with discriminated unions, arrays, and different sized values.
Taken as a whole, this shows the applicability of MooTal and Talx86 to a wide range of
realistic language features.

The soundness and targetability of MooTal are two important parts of demonstrating that
typed assembly language can address the problems of type directed compilation and secure
extensible systems. What remains are pragmatic questions: how large are the type annotations
and how efficient is type checking? I conclude with some other future directions for research.

Dynamic Linking The linking model ofMtalmodels static linking only. A form of dynamic
linking, in which the complete linking of a program is delayed until the loading of a program into
an initial process image, can also be modelled. However, another form of dynamic linking, often
called dynamic loading, in which an object file is linked into a process image during program
execution, cannot be modelled. There are a number of issues that arise with dynamic loading
that need to be addressed in order to build a theory of dynamic linking. One is the failure
model for dynamic loading. Should unresolved labels cause failure only at dynamic loading
points, or could any instruction that dereferences a label fail? Another issue is whether the

73

74

program can directly refer to labels in a dynamically loaded module, or only indirectly through
a value returned by the dynamic loading operation. A final issue is whether modules can be
unloaded, and if so, whether they can be reloaded later.

Other Class-Based Models The object encoding that I presented handles single inheritance
classes only. These types of classes have a particularly efficient implementation but suffer
from the “fragile base class” problem—a change to a superclass requires recompiling all the
subclasses. Other class models exist that are more expressive and do not suffer from the
fragile base class problem. It would be worth investigating if the template language and object
encoding presented in Chapter 5 could be extended to express these class models. Mixins are
closely related to class-based object-oriented languages, except that they do not specify the
superclass but only the superclass’s interface. Perhaps they too could be incorporated into a
template framework and an extension of my object encoding. Other features of classes such as
abstract methods, final methods, and final classes should also be investigated.

Prototypes and Delegation Prototypes and delegation are an alternative to classes and
mixins. In languages based on these ideas, there are only objects, and objects can inherit or
delegate their definition and behaviour to other objects. Fisher, Mitchell, and others [Fis96,
Mit90, FHM94, FM95a, FM95b, FM96, BF98, FM98] have done considerable work in provid-
ing foundations for these kinds of object-oriented languages. They have also shown how to
encode class-based languages into their languages. It would be interesting to compare the two
approaches.

Full Abstraction As mentioned in the introduction, there must be a formal connection
between abstractions in the source language and their translation into Talx86, such that the
well formedness of Talx86 implies that the source abstractions are respected. Such a result
can be shown by proving a full abstraction property—that two indistinguishable source terms
translate into indistinguishable Talx86 terms. I believe that my object encoding has the full
abstraction property, but I have not constructed a proof.

Related to this, the techniques of Zdancewic et al. [ZGM99] can be used to prove that various
expected properties of abstract types actually do hold in Mtal. This would involve treating
each Mtal object file as a different coloured code (see Zdancewic et al.’s paper for further
details), modifying linking to reflect the correct combination of coloured code, reflecting the
coloured reduction rules into Tal’s operational semantics, and repeating their proofs.

Pragmatic Issues To fully assess the effectiveness of Tal, it needs to be measured on a
number of large benchmarks. This requires the construction of a complete compiler for a
realistic language that does at least some optimisation, and the measurement of the talc tool
on some large benchmarks compiled into Talx86. Such work would measure the overhead
of the type annotations (i.e., the percentage increase in size of the typed object file versus
its underlying untyped version), the time to perform type checking in comparison to other
operations such as transferring object files across the network and loading executables into a
process image, and the relative performance of the code versus untyped aggressively optimising
compilers and higher level approaches such as the Java virtual machine. Ideally, such research
would also investigate a number of different language styles and optimisation techniques. A
number of members of the Tal project at Cornell are currently addressing these concerns.

Appendix A

MooTal

This Appendix gives a complete formal description of MooTal, my version of typed assembly
language. MooTal is a typed assembly language with support for separate compilation and
the compilation of modules, objects, classes, and run-time type dispatch. Its instruction set
is simliar to a typical RISC architecture—the instruction set is uniform and has only simple
addressing modes. This appendix will describe the syntax of MooTal, formalise its semantics
as a reduction relation between machine states, formliase its typing rules, and proof that the
typing rules are sound with respect to the operational semantics. It begins with a description
of basic concepts and notation, then describes the module language and core language, and
finishes with the soundness proof. The syntax is summarised in Figure A.1.

A.1 Notational Conventions

There is some set of labels, registers, and type constructors variables. Labels � are used to name
both types and values for intermodule references, and are used as the addresses of memory. The
set of registers (ranged over by r) could be a countably infinite set of virtual registers or a finite
set of physical registers; it does not matter which, butMooTal requires that r1 is a register (this
register holds the result value when a MooTal program halts). Type constructor variables are
ranged over by α and β. Integers are ranged over by i. Syntactic objects are considered equal
up to α-equivalence. The capture-avoiding substitution of x for y in z is written z{x := y}.
An unordered map that maps xi to yi is written {x1:y1, . . . , xn:yn} for type level constructs
and {x1 �→ y1, . . . , xn �→ yn} for term level constructs. It is a syntactic restriction that the
xi be distinct. The domain of a map X is written dom(X), the value of X at x is written
X(x), and map update is written X{x:y} or X{x �→ y}. Syntactic objects are considered
equal up to reordering of unordered maps. An ordered map is written x1:y1, . . . , xn:yn; it is a
syntactic restriction that the xi be distinct. The notation X, x:y denotes x:y appended to X ;
X1, X2 denotes X2 appended to X1. A vector of objects from syntax class x is written �x, for
example, �α stands for α1, . . . , αn; the notation

−−−−−→
α:κ ≤ c will be used to denote sequences like

α1:κ1 ≤ c1, . . . , αn:κn ≤ cn. Generally typing judgements have the forms C � x, C � x : X , or
C � x1Rx2 to mean that in context C, x is well formed, x has “type” X , or x1 is R related to
x2 (R might be equality, subtyping, compatibility, or disjointness). Typing rules have the form

(n)
J1 · · ·Jn

J
(P)

where n is the rule name, P is a side condition, J is the conclusion judgement, and J1 through
Jn are the hypothesis judgements. The meaning of the rule is that if J1 through Jn are derivable

75

76

Kinds κ ::= T | M | S | κ1 → κ2

Variances φ ::= + | − | ◦ | 0
Type Variable Declaration t ::= α:κ | α:κ ≤ c
Type Constructors c ::= α | � | λα:κ.c | c1 c2 |

∀t.c2 | rec α : κ.c | self α : κ.c
int | ns | ∗tag(cφ1)c2 | sptr(c) |
code Γ | 〈cφ1

1 , . . . , c
φn
n 〉 |

se | c1 :: c2 | c1 ◦ c2
Register File Types Γ ::= {sp:c, r1:c1, . . . , rn:cn}
Type Variable Bounds B ::= α1 ≤ c1, . . . , αn ≤ cn
Type Variable Contexts ∆ ::= α1:κ1, . . . , αn:κn

Type Heap Types Φ ::= {�1:κ1, . . . , �n:κn}
Value Heap Types Ψ ::= {�1:c1, . . . , �n:cn}
Interfaces Int ::= (Φ,Ψ)

Coercions δ ::= [c] | rollc | unroll | packc

Small Values v ::= i | � | r | ?c | ns | sptr(i) | δ(v)
Word Values w ::= v without r and unroll(rollc(v))
Instructions ι ::= aop rd, v1, v2 | bop r, v |

malloc r, tag(c)〈c1, . . . , cn〉 | mov r, v |
mov rd, [rs + i] | mov [rd + i], rs |
mov sp, sp+ i | mov r, sp | mov sp, r |
mov rd, [sp+ i] | mov [sp+ i], rs |
tagcmp v1, v2, vb | unpack α, r, v

Instruction Sequences I ::= ι; I | halt[c] | jmp v

Heap Values ĥ ::= code I | 〈w1, . . . , wn〉
Heap Values h ::= tag(c)Λ[t1, . . . , tn]ĥ
Stacks S ::= se | w :: S
Register Files R ::= {sp �→ S, r1 �→ w1, . . . , rn �→ wn}

Type Constructor Heaps CH ::= {�1 �→ c1:κ1, . . . , �n �→ cn:κn}
Value Heaps VH ::= {�1 �→ h1:c1, . . . , �n �→ hn:cn}
Object Files O ::= [IntI ⇒ CH ,VH : IntE]
Executables E ::= (CH ,VH , �)
Program States P ::= (CH ,VH , R, I)

Figure A.1: MooTal Syntax

77

and P holds then J is derivable. Sometimes the hypotheses will be indexed as in C � xi : Xi

where there are x1 through xn and X1 through Xn somewhere else in the typing rule. I will
not write out explicitly what i ranges over; it should be clear. In particular, in:

C � xi ≤ yi C � xj
C � x1, . . . , xm ≤ y1, . . . , yn (m ≥ n)

i ranges over 1..n and j ranges over 1..m.

A.2 Module Language

The module language of MooTal consists of object files with associated interfaces. Object files
can be linked together to construct progressively more complete object files. Complete object
files can be formed into executables, which can then be executed. The module language is mostly
independent of the core language, provided the core language has certain syntax categories and
certain typing judgements for them. First, the core language has type constructors classified
into kinds. Second, the core language has a syntax class heap value for term level constructs
that can be referred to across modules. Third, there are typing judgements for kinding a type
constructor, type equality at a kind, subtyping at a kind, and typing a heap value. Fourth, the
module system assumes the core language has a simple kind structure without kind equality or
subkinding. More elaborate kind structures are easily added.

A.2.1 Object Files

The basic units of MooTal’s module system are object files and their associated interfaces.
An interface Int has the form (Φ,Ψ) consisting of two parts: the type part Φ and the value
part Ψ. The type part, also called a type heap type, has the form {�1:κ1, . . . , �n:κn} mapping
labels, which should be thought of as names for types, to kinds. The value part, also called a
value heap type, has the form {�1:c1, . . . , �n:cn} mapping labels, which should be thought of as
names for terms, to types. An object file O has the form [IntI ⇒ CH ,VH : IntE] consisting
of four parts: an interface IntI specifying the types and values imported, a type constructor
heap CH that defines types, a value heap VH that defines heap values, and an interface IntE
specifying which of the defined types and heap values are exported. A type constructor heap
CH has the form {�1 �→ c1:κ1, . . . , �n �→ cn:κn} mapping type names to type constructors and
their kinds. A value heap VH has the form {�1 �→ h1:c1, . . . , �n �→ hn:cn} mapping labels to
heap values and their types.

The labels (type names and value names) that appear in the heaps CH and VH of an object
file but not in the export interface intE are called internal labels, and the labels that appear in
the heaps and the export interface are called external labels. Internal labels are like variables
and are considered to α-vary, that is, an object file is α-equivalent to itself with the internal
labels consistently renamed. External labels are like names and do not α-vary.

The important judgements for interfaces are: well formedness, disjointness, and subinterface.
An interface is well formed, written �Int Int, when all the kinds and types in it are well formed.
Type well formedness is expressed by the judgement Φ;∆ �tc c : κ where Φ specifies the
allowable type names and their kinds and ∆ is a core language typing context. For our purposes,
the only requirement on ∆ is that it contain the empty context ε.

(wf-Int)
Φ �VHT Ψ
�Int (Φ,Ψ)

(wf-VHT)
Φ; ε �tc ci : κi

Φ �VHT {�1:c1, . . . , �n:cn}

78

Two interfaces are disjoint �Int Int1 | Int2 when they define different type names and
different value names.

(dj-Int)
�CHT Φ1 | Φ2 �VHT Ψ1 | Ψ2

�Int (Φ1,Ψ1) | (Φ2,Ψ2)

(dj-CHT) �CHT Φ1 | Φ2
(dom(Φ1) ∩ dom(Φ2) = ∅)

(dj-VHT) �CHT Ψ1 | Ψ2
(dom(Ψ1) ∩ dom(Ψ2) = ∅)

Subinterfaces provide everything that a superinterface does, that is, they include all the type
names and value names contained in the superinterface and at at least as specific kinds and
types. Subtyping is given by the judgement Φ;∆;B � c1 ≤ c2 : κ where B is a core language
bound set. Again, B must include the empty context ε.

(sub-Int)
�CHT Φ1 ≤ Φ2 Φ1 �VHT Ψ1 ≤ Ψ2 Φ2 �VHT Ψ2

�Int (Φ1,Ψ1) ≤ (Φ2,Ψ2)

(sub-CHT) �CHT {�1:κ1, . . . , �m:κm} ≤ {�1:κ1, . . . , �n:κn} (m ≥ n)

(sub-VHT)
Φ; ε �tc ci : κi Φ; ε; ε � ci ≤ c′i : κi

Φ �VHT {�1:c1, . . . , �m:cm} ≤ {�1:c′1, . . . , �n:c′n}
(m ≥ n)

An object file is well formed, written �O O, when its imports and definitions are disjoint,
its definitions are well formed, and its definitions implement its exports. To formalise this, we
view the definitions as having a type, the actual interface IntA, and require that IntI and IntA
be disjoint and IntA to be a subinterface of IntE . The type definitions may refer to other type
names, either from the imports or in the object file itself. Thus, the type heap is checked using
both the imported and actual type heap type. Similarly for the value heap. The value heap is
also checked using the type definitions, as a heap value may convert between a type name and
its definition and vice versa.

(objfile)

�Int (ΦI ,ΨI) �Int (ΦI ,ΨI) | (ΦA,ΨA) �Int (ΦA,ΨA) ≤ IntE
ΦI ∪ ΦA �CH CH : ΦA ΦI ∪ ΦA;CH ; ΨI ∪ ΨA �VH VH : ΨA

�O [(ΦI,ΨI)⇒ CH ,VH : IntE]

A type heap CH has type Φ when each type has the corresponding kind. A value heap VH
has type Ψ when each heap value has the corresponding type. Heap value typing is given by
Φ;CH ; Ψ �h h : c.

(CH)
Φ; ε �tc ci : κi

Φ �CH {�1 �→ c1:κ1, . . . , �n �→ cn:κn} : {�1:κ1, . . . , �n:κn}

(VH)
Φ;CH ; Ψ �h hi : ci

Φ;CH ; Ψ �VH {�1 �→ h1:c1, . . . , �n �→ hn:cn} : {�1:c1, . . . , �n:cn}

A.2.2 Linking

Linking is the process of combining two object files together. In MooTal linking is specified
as a type directed translation � O1 link O2 ; O. The type heaps, value heaps, and export

79

interfaces are combined, and the final import interface is the union of the imports minus what
the other object file provided. So if Oi = [IntIi ⇒ CH i,VH i : IntEi] then:

(link)
�O O1 �O O2 � O1

lc↔ O2

� O1 link O2 ; [IntI ⇒ CH 1 ∪ CH 2,VH 1 ∪ VH 2 : IntE1 ∪ IntE2]
(∗)

where IntI = (IntI1 ∪ IntI2) − (IntE1 ∪ IntE2) and (∗) is dom(CH 1) ∩ dom(CH 2) = ∅ =
dom(VH 1) ∩ dom(VH 2). Linking checks whether the linking operation is valid and requires
that the two object files be well formed and link compatible, written � O1

lc↔ O2. Condition (∗)
ensures that combining the two heaps results in a valid heap. By α-varying the internal labels,
condition (∗) can always be satisfied if � O1

lc↔ O2; this α-variation corresponds to relocation
in a conventional linker.

Link compatibility requires that the object files make consistent assumptions about the
global name space of types and values. The exports of the object files must be disjoint, and
the imports of one must be compatible with the imports and exports of the other. At the type
level, this is straightforward: Two type heap types are compatible, written �CHT CH 1 ∼ CH 2,
if type names they both define have the same kind.

(cmp-CHT)
∀� ∈ dom(CH 1) ∩ dom(CH 2) : CH 1(�) = CH 2(�)

�CHT CH 1 ∼ CH 2

Value heap type compatibility is complicated by subtyping. Import/export compatibility
requires the exported type to be a subtype of the imported type. For import/import compat-
ibility, there are several choices. One choice is to require the existence of a meet of the two
types. This choice raises the issues of whether enough meets exist and whether computing
meets is easy. For expediency, I take the simpler but more restrictive approach of requiring the
two types to be equal. Type equality is given by the judgement Φ;∆ � c1 = c2 : κ.

(cmp-CHT-EI)
∀� ∈ dom(CH 1) ∩ dom(CH 2) : Φ; ε; ε � VH 1(�) ≤ VH 2(�) : κ�

Φ �VHT VH 1
EI∼ VH 2

(cmp-CHT-II)
∀� ∈ dom(CH 1) ∩ dom(CH 2) : Φ; ε; ε � VH 1(�) = VH 2(�) : κ�

Φ �VHT VH 1
II∼ VH 2

Given these definitions, interface compatibility and link compatibility are easily defined:

(cmp-Int)
�CHT Φ1 ∼ Φ2 Φ �VHT Ψ1

x∼ Ψ2

�Int (Φ1,Ψ1)
x∼ (Φ2,Ψ2)

(lc)
�Int IntI1

II∼ IntI2 �Int IntE1
EI∼ IntI2 �Int IntE2

EI∼ IntI1 �Int IntE1 | IntE2

� [IntI1 ⇒ CH 1,VH 1 : IntE1]
lc↔ [IntI1 ⇒ CH 1,VH 1 : IntE1]

Linking always produces a well-formed object file.

Theorem A.1 (Linking Correctness) If � O1 link O2 ; O then �O O.

Proof: By inspection of the various typing and linking judgement rules and Context Strength-
ening (see Section A.3.8). 2

80

A.2.3 Executables

An executable is a closed type and value heap paired with an entry label that specifies which
term to execute first, E ::= (CH ,VH , �). An executable is well formed when there is an interface
that describes the type and value heap, and the entry label has a type matching the operating
system’s convention. The latter type is called the entry label type, and �c

E E asserts that E is
a well formed executable with entry label type c.

(exe)
�Int (Φ,Ψ) Φ �CH CH : Φ Φ;CH ; Ψ �VH VH : Ψ

�c
E (CH ,VH , �)

(Ψ(�) = c)

Executables are formed by taking a complete object file and a distinguished label and
discarding the import and export interfaces. An object file is complete when it imports nothing.
If O = [IntI ⇒ CH ,VH : IntE] then:

(prg)
�O O � O, � : c complete

� O, � : c prg
; (CH ,VH , �)

(comp) � [(ε, ε)⇒ CH ,VH : (ΦE,ΨE)], � : c complete
(Ψ(�) = c)

Executable formation always produces a well formed executable.

Theorem A.2 (Executable Formation Correctness) If � O, � : c prg
; E then �c

E E.

Proof: By inspection of the various typing and linking judgement rules. 2

To explain how an executable is executed, I first need to explain the operation of the abstract
machine itself and the core language. I shall return to execution in Section A.3.9.

A.3 Core Language

MooTal’s core language corresponds to a typed version of an idealised RISC processor. Like
Fω it is a three-tiered system. At the base are term-level constructs like program states,
heap values, and small values. The term level constructs are given types, and the types are
classified into kinds. MooTal’s kinds are used to divide the types into those for different term
constructs, but also to include more general type constructors, for example, to express generic
data types. Memory in MooTal comes in three forms: the registers, the stack, and the heap.
The registers, like a conventional machine, can only store small values such as 32-bit integers
or pointers. Larger values must be placed on the stack or in the heap. Therefore, MooTal
has three kinds of values: word values, stacks, and heap values; there are three kinds of types
that correspond to these different kinds of values. The parts of MooTal specific to supporting
object oriented features are separated out into their own section.

A.3.1 Kinds

Kinds classify types into those for word values, heaps values, stack values, and type functions
(for defining parameterised types). The kinds are:

κ ::= T | M | S | κ1 → κ2

Where T is for word value types, M for heap value types, S for stack types, and κ1 → κ2 for
type functions taking arguments of kind κ1 to results of kind κ2.

81

A.3.2 Type Constructors

MooTal has a variety of different type constructors. Most of them will be described in con-
junction with the term constructs they are naturally associated with. However, some type con-
structors are not directly related to terms but have more to do with typing itself. This section
will describe these type constructors and typing judgements about type constructors. Type con-
structors c have three important judgements associated with them: type kinding Φ;∆ �tc c : κ
asserting that c has kind κ, type equality Φ;∆ � c1 = c2 : κ asserting that c1 and c2 are equal
type constructors at kind κ, and subtyping Φ;∆;B � c1 ≤ c2 : κ asserting that c1 is a subtype
of c2 at kind κ. The context component Φ is a type heap typing; ∆ ::= α1:κ1, . . . , αn:κn is a
core language typing context, and lists the type constructor variables in scope and their kinds;
B is a set of type constructor bounds, and is described in Section A.3.7.

To reduce the number of rules, I will present only a kinding rule, and this will implicitly
define a congruence equality rule. There are also additional equality rules for β-reductions. An
example of how to form the congruence from the kinding rule is:

Φ;∆, α:κ1 �tc c : κ2

Φ;∆ �tc λα:κ1.c : κ1 → κ2 ⇒
Φ;∆, α:κ1 � c1 = c2 : κ2

Φ;∆ � λα:κ1.c1 = λα:κ1.c2 : κ1 → κ2

The congruence rule will be named (eq-X) where (X) is the name of the kinding rule. Equality
is symmetric and transitive; subtyping is reflexive and transitive.

(eq-sym)
Φ;∆ � c2 = c1 : κ
Φ;∆ � c1 = c2 : κ

(eq-trans)
Φ;∆ � c1 = c2 : κ Φ;∆ � c2 = c3 : κ

Φ;∆ � c1 = c3 : κ

(sub-ref)
Φ;∆ � c1 = c2 : κ
Φ;∆;B � c1 ≤ c2 : κ

(sub-trans)
Φ;∆;B � c1 ≤ c2 : κ Φ;∆;B � c2 ≤ c3 : κ

Φ;∆;B � c1 ≤ c3 : κ
The type constructors not described elsewhere are:

c ::= α | � | λα:κ.c | c1 c2 | ∀t.c

A type constructor variable has the kind given by the core language context, and is a subtype
of itself.

(tcvar)
Φ;∆ �tc α : κ

(∆(α) = κ) (sub-tcvar)
Φ;∆;B � α ≤ α : κ (∆(α) = κ)

A type name has the kind given by the type heap typing, and is a subtype of itself.

(tcname)
Φ;∆ �tc � : κ

(Φ(�) = κ) (sub-tcname)
Φ;∆;B � � ≤ � : κ (Φ(�) = κ)

Type functions and their applications follow standard simply typed lambda calculus rules.
In addition to the congruence rule, there is the usual β rule.

(tcabs)
Φ;∆, α:κ1 �tc c : κ2

Φ;∆ �tc λα:κ1.c : κ1 → κ2

82

(tcapp)
Φ;∆ �tc c1 : κ2 → κ1 Φ;∆ �tc c2 : κ2

Φ;∆ �tc c1 c2 : κ1

(tfnβ)
Φ;∆ �tc (λκ1:c′1) c2 : κ2

Φ;∆ � (λκ1:c′1) c2 = c′1{α := c2} : κ2

A type function is a subtype of another type function when the bodies are in the same relation.
Subtyping for type function application is a little restrictive, the function part may be a subtype,
but the arguments are required to be equal. A less restrictive rule would require knowing that
the functions were monotonic or antimonotonic, thus requiring the introduction of polarised
type functions.

(sub-tcabs)
Φ;∆, α:κ1;B � c1 ≤ c2 : κ2

Φ;∆;B � λα:κ1.c1 ≤ λα:κ1.c2 : κ1 → κ2

(sub-tcapp)
Φ;∆;B � c11 ≤ c21 : κ2 → κ1 Φ;∆ � c12 = c22 : κ2

Φ;∆;B � c11 c12 ≤ c21 c22 : κ1

A universally quantified type has the form ∀t.c where t is a type-variable definition. There
are two forms of type-variable definitions: α : κ and α : κ ≤ c. The first form is called
unbounded, α is the abstracted type variable, and κ its kind. The other form is called F-
bounded and is described in Section A.3.7. With an unbounded form, the type is well formed
when the body is well formed assuming the abstracted variable has the given kind. A unbounded
universal type is a subtype of another unbounded universal type if the bodies are in the same
relation.

(allu)
Φ;∆, α:κ1 �tc c : κ2

Φ;∆ �tc ∀α:κ1.c : κ2
(sub-allu)

Φ;∆, α:κ1;B � c1 ≤ c2 : κ2

Φ;∆;B � ∀α:κ1.c1 ≤ ∀α:κ1.c2 : κ2

A.3.3 Program States

AMooTal program state represents the state of an idealised RISC processor and its associated
memory system. This state includes the program counter and the memory, which is conceptually
divided into three areas: the processors registers, the dynamic memory heap, and the stack.
As it is technically smoother, the stack is modelled by a special register sp, and the program
counter is modelled by the instructions it points to. Thus a program state P is a quadruple
(CH ,VH , R, I) consisting of a type heap, a value heap, a register file, and the current instruction
sequence. A program state is well formed when its components are:

(prog)

�Int (Φ,Ψ) Φ �CH CH : Φ Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ Φ;CH ; Ψ; ε; ε; Γ �I I

�P (CH ,VH , R, I)

A register file R has the form {sp �→ S, r1 �→ w1, . . . , rn �→ wn} mapping registers r to word
values w, and mapping a special register sp to a stack S. Register files are given register files
types Γ have the form {sp:c, r1:c1, . . . , rn:cn} mapping registers to word types and sp to a stack
type. A register file type is well formed when its types are of the appropriate kinds:

(wf-regfile)
Φ;∆ �tc c : S Φ;∆ �tc ci : T
Φ;∆ �RT {sp:c, r1:c1, . . . , rn:cn}

There is a congruence equality rule formed as described in the section on basic types. A register
file type is a subtype of another register file type if it defines at least the same registers with

83

at least as specific types:

(sub-regfile)
Φ;∆;B � c ≤ c′ : S Φ;∆;B � ci ≤ c′i : T Φ;∆ �tc ci : T

Φ;∆;B �RT {sp:c, r1:c1, . . . , rm:cm} ≤ {sp:c′, r1:c′1, . . . , rn:c′n}
(∗)

Where (∗) is m ≥ n. A register file has a type when its components have the corresponding
types.

(regfile)
Φ;CH ; Ψ �S S : c Φ;CH ; Ψ; ε; ε � wi : ci

Φ;CH ; Ψ �R {sp �→ S, r1 �→ w1, . . . , rn �→ wn} : {sp:c, r1:c1, . . . , rn:cn}

Stacks S are either empty, written se, or consist of a word w pushed onto a stack S, written
w :: S. The stack types are the empty stack type se, the type c1 :: c2 describing a word of
type c1 pushed onto a stack of type c2, and the type c1 ◦ c2 describing the concatenation of two
stacks of types c1 and c2. The following well formedness and subtyping rules hold:

(se)
Φ;∆ �tc se : S

(cons)
Φ;∆ �tc c1 : T Φ;∆ �tc c2 : S

Φ;∆ �tc c1 :: c2 : S

(append)
Φ;∆ �tc c1 : S Φ;∆ �tc c2 : S

Φ;∆ �tc c1 ◦ c2 : S
(sub-se)

Φ;∆;B � se ≤ se : S

(sub-cons)
Φ;∆;B � c11 ≤ c21 : T Φ;∆;B � c12 ≤ c22 : S

Φ;∆;B � c11 :: c12 ≤ c21 :: c22 : S

(sub-append)
Φ;∆;B � c11 ≤ c21 : S Φ;∆;B � c12 ≤ c22 : S

Φ;∆;B � c11 ◦ c12 ≤ c21 ◦ c22 : S

(stk-se)
Φ;CH ; Ψ �S se : se

(stk-cons)
Φ;CH ; Ψ; ε; ε � w : c1 Φ;CH ; Ψ �S S : c2

Φ;CH ; Ψ �S w :: S : c1 :: c2

In addition there are a number of computational equality rules for the append stack type:

(stkβ1)
Φ;∆ �tc c : S

Φ;∆ � se ◦ c = c : S (stkβ3)
Φ;∆ �tc c : S

Φ;∆ � c ◦ se = c : S

(stkβ2)
Φ;∆ �tc (c1 :: c2) ◦ c3 : S

Φ;∆ � (c1 :: c2) ◦ c3 = c1 :: (c2 ◦ c3) : S

(stkβ4)
Φ;∆ �tc (c1 ◦ c2) ◦ c3 : S

Φ;∆ � (c1 ◦ c2) ◦ c3 = c1 ◦ (c2 ◦ c3) : S
The size of a stack will be important to the typing rules and proof of soundness:

|S| =
{
0 S = se
1 + |S ′| S = w :: S ′

84

A.3.4 Heap Values

Heap values h have the form tag(c)Λ[t1, . . . , tn]ĥ consisting of two parts: a type annotation
and a heap value proper ĥ. The first part of the annotation tag(c) has to do with the tagging
mechanism and is described in Section A.3.7. The second part abstracts type variables that
the heap value proper are parameterised over. There are two forms of heap values, code I for
code and 〈w1, . . . , wn〉 for data. A code heap value is simply a sequence of instructions I . A
data heap value is a tuple of word values. Heap values are given memory types, which also
come in two forms. A code type code Γ specifies the types the registers must have at the start
of the code’s instruction sequence, and can be thought of as a code precondition. A tuple type
〈cφ1

1 , . . . , c
φn
n 〉 specifies the types of the words in the tuples as well as their variance (see Abadi

and Cardelli [AC96] for a discussion of variances). There are four variances φ: covariant or read
only +, contravariant or write only −, invariant or read write ◦, and uninitialised 0.

The formation rules for heap value types are straightforward:

(code)
Φ;∆ �RT Γ

Φ;∆ �tc code Γ : M

(tuple)
Φ;∆ �tc ci : T

Φ;∆ �tc 〈cφ1
1 , . . . , c

φn
n 〉 : M

For similar reasons to function types, the code type is contravariant:

(sub-code)
Φ;∆;B �RT Γ2 ≤ Γ1

Φ;∆;B � code Γ1 ≤ code Γ2 : M

Tuple types have both right extension breadth subtyping and depth subtyping given by the
usual variance rules:

(sub-tuple)
Φ;∆;B � cφi

i ≤ c′iφi : T Φ;∆ �tc ci : T

Φ;∆;B � 〈cφ1
1 , . . . , c

φm
m 〉 ≤ 〈c′1φ

′
1 , . . . , c′n

φ′
n〉 : M

(m ≥ n)

(cov)
Φ;∆;B � c1 ≤ c2 : κ
Φ;∆;B � cφ1 ≤ c+2 : κ

(φ ≤ +) (con)
Φ;∆;B � c2 ≤ c1 : κ
Φ;∆;B � cφ1 ≤ c−2 : κ

(φ ≤ −)

(inv)
Φ;∆ � c1 = c2 : κ
Φ;∆;B � c◦1 ≤ c◦2 : κ

(unin)
Φ;∆ � c1 = c2 : κ
Φ;∆;B � cφ1 ≤ c02 : κ

(φ ≤ 0)

Where:
≤ + − ◦ 0
+ T F F F
− F T F F

◦ T T T T
0 F F F T

Heap values proper are given heap value types in an obvious way:

(hv-code)
Φ;∆ �RT Γ Φ;CH ; Ψ;∆;B; Γ �I I

Φ;CH ; Ψ;∆;B �ĥ code I : code Γ

(hv-tuple)
Φ;CH ; Ψ;∆;B � wi : c

φi
i

Φ;CH ; Ψ;∆;B �ĥ 〈w1, . . . , wn〉 : 〈cφ1
1 , . . . , c

φn
n 〉

85

The rules for word values having variant types are a little subtle. First, a well typed
word value may have any variant of that type. Second, to avoid the interactions between
polymorphism and mutability, mutable variants must be closed. Third, a junk value ?c is in
the uninitialised variant.

(hv-init)

φ �= +
⇒

Φ; ε �tc c : T Φ;CH ; Ψ;∆;B � w : c
Φ;CH ; Ψ;∆;B � w : cφ

(hv-uninit)
Φ;∆ � c1 = c2 : T

Φ;CH ; Ψ;∆;B � ?c1 : c02
Heap values themselves are given the types that labels bound to them have, which are

word types. The tag and bound parts are explained further in Section A.3.7; the pointer
type ∗tag(cφ1)c2 is explained further in the section on small values; the rest is straightforward.
If ti = αi:κi(≤ ci)? then ∆(t1, . . . , tn) = α1:κ1, . . . , αn:κn and B(t1, . . . , tn) has αi ≤ ci if
ti = αi:κi ≤ ci. If ∆(t1, . . . , tn) = ∆ and B(t1, . . . , tn) = B then:

(hv)
Φ; ε �tc c

′ : κ Φ;∆ �tc ci : κi Φ;CH ; Ψ;∆;B �ĥ ĥ : c

Φ;CH ; Ψ �h tag(c′)Λ[t1, . . . , tn]ĥ : ∀[t1, . . . , tn]∗tag(c′◦)c

A.3.5 Small Values

To avoid tedious duplication, the word values are a subset of a broader syntax category, the
small values, or operands, v. Values include integers i, value names �, registers r, junk values ?c,
the nonsense value ns, stack pointers sptr(i), and typing coercions δ(v). Junk values represent
uninitialised heap memory and are parameterised by the type that will eventually initialise that
memory (see the section on heap values and the (i-init) rule for further details). The nonsense
value represents uninitialised stack memory. Stack pointers have a zero-based offset from the
bottom of the stack. Typing coercions change the type of a value but have no operational effect.
Word values w are those small values that do not have a register as a subterm, nor a subterm
of the form unroll(rollc(v)). The same typing rules are used for word values as for small values,
but as the Γ component of the context is not needed, it will often be omitted.

Operationally, small values evaluate to word values. Given a register file R, the meaning of
a small value v is given by R̂(v):

R̂(v) =



v v = i, �, ?c, ns, sptr(i)
R(r) v = r
w v = unroll(v′); R̂(v′) = rollc(w)
δ(R̂(v′)) v = δ(v′)

Small values are given word types, which include the integer type int, heap pointer types
∗tag(cφ1)c2, the nonsense type ns, and stack pointer types sptr(c). There is a subsumption rule
(values in a subtype are also in a supertype) for small values:

(subsume)
Φ;CH ; Ψ;∆;B; Γ � v : c1 Φ;∆;B � c1 ≤ c2 : T

Φ;CH ; Ψ;∆;B; Γ � v : c2
The rules for integers and nonsense are straight forward:

(int)
Φ;∆ �tc int : T

(sub-int)
Φ;∆;B � int ≤ int : T

86

(sv-int)
Φ;CH ; Ψ;∆;B; Γ � i : int

(ns)
Φ;∆ �tc ns : T

(sub-ns)
Φ;∆;B � ns ≤ ns : T

(sv-ns)
Φ;CH ; Ψ;∆;B; Γ � ns : ns

A pointer to a heap value of type c is given the type ∗tag(c′φ)c (the tag part is explained in
Section A.3.7). A pointer to a stack of type c is given the type sptr(c). Both pointer types are
covariant.

(hptr)
Φ;∆ �tc c1 : κ Φ;∆ �tc c2 : M

Φ;∆ �tc ∗tag(cφ1)c2 : T

(sub-hptr)
Φ;∆;B � cφ1

11 ≤ cφ2
21 : κ Φ;∆;B � c12 ≤ c22 : M

Φ;∆;B � ∗tag(cφ1
11)c12 ≤ ∗tag(cφ2

21)c22 : T

(sptr)
Φ;∆ �tc c : S

Φ;∆ �tc sptr(c) : T
(sub-sptr)

Φ;∆ � c1 ≤ c2 : S
Φ;∆ � sptr(c1) ≤ sptr(c2) : T

Value names have a type given by the value heap typing, which in MooTal is always a
pointer type. Stack pointers sptr(i) have any stack pointer type sptr(c) where c has i elements.
This might seem too weak, but the stack validity conditions in the instruction typing rules
complement this rule to produce a sound system.

(svname)
Φ;CH ; Ψ;∆;B; Γ � � : c (Ψ(�) = c)

(sv-sptr)
Φ;∆ �tc c : S

Φ;CH ; Ψ;∆;B; Γ � sptr(i) : sptr(c)
(|c| = i)

Registers have types given by the register file type. Note that junk values do not have types,
only uninitialised variants of types.

(reg)
Φ;CH ; Ψ;∆;B; Γ � r : c (Γ(r) = c)

A typing coercions δ changes a type c1 to c2 when Φ;CH ; ∆;B � δ : c1 ⇒ c2. Given this
the rule for typing coercions is clear:

(coerce)
Φ;CH ; Ψ;∆;B; Γ � v : c1 Φ;CH ; ∆;B � δ : c1 ⇒ c2

Φ;CH ; Ψ;∆;B; Γ � δ(v) : c2
The coercions are type instantiation [c], roll rollc, unroll unroll, and pack packc. Type

instantiations are for universally quantified types; the instantiating type must satisfy the bound.
The judgement Φ;CH ; ∆;B � c � t⇒ ρ asserts that c satisfies the bound in the type-variable
definition t and that ρ is a substitution that will do the instantiation when applied to the body
of the universal type. For unbounded type-variable definitions this judgement just requires c
to have the correct kind (bounded type definitions are discussed in Section A.3.7).

(inst)
Φ;CH ; ∆;B � c � t⇒ ρ

Φ;CH ; ∆;B � [c] : ∀t.c′ ⇒ c′{ρ}

(satu)
Φ;∆ �tc c : κ

Φ;CH ; ∆;B � c � α:κ⇒ α := c

87

For convenience, an iterated judgement is also useful:

Φ;CH ; ∆;B � ci � ti{ρ1, . . . , ρi−1} ⇒ ρi
Φ;CH ; ∆;B � c1, . . . , cn � t1, . . . , tn ⇒ ρ1, . . . , ρn

Roll and unroll convert a recursive type to and from its definition. There are several forms
of recursive types, some are equal to their definitions, others are subtypes of their definitions.
To aid in stating a rule, two functions are used. The type unrollCH ;B(c) is the unrolled type for
c, and roll(c) is true if rolling to c is permitted. A type name is one of the forms of recursive
type and its definition is giving by the constructor heap. The other forms are explained in
Section A.3.7.

(roll)
Φ;CH ; ∆;B � rollc1 : c2 ⇒ c1

(unrollCH ;B(c1) = c2; roll(c1))

(roll-app)
Φ;CH ; ∆;B � rollc1 : c2 ⇒ c1

Φ;CH ; ∆;B � rollc1 c : c2 c⇒ c1 c

(unroll)
Φ;CH ; ∆;B � unroll : c1 ⇒ c2

(unrollCH ;B(c1) = c2)

(unroll-app)
Φ;CH ; ∆;B � unroll : c1 ⇒ c2

Φ;CH ; ∆;B � unroll : c1 c⇒ c2 c

unrollCH ;B(�) = CH (�) roll(�)

A.3.6 Instructions

MooTal instruction sequences consist of a number of basic instructions ι followed by a terminal
instruction, either halt[c] or jmp v. The execution of a single instruction is modelled by a
small step reduction semantics, so if P represents the state of the MooTal machine, P �→ P ′

represents the execution of one instruction, and P ′ is the new state of the machine. The formal
definition of �→ appears in Figure A.2 and is explained further below. The notation nsi :: X
denotes ns :: · · · :: ns︸ ︷︷ ︸

i

:: X .

The basic instructions have typing rules of the form Φ;CH ; Ψ;∆1;B1; Γ1 �i ι : ∆2;B2; Γ2,
asserting that in context Φ;CH ; Ψ;∆1;B1; Γ1 instruction ι is well formed and results in a context
Φ;CH ; Ψ;∆2;B2; Γ2 for the next instruction. Note that Φ;CH ; Ψ never change—the type and
value heaps are global. Instruction sequences are typed by the judgement Φ;CH ; Ψ;∆;B; Γ �I I ,
which asserts that I is well formed. The instructions are:

I ::= ι; I | halt[c] | jmp v
ι ::= aop rd, v1, v2 | bop r, v | malloc r, tag(c)〈c1, . . . , cn〉 |

mov r, v | mov rd, [rs + i] | mov [rd + i], rs |
mov sp, sp+ i | mov r, sp | mov sp, r | mov rd, [sp+ i] | mov [sp+ i], rs

The typing rule for sequencing is straight forward:

(i-seq)
Φ;CH ; Ψ;∆1;B1; Γ1 �i ι : ∆2;B2; Γ2 Φ;CH ; Ψ;∆2;B2; Γ2 �I I

Φ;CH ; Ψ;∆1;B1; Γ1 �I ι; I

MooTal programs interact with their environments by halting with a result value in register
r1. There is no operational rule for halt because this instruction freezes the machine. Instead,

88

(CH ,VH , R, I) �→ P)

I P

aop rd, v1, v2; I ′ (CH ,VH , R{rd �→ i1||aop||i2}, I ′)
R̂(v1) = i1; R̂(v2) = i2

bop r, v; I ′ (CH ,VH , R, I ′)
when not ||bop||i;R(r) = i

bop r, v; I ′′ (CH ,VH , R, I ′{�α := �c})
when ||bop||i;R(r) = i
R̂(v) = Y (�);VH(�) = tag(c)Λ[t1, . . . , tn]code I ′

jmp v (CH ,VH , R, I ′{�α := �c})
R̂(v) = Y (�);VH(�) = tag(c)Λ[t1, . . . , tn]code I ′

malloc r, tag(c) (CH ,VH{� �→ tag(c)〈?c1, . . . , ?cn〉}, R{r �→ �}, I ′)
〈c1, . . . , cn〉; I ′ � /∈ dom(VH)

mov r, v; I ′ (CH ,VH , R{r �→ R̂(v)}, I ′)
mov rd, [rs + i]; I ′ (CH ,VH , R{rd �→ wi{�α := �c}}, I ′)

R(rs) = Y (�);VH (�) = tag(c)Λ[t1, . . . , tn]〈w0, . . . , wn〉
0 ≤ i ≤ n

mov [rd + i], rs; I ′ (CH ,VH{� �→ tag(c)Λ[t1, . . . , tn]h′}, R, I ′)
R(rd) = Y (�);VH(�) = tag(c)Λ[t1, . . . , tn]〈w0, . . . , wn〉
h′ = 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn〉; 0 ≤ i ≤ n

mov sp, sp+ i; I ′ (CH ,VH , R{sp �→ S})
i > 0;R(sp) = w1 :: · · · :: wi :: S

mov sp, sp− i; I ′ (CH ,VH , R{sp �→ nsi :: R(sp)}); i≥ 0
mov r, sp; I ′ (CH ,VH , R{r �→ sptr(|R(sp)|)}, I ′)
mov sp, r; I ′ (CH ,VH , R{sp �→ wi :: · · · :: w1 :: se}, I ′)

R(r) = sptr(i);R(sp) = wn :: · · · :: w1 :: se; 0 ≤ i ≤ n
mov rd, [sp+ i]; I ′ (CH ,VH , R{rd �→ wi}, I ′)

R(sp) = w0 :: · · · :: wi :: S; 0 ≤ i
mov [sp+ i], rs; I ′ (CH ,VH , R{sp �→ w0 :: · · · :: wi−1 :: R(rs) :: S}, I ′)

R(sp) = w0 :: · · · :: wi :: S; 0 ≤ i

Where: ti = αi:κi(≤ c′i)?
Y (x) = [cn](· · · [c1](x) · · ·)

Figure A.2: MooTal Operational Semantics

89

program states of the form (CH ,VH , R, halt[c]) are called terminal configurations. Other irre-
ducible program states are called stuck configurations, and one of the purposes of the typing
rules is to prevent stuck configurations. The typing rule requires r1 to have type c.

(i-halt)
Φ;CH ; Ψ;∆;B; Γ � r1 : c
Φ;CH ; Ψ;∆;B; Γ �I halt[c]

The jump instruction unconditionally transfers control to the code pointed to by its operand.
Operationally, v must be a label for code with all the type variables instantiated; the next
program state will begin execution of that code’s instructions appropriately instantiated. The
typing rule requires v to point to a code type whose register file type matches the current one.

(i-jmp)
Φ;CH ; Ψ;∆;B; Γ � v : ∗tag(cφ)code Γ

Φ;CH ; Ψ;∆;B; Γ �I jmp v

MooTal includes a number of three-operand arithmetic instructions aop rd, v1, v2, where
aop stands for some set of arithmetic operators such as addition, subtraction, bitwise and, etc.
Each arithmetic operator has a meaning ||aop||, which is a binary operation on the integers.
Operationally, rd is replaced with ||aop|| applied to the integers v1 and v2 evaluate to. The
typing rule requires v1 and v2 to be integers and updates rd to be an integer.

(i-aop)
Φ;CH ; Ψ;∆;B; Γ � v1 : int Φ;CH ; Ψ;∆;B; Γ � v2 : int

Φ;CH ; Ψ;∆;B; Γ �i aop rd, v1, v2 : ∆;B; Γ{rd:int}

There are a number of conditional branching instructions bop r, v, where bop stands for
some set of arithmetic conditions such as equal to zero, greater than zero, etc. Each arithmetic
condition has a meaning ||bop||, which is a unary predicate on the integers. Operationally, if
the integer in r satisfies the predicate ||bop||, execution proceeds as in the jump instruction;
otherwise, execution proceeds with the next instruction. The typing rule requires r to be an
integer, and v to point to code whose register file type matches the current one.

(i-bop)
Φ;CH ; Ψ;∆;B; Γ � r : int Φ;CH ; Ψ;∆;B; Γ � v : ∗tag(cφ)code Γ

Φ;CH ; Ψ;∆;B; Γ �i bop r, v : ∆;B; Γ

A new heap block is created with the malloc instruction. It takes a tag type c and a list
of field types ci, and creates a new heap block with that tag and with uninitialised fields. A
label for this new heap block is placed in r. The tagging mechanism is explained further in
Section A.3.7. The typing rule requires the types to be well formed, and updates r to point to
a tuple of uninitialised fields. If Γ′ = Γ{r:∗tag(c◦)〈c01, . . . , c0n〉} then:

(i-malloc)
Φ;∆ �tc c : κ Φ;∆ �tc ci : T

Φ;CH ; Ψ;∆;B; Γ �i malloc r, tag(c)〈c1, . . . , cn〉 : ∆;B; Γ′

The move instruction updates a register r with a value v. The typing rule requires v to be
well formed, and updates r to reflect v’s type.

(i-mov)
Φ;CH ; Ψ;∆;B; Γ � v : c

Φ;CH ; Ψ;∆;B; Γ �i mov r, v : ∆;B; Γ{r:c}

The load instruction mov rd, [rs + i] loads the ith field of a tuple pointed to by rs into
rd, where i is zero based. Operationally, rs must be a label for data with all type variables

90

instantiated, i must be within the bounds of the tuple, and rd is updated with the appropriate
field appropriately instantiated. The typing rule requires rd to have a tuple type, i to be within
the tuple’s bounds, and the field to be a readable variant. It updates rd with the field’s type.

(i-load)
Φ;CH ; Ψ;∆;B; Γ � rs : ∗tag(cφ)〈cφ0

0 , . . . , c
φn
n 〉

Φ;CH ; Ψ;∆;B; Γ �i mov rd, [rs+ i] : ∆;B; Γ{rd:ci} (0 ≤ i ≤ n; φi ≤ +)

The store instruction mov [rd + i], rs stores rs into the ith field of a tuple pointed to by
rd, where i is zero based. Operationally, rd must be a label for data with all type variables
instantiated and i must be within the bounds of the tuple. The ith field of the heap block is
updated with the current value of rs. There are two typing rules for two different uses of the
instruction. The first is for storing a value into a writable field; it requires rd to have a tuple
type, i to be within the tuple’s bounds, the field to be a writable variant, and rs to have the
field’s type. The second is for initialising a field; it has the same requirements, except the field
must be uninitialised. It updates rd to reflect a read-write field.

(i-store)

Φ;CH ; Ψ;∆;B; Γ � rd : ∗tag(cφ)〈cφ0
0 , . . . , c

φn
n 〉

Φ;CH ; Ψ;∆;B; Γ � rs : ci
Φ;CH ; Ψ;∆;B; Γ �i mov [rd + i], rs : ∆;B; Γ

(0 ≤ i ≤ n; φi ≤ −)

If c′ = ∗tag(cφ)〈cφ0
0 , . . . , c

φi−1

i−1 , c
◦
i , c

φi+1

i+1 , . . . , c
φn
n 〉 then:

(i-init)

Φ;CH ; Ψ;∆;B; Γ � rd : ∗tag(cφ)〈cφ0
0 , . . . , c

φn
n 〉

Φ;CH ; Ψ;∆;B; Γ � rs : ci
Φ;CH ; Ψ;∆;B; Γ �i mov [rd + i], rs : ∆;B; Γ{rd:c′} (0 ≤ i ≤ n; φi = 0)

Stack space is allocated or deallocated with the instruction mov sp, sp+ i. Operationally, if
i > 0 then the top i words of the stack are removed, and if i < 0 then −i words of nonsense are
added to the top of the stack. In the former case, the typing rule requires the stack to have i
words, and it removes them; in the latter case, the typing rule simply updates the stack type.

(i-sadd)
Φ;∆ � c = c1 :: · · · :: cn :: c′ :

Φ;CH ; Ψ;∆;B; Γ �i mov sp, sp+ i : ∆;B; Γ{sp:c′} (Γ(sp) = c; i > 0)

(i-ssub)
Φ;CH ; Ψ;∆;B; Γ �i mov sp, sp− i : ∆;B; Γ{sp:nsi :: c} (Γ(sp) = c; i ≥ 0)

The current stack pointer can be placed into a register with the instruction mov r, sp.
Operationally, r is updated with a stack pointer with an offset equal to the current stack size.
The typing rule updates r to reflect the current stack type.

(i-gsp)
Φ;CH ; Ψ;∆;B; Γ �i mov r, sp : ∆;B; Γ{r:sptr(c)} (Γ(sp) = c)

The stack pointer can be updated with the instruction mov sp, r. Operationally, r must
be a stack pointer whose offset is within the current stack bounds, and the stack is truncated
to that offset. The typing rule requires r to have a stack pointer type, updates the current
stack type to reflect this, and has a stack pointer validity condition. The stack pointer validity
condition Φ;∆ � c = c1 ◦ c2 : S compliments the weak rule for stack pointer values by requiring
a stack pointer to have a type c2 that is a tail of the current stack type c.

(i-ssp)
Φ;∆ � c = c1 ◦ c2 : S Φ;CH ; Ψ;∆;B; Γ � r : sptr(c2)

Φ;CH ; Ψ;∆;B; Γ �i mov sp, r : ∆;B; Γ{sp:c2} (Γ(sp) = c)

91

A value on the stack can be loaded into rd with the instructionmovrd, [sp+i]. Operationally,
the current stack must have at least i + 1 elements, and rd is updated with the ith element.
The typing rule requires the current stack type to have at least i+ 1 elements, and updates rd
to reflect the ith type.

(i-sload)
Φ;∆ � c = c0 :: · · · :: ci :: c′ : S

Φ;CH ; Ψ;∆;B; Γ �i mov rd, [sp+ i] : ∆;B; Γ{rd:ci} (i ≥ 0; Γ(sp) = c)

The register rs can be stored onto the stack with the instruction mov [sp + i], rs. Op-
erationally, the current stack must have at least i + 1 elements, and the ith element is up-
dated with the contents of rs. The typing rule requires the current stack type to have at
least i + 1 elements, rs to have a type, and updates the ith element to reflect this type. If
Γ′ = Γ{sp:c0 :: · · · :: ci−1 :: c′2 :: c′1} then:

(i-sstore)

Φ;∆ � c1 = c0 :: · · · :: ci :: c′1 : S
Φ;CH ; Ψ;∆;B; Γ � rs : c′2

Φ;CH ; Ψ;∆;B; Γ �i mov [sp+ i], rs : ∆;B; Γ′
(i ≥ 0; Γ(sp) = c1)

A.3.7 Object Support

Object support in MooTal consists of recursive bounds, recursive types, the self quantifier,
and a tagging mechanism.

A type variable definition of the form α : κ ≤ c is called an F-bound. As α is bound in c, it
specifies a form of recursive inequality. Because MooTal interprets recursion with coercions, a
type variable is not a subtype of its bound, but unrolls to it. A bound set is well formed when
its variables are defined and its bounds have the appropriate kinds.

unrollCH ;B(α) = B(α) not roll(α)

(wf-B)
Φ;∆ �tc ci : κi

Φ;∆ �B α1 ≤ c1, . . . , αn ≤ cn (∆(αi) = κi)

A universally quantified F-bounded type is well formed when its bound and body are well
formed in a context that includes the abstracted variable. The subtyping rule makes the bound
contravariant and the body covariant (the undecidability results [Pie94] are avoided because a
variable is not a subtype of its bound).

(allf)
Φ;∆, α:κ1 �tc c1 : κ1 Φ;∆, α:κ1 �tc c2 : κ2

Φ;∆ �tc ∀α:κ1 ≤ c1.c2 : κ2

(sub-allf)
Φ;∆, α:κ1;B � c21 ≤ c11 : κ1 Φ;∆, α:κ1;B, α ≤ c21 � c12 ≤ c22 : κ2

Φ;∆;B � ∀α:κ1 ≤ c11.c12 ≤ ∀α:κ1 ≤ c21.c22 : κ2

Only recursive types can instantiate an F-bounded type, and the unrolled type must be a
subtype of the bound with the rolled type substituted for the variable.

(satf)
Φ;∆;B � c2 ≤ c3{α := c1} : κ

Φ;CH ; Ψ;∆;B � c1 � α:κ ≤ c3 ⇒ α := c1
(unrollCH ;B(c1) = c2)

Recursive types have the form rec α:κ.c, unroll to c{α := rec α:κ.c}, and are rollable. They
are well formed when the body is well formed in a context that includes the recursion variable.
The usual subtyping rule for recursive types is difficult to express inMooTal, becauseMooTal

92

does not have ordinary bounds (as opposed to recursive bounds). Rather than add these bounds
and the associated machinery, I restrict subtyping for recursive types to the reflexive rule.

unrollCH ;B(rec α:κ.c) = c{α := rec α:κ.c} roll(rec α:κ.c)

(rec)
Φ;∆, α:κ �tc c : κ
Φ;∆ �tc rec α.c : κ

A self-quantified type has the form self α:κ.c. Intuitively, a value of type c′ can be packed
into a self type when c′ is a recursive type whose unrolling is a subtype of c with α replaced
by c′. A self type is well formed when its body is well formed in a context that includes the
quantified variable. Self types are covariant.

(self)
Φ;∆, α:κ �tc c : κ
Φ;∆ �tc self α.c : κ

(sub-self)
Φ;∆, α:κ;B � c1 ≤ c2 : κ

Φ;∆;B � self α.c1 ≤ self α.c2 : κ

Self types are introduced by the pack coercion packc. A recursive type can be packed into
the self type self α:κ.c when the unrolled type is a subtype of c with α replaced by the rolled
type.

(pack)
Φ;∆;B � c2 ≤ c{α := c1} : κ

Φ;CH ; Ψ;∆;B � packself α:κ.c : c1 ⇒ self α:κ.c
(unrollCH ;B(c1) = c2)

Self types are eliminated by the unpack instruction unpack α, r, v where α is bound to the
unknown self type, r gets the unpacked value, and v is the value to unpack. Operationally, v
must be a packed rolled value, r is updated by the rolled value, and α is replaced by the type
in the rolled value. Formally (CH ,VH , R, I) �→ P where:

I P
unpack α, r, v; I ′ (CH ,VH , R{r �→ rollc(w)}, I ′{α := c})

R̂(v) = packc
′
(rollc(w))

The typing rule requires v to have a self type self α:T.c, and returns a context with α added
with bound τ and r of type α.

(i-unpack)
Φ;CH ; Ψ;∆;B; Γ � v : self α:T.c

Φ;CH ; Ψ;∆;B; Γ �i unpack α, r, v : ∆, α:T;B{α ≤ c}; Γ{r:α}

MooTal has a tagging mechanism, whose purpose is to allow run-time values to represent
type information and equality of type representatives to cause type refinement. Each heap block
has an associated type called a tag type. The heap block and the label bound to it are said to
tag that type. In tag(c)Λ[t1, . . . , tn]ĥ, c is the tag type, and in malloc r, tag(c)〈c1, . . . , cn〉, c is
the tag type of the newly created heap block. In both cases, the heap block is said to have been
created to tag c. The tag types are reflected in the tag component of the pointer types. Labels
in the pointer type ∗tag(cφ)c′ are tagging type c, and if c′′ is the type the block was created
to tag, then φ indicates the relationship between c and c′′. If φ = + then c′′ is a subtype of c;
if φ = − then c′′ is a supertype of c; if φ = ◦ then c′′ equals c. The variance 0 is unused; tag
types with this variance are harmless but not generally useful. A pointer type is well formed
when the tag type is a well formed type of an arbitrary kind. The subtyping rule establishes

93

the above relationships through the usual variance subtyping rules. Note that while the tag
type kinds are arbitrary, they must be the same for subtyping.

Φ;∆ �tc c1 : κ · · ·
Φ;∆ �tc ∗tag(cφ1)c2 : T

Φ;∆;B � cφ1
11 ≤ cφ2

21 : κ · · ·
Φ;∆;B � ∗tag(cφ1

11)c12 ≤ ∗tag(cφ2
21)c22 : T

The typing rules for heap blocks and the malloc instruction check that the tag type is well
formed and include it in the pointer type with a ◦ variance. The tag type for a heap block must
be closed for the same reason that mutable field types must be closed.

Φ; ε �tc c : κ · · ·
Φ;CH ; Ψ �h tag(c)Λ[t1, . . . , tn]ĥ : ∀[t1, . . . , tn]∗tag(c◦)c′

Φ;∆ �tc c : κ · · ·
Φ;CH ; Ψ;∆;B; Γ �i malloc r, tag(c)〈c1, . . . , cn〉 : ∆;B; Γ{r:∗tag(c◦)〈c01, . . . , c0n〉}

MooTal includes the instruction tagcmp v1, v2, vb to compare two tags and perform type
refinement. Here, v1 and v2 must be tags for types of the same kind. If they are equal,
that is, if they are the same pointer, control transfers to the code pointed to be vb, otherwise
control continues with the next instruction. Operationally, this behaviour is easy to formalise.
If ti = α1:κ1(≤ c′i)

?, Y (x) = [cn](· · · [c1](x) · · ·), Y1(x) = [c1n1
](· · · [c11](x) · · ·), and Y2(x) =

[c2n2
](· · · [c21](x) · · ·) then (CH ,VH , R, I) �→ P , where:

I P
tagcmp v1, v2, vb; I ′ (CH ,VH , R, I ′)

when R̂(v1) = Y1(�1), R̂(v1) = Y2(�2), and �1 �= �2
tagcmp v1, v2, vb; I ′′ (CH ,VH , R, I ′{�α := �c})

when R̂(v1) = Y1(�′) and R̂(v1) = Y2(�′)
R̂(vb) = Y (�);VH (�) = tag(c)Λ[t1, . . . , tn]code I ′

The typing rules are more complicated. The first type rule is motivated by the asymmetric
use of the operation: v1 is a tag for an unknown type for which more information is sought, and
v2 is a tag for a known type, which will provide that information. The following rule requires
that v1 be a pointer type whose tag is a type variable α and is a subtype of the type the tag was
created for. Value v2 is required to be a tag for a closed type c that is a supertype of the type
the tag was created for. Therefore, if v1 and v2 point to the same heap block, it must be that
α is a subtype of c. Because type variable bounds are recursive, α ≤ c′ is added to the context
to check vb, where unrollCH ;ε(c) = c′. Value vb must point to code as in the jump instruction.

(i-tagcmp1)

Φ;CH ; Ψ;∆;B; Γ � v1 : ∗tag(α−)c1
Φ;CH ; Ψ;∆;B; Γ � v2 : ∗tag(c+)c2

Φ; ε �tc c : κ
Φ;CH ; Ψ;∆;B{α ≤ c′}; Γ � vb : ∗tag(cφb)code Γ
Φ;CH ; Ψ;∆;B; Γ �i tagcmp v1, v2, vb : ∆;B; Γ

(∗)

Where (∗) is ∆(α) = κ and unrollCH ;ε(c) = c′.

94

While the typing rules described so far are sound, it is difficult to prove this, as the above
rule invalidates the type substitution lemma (Lemma A.8). The problem is that if a type is
substituted for α, the above rule no longer applies; in fact, no rule applies to the instruction.
So for the purpose of proving type soundness, a second rule is included to cover the substitution
of a closed type for α in the above rule. This rule requires both v1 and v2 to tag closed types
c1 and c2 with variances as before. In addition, either c1 is not a subtype of c2, in which case
the two tags are not equal, vb is not jumped to, and vb need not type check; or vb must type
check in the same context. Let C = Φ;CH ; Ψ;∆;B; Γ. Then:

(i-tagcmp2)

C � v1 : ∗tag(c−1)c′1
C � v2 : ∗tag(c+2)c′2
Φ; ε �tc c1 : κ
Φ; ε �tc c2 : κ

Φ; ε; ε � c1 ≤ c2 : κ
⇒

C � vb : ∗tag(cφb)code Γ

C �i tagcmp v1, v2, vb : ∆;B; Γ

A.3.8 Type Soundness

MooTal’s type system is sound. That is, a well-typed program state never gets stuck during
execution. This theorem and the key lemmas in its proof are stated below and proven in this
appendix.

Lemma A.3 (Derived Judgements)

• If Φ;∆ � c1 = c2 : κ then Φ;∆ �tc ci : κ.

• If Φ;∆ �B B and Φ;∆;B � c1 ≤ c2 : κ then Φ;∆ �tc ci : κ.

• If Φ;∆ �RT Γ1 = Γ2 then Φ;∆ �RT Γi.

• If Φ;∆ �B B and Φ;∆;B �RT Γ1 ≤ Γ2 then Φ;∆ �RT Γi.

• If �Int Int1 ≤ Int2 then �Int Int i.

• If Φ �VHT Ψ1 ≤ Ψ2 then Φ �VHT Ψi.

• If Φ �CH CH : Φ′, Φ �VHT Ψ, and Φ;CH ; Ψ �h h : c then Φ; ε �tc c : T.

• If Φ �CH CH : Φ′, Φ �VHT Ψ, Φ;∆ �B B, and Φ;CH ; Ψ;∆;B �ĥ ĥ : c then Φ;∆ �tc c : M.

• If Φ �CH CH : Φ′, Φ �VHT Ψ, Φ;∆ �B B, Φ;CH ; Ψ;∆;B; Γ � v : c, and Φ;∆ �RT Γ then
Φ; ε �tc c : T.

• If Φ �CH CH : Φ′, Φ;∆ �B B, Φ;CH ; ∆;B � δ : c1 ⇒ c2, and Φ;∆ �tc c1 : κ then
Φ;∆ �tc c2 : κ.

• If Φ �CH CH : Φ′, Φ �VHT Ψ, and Φ;CH ; Ψ �R R : Γ then Φ; ε �RT Γ.

• If Φ �CH CH : Φ′, Φ �VHT Ψ, and Φ;CH ; Ψ �S S : c then Φ; ε �tc c : S.

Proof: By induction on the derivations and inspection of the typing rules. 2

Definition A.1 A context C1 = Φ1;CH 1; Ψ1; ∆1;B1; Γ1 is stronger than a context C2 =
Φ2;CH 2; Ψ2; ∆2;B2; Γ2 if and only if all of the following hold:

95

• �CHT Φ1 ≤ Φ2

• ∀�:κ = c2 ∈ CH 2 : �:κ = c1 ∈ CH 1 ∧ Φ1; ε � c1 = c2 : κ
• Φ1 �VHT Ψ1 ≤ Ψ2

• ∆2 is a prefix of ∆1

• ∀α ≤ c2 ∈ B2 : α ≤ c1 ∈ B1 ∧Φ1; ∆1; ε � c1 ≤ c2 : ∆1(α)

• Φ1; ∆1;B1 �RT Γ1 ≤ Γ2

Lemma A.4 (Context Strengthening) If a judgement J is derivable, then the same judge-
ment with a stronger context is also derivable.

Proof: By induction on the derivations and inspection of the typing rules. 2

A type constructor is in normal form if it contains no subterms of the form (λα:κ.c1) c2,
(c1 :: c2) ◦ c3, (c1 ◦ c2) ◦ c3, se ◦ c, or c ◦ se. Using well known techniques (e.g., [Gal90]), we
can prove that every well kinded type constructor is equal to exactly one type constructor in
normal form. It follows that two type constructors of the same kind in the same context are
equal exactly when their normal forms are syntactically equal.

Lemma A.5 If Φ; ε; ε � c1 ≤ c2 : κ and the normal form of ci is c′i, then Φ; ε; ε � c′1 ≤ c′2 : κ
by a derivation that does not use the rules (sub-ref) or (sub-trans).

Proof: By induction on the derviation of Φ; ε; ε � c1 ≤ c2 : κ. If the rule (sub-ref) is used,
then the normal forms of c1 and c2 are syntactically equal. The desired derivation is built by
observing that each kinding rule corresponds to the reflexive case of some subtyping rule. If the
rule (sub-trans) is used, the result follows from the induction hypothesis and observing that all
rules preserve transitivity. If some other rule is used, observe that the normal form of ci is the
same type constructor applied to the normal forms of ci’s subterms. The result then follows by
the same rule and the induction hypothesis. 2

Lemma A.6 (Subtyping)

• If Φ; ε; ε � ∗tag(cφ1
11)c12 ≤ ∗tag(cφ2

21)c22 : T then Φ; ε; ε � cφ1
11 ≤ cφ2

21 : κ and Φ; ε; ε � c12 ≤
c22 : M.

• If Φ; ε; ε � code Γ1 ≤ code Γ2 : M then Φ; ε; ε �RT Γ1 ≤ Γ2.

• If Φ; ε; ε � 〈cφ1
1 , . . . , c

φn
n 〉 ≤ 〈c′1φ

′
1, . . . , c′n

φ′
n〉 : M then Φ; ε; ε � cφi

i ≤ c′iφ
′
i : T.

• If Φ; ε; ε � cφ1
1 ≤ cφ2

2 : κ and φ2 ≤ + then Φ; ε; ε � c1 ≤ c2 : κ.

• If Φ; ε; ε � cφ1
1 ≤ cφ2

2 : κ and φ2 ≤ − then Φ; ε; ε � c2 ≤ c1 : κ.

• If Φ; ε; ε � cφ1
1 ≤ c02 : κ then Φ; ε; ε � c2 ≤ c1 : κ.

• If Φ; ε; ε � cφ1
1 ≤ cφ2

2 : κ and φ2 �= + then φ1 �= +.

• If Φ; ε; ε � c1 ≤ c2 : κ and unrollCH ;ε(c2)c′2 then unrollCH ;ε(c1)c′1 and Φ; ε; ε � c′1 ≤ c′2 : κ.

96

Proof: By Lemma A.5 and inspection of the rules. 2

A concrete stack type is a type constructor satisfying the grammar:

s ::= se | c :: s | s1 ◦ s2
Note that if Φ; ε � s = c : S then c is also an s. For concrete stack types, the size and indices
are defined as:

|se| = 0
|c :: s| = 1 + |s|

|s1 ◦ s2| = |s1|+ |s2|
se[i] Undefined

(c1 :: s2)[i] =
{
c1 i = 1
s2[i− 1] i > 1

(s1 ◦ s2)[i] =
{
s1[i] i ≤ |s1|
s2[i− |s1|] i > |s1|

Lemma A.7 (Stack Equality) Φ; ε � s1 = s2 : S if and only if |s1| = |s2| and ∀1 ≤ i ≤ |s1| :
Φ; ε � s1[i] = s2[i] : T
Proof: (⇒) By induction on the derivation.

(⇐) Follows by rules (eq-sym), (eq-trans), (eq-cons), and (eq-se) from Φ; ε � s = s[1] :: · · · ::
s[|s|] :: se : S. The latter is by induction on the structure of s:
case s = se: Immediate.

case s = c :: s′: By the induction hypothesis Φ; ε � s′ = s′[1] :: · · · :: s′[|s′|] :: se : S. By
definition, the latter equals s[2] :: · · · :: s[|s|] :: se. The result follows by rule (eq-cons).

case s = s1 ◦ s2: By the induction hypothesis Φ; ε � s1 = s1[1] :: · · · :: s1[|s1|] :: se : S and
Φ; ε � s2 = s2[1] :: · · · :: s2[|s2|] :: se : S. By the (eq-append) rule Φ; ε � s = (s1[1] :: · · · ::
s1[|s1|] :: se)◦ (s2[1] :: · · · :: s2[|s2|] :: se) : S. By repeated use of the (stkβ2) and (eq-trans)
rules, Φ; ε � s = s1[1] :: · · · :: s1[|s1|] :: (se ◦ (s2[1] :: · · · :: s2[|s2|] :: se)) : S. The result
follows by the (stkβ1) rule, repeated use of the (eq-cons) rule, and the (eq-trans) rule.

2

Lemma A.8 (Type Substitution) Let B′ = (B−α){α := c}. If Φ; ε �tc c : κ and B(α) = c′

implies Φ; ε; ε � unrollCH ;ε(c) ≤ c′{α := c} : κ, then:
• Φ;α:κ,∆ �tc c

′ : κ′ implies Φ;∆ �tc c
′{α := c} : κ′

• Φ;α:κ,∆ � c1 = c2 : κ′ implies Φ;∆ � c1{α := c} = c2{α := c} : κ′

• Φ;α:κ,∆;B � c1 ≤ c2 : κ′ implies Φ;∆;B′ � c1{α := c} ≤ c2{α := c} : κ′

• Φ;α:κ,∆ �RT Γ implies Φ;∆ �RT Γ{α := c}
• Φ;α:κ,∆ �RT Γ1 = Γ2 implies Φ;∆ �RT Γ1{α := c} = Γ2{α := c}

97

• Φ;α:κ,∆;B �RT Γ1 ≤ Γ2 implies Φ;∆;B′ �RT Γ1{α := c} ≤ Γ2{α := c}
• Φ;CH ; Ψ;α:κ,∆;B; Γ � v : c′ implies Φ;CH ; Ψ;∆;B′; Γ{α := c} � v{α := c} : c′{α := c}
• Φ;CH ; Ψ;α:κ,∆1;B1; Γ1 �i ι : α:κ,∆2;B2; Γ2 implies
Φ;CH ; Ψ;∆1; (B1−α){α := c}; Γ1{α := c} �i ι{α := c} : ∆2; (B2−α){α := c}; Γ2{α := c}

• Φ;CH ; Ψ;α:κ,∆;B; Γ �I I implies Φ;CH ; Ψ;∆;B′; Γ{α := c} �I I{α := c}

Proof: By induction on the derivations. The only interesting case is for the rule (i-tagcmp1).
In this case the result follows by (i-tagcmp2). To show the implication hypothesis of the
rule, assume Φ; ε; ε � c ≤ c2 : and Φ;CH ;α:κ; ∆;B{α ≤ c′2}Γ � vb : ∗tag(cφb)code Γ where
unrollCH ;ε(c2)c′2. By Subtyping Φ; ε; ε � unrollCH ;ε(c) ≤ c′2 : κ, so by the induction hypothesis
Φ;CH ; ∆;B′; Γ{α := c} � vb{α := c} : ∗tag(cb{α := c}φ)Γ{α := c} as required. 2

Inspection of the rules for coercions reveals that the only forms for c where Φ;CH ; ∆;B �
rollc : c′ ⇒ c are �, rec α:κ.c′′, and c1 c2 where c1 also has one of these forms. Further inspection
reveals that such types have only trivial subtyping rules, that is, they are subtypes only of types
equal to them. Thus, between a use of the (coerce) rule for δ = rollc and a use of the (coerce)
rule for δ = unroll, only trivial uses of the (subsume) rule can appear.

Lemma A.9 If Φ;CH ; ε; ε � rollc
′
: c1 ⇒ c2, Φ; ε � c2 = c3 : κ, and Φ;CH ; ε; ε � unroll : c3 ⇒

c4 then Φ; ε � c1 = c4 : κ.

Proof: By induction on the derivations of Φ;CH ; ε; ε � rollc
′
: c1 ⇒ c2 and Φ;CH ; ε; ε �

unroll : c2 ⇒ c3, inspection of the rules, and the observation that unrollCH ;ε(c) is a partial
function of c. 2

Lemma A.10 (R̂ Typing) If both Φ;CH ; Ψ �R R : Γ and Φ;CH ; Ψ; ε; ε; Γ � v : c then
Φ;CH ; Ψ; ε; ε � R̂(v) : c.

Proof: By induction on the derivation of Φ;CH ; Ψ; ε; ε; Γ � v : c. If the last rule used was
(reg), then v = r, R̂ = R(r), and c = Γ(r). By inspection of the (regfile) rule, Φ;CH ; Ψ; ε; ε �
R(r) : Γ(r) as required. If the last rule used was (subsume), then Φ;CH ; Ψ; ε; ε; Γ � v : c′ and
Φ;∆;B � c′ ≤ c : T. By the induction hypothesis Φ;CH ; Ψ; ε; ε � R̂(v) : c′, and the result fol-
lows by the (subsume) rule. If the last rule used was (coerce), then v = δ(v′), Φ;CH ; Ψ; ε; ε; Γ �
v′ : c′, and Φ;CH ; ε; ε � δ : c′ ⇒ c. By the induction hypothesis Φ;CH ; Ψ; ε; ε � R̂(v′) : c′.
There are two subcases. If δ = unroll and R̂(v′) = rollc

′′
(w) then by reasoning above, only

trivial (subsume) rules can be between the (coerce) rule for rollc
′′
and the (coerce) rule for

unroll. Therefore, it must be that Φ;CH ; Ψ; ε; ε; Γ � w : c′′′, Φ;CH ; ε; ε � rollc
′′
: c′′′ ⇒ c′′,

and Φ; ε � c′′ = c′ : T. By Lemma A.9, Φ; ε � c′′′ = c : T and the result follows by the
(sub-ref) and (subsume) rules. Otherwise, the result follows by the (coerce) rule and the fact
that R̂(δ(v′)) = δ(R̂(v′)). If any other rule was used then R̂(v) = v and the result is immediate.

2

Lemma A.11 (Register File Update)

• If Φ;CH ; Ψ �R R : Γ and Φ;CH ; Ψ; ε; ε � w : c then Φ;CH ; Ψ � R{r �→ w} : Γ{r:c}.
• If Φ;CH ; Ψ �R R : Γ and Φ;CH ; Ψ �S S : c then Φ;CH ; Ψ � R{sp �→ s} : Γ{sp:c}.

98

Proof: By inspection of the rule (regfile). 2

Lemma A.12 (Heap Extension) If Φ �VHT Ψ, Φ; ε �tc c : T, and � /∈ dom(Ψ) then:

• Φ �VHT Ψ{�:c}
• Φ;CH ; Ψ �VH VH : Ψ and Φ;CH ; Ψ{�:c} �h h : c imply Φ;CH ; Ψ{�:c} �VH VH {� �→ h} :
Ψ{�:c}

• If J(Ψ) is a derivable judgement with Ψ as the value heap typing component of its context
then J(Ψ{�:c}) is also derivable.

Proof: The first item follows by inspection of the rule (wf-VHT). By inspection of the rule
(wf-VHT) and (sub-VHT) it is easy to establish Φ �VHT Ψ{�:c} ≤ Ψ. The second item is by
inspection of the rule (VH) and Context Strengthening, and the third item follows immediately
from Context Stregnthening. 2

Lemma A.13 (Heap Update) If Φ �VHT Ψ and Φ; ε; ε � c ≤ Ψ(�) : T then:

• Φ �VHT Ψ{�:c}
• If Φ;CH ; Ψ �VH VH : Ψ and Φ;CH ; Ψ{�:c} �h h : c, then Φ;CH ; Ψ{�:c} �VH VH {� �→
h} : Ψ{�:c}.

• If J(Ψ) is a derivable judgement with Ψ as the value heap typing component of its context
then J(Ψ{�:c}) is also derivable.

Proof: The first item is by inspection of the rule (wf-VHT) and Derived Judgements. By
inspection of the rule (wf-VHT) and (sub-VHT) it is easy to establish Φ �VHT Ψ{�:c} ≤ Ψ.
The second item is by inspection of the rule (VH) and Context Strengthening, and the third
item follows immediately from Context Strengthening. 2

Lemma A.14 (Canonical Stack Forms) If Φ;CH ; Ψ �R R : Γ then R(sp) = w1 :: · · · ::
wn :: se, Γ(sp) = τ1 :: · · · :: τn :: se, and Φ;CH ; Ψ; ε; ε � wi : τi.

Proof: By induction on the derivation and inspection of the rules (regfile), (stk-nil), and
(stk-cons). 2

Lemma A.15 (Canonical Heap Forms) If Φ;CH ; Ψ �h h : c then:

c = ∀[t1, . . . , tn]∗tag(c◦1)c2
h = tag(c1)Λ[t1, . . . , tn]ĥ

where ∆ = ∆(t1, . . . , tn)
B = B(t1, . . . , tn)

and either:

• c2 = code Γ, ĥ = code I, and Φ;CH ; Ψ;∆;B; Γ �I I, or

• c2 = 〈cφ1
1 , . . . , c

φn
n 〉, ĥ = 〈w1, . . . , wn〉, φi �= + implies Φ; ε �tc ci : T, and Φ;CH ; Ψ;

∆;B � wi : c
φi
i

99

Proof: By inspection of the rules (hv), (hv-code), and (hv-tuple). 2

Lemma A.16 (Canonical Forms) If Φ;CH ; Ψ �VH VH : Ψ and Φ;CH ; Ψ; ε; ε � w : c then:

1. c = int implies w = i

2. c = ns implies w = ns

3. c = ∀[t1, . . . , tn]∗tag(cφ1)c2 implies:

• w = [cm](· · · [c1](�) · · ·)
• VH (�) = tag(c′)Λ[t′′1, . . . , t

′′
m, t

′
1, . . . , t

′
n]ĥ

• Ψ(�) = ∀[t′′1, . . . , t′′m, t′′m, t′1, . . . , t′n]∗tag(c′◦)c′2
• Φ;CH ; Ψ �h VH (�) : Ψ(�)

• φ = + implies Φ; ε; ε � c′ ≤ c1 : κ
• φ = − implies Φ; ε; ε � c1 ≤ c′ : κ
• Φ;CH ; ε; ε � c1, . . . , cm � t′′1, . . . , t

′′
m ⇒ ρ

• Φ; ε; ε � (∀[t′1, . . . , t′n]∗tag(c′◦)c′2){ρ} ≤ c : T
4. c = sptr(c′) implies w = sptr(|c′|)
5. unrollCH ;ε(c) = c′ implies w = rollc

′′
(w′), Φ; ε � c = c′′ : T, Φ;CH ; Ψ; ε; ε � w′ : c′, and

the conditions of this lemma hold for c′ and w′.

6. c = self α:T.c1 implies w = packc2(rollc3(w)), Φ;CH ; Ψ; ε; ε � rollc3(w) : c3, and Φ; ε; ε �
unrollCH ;ε(c3) ≤ c1{α := c3} : T

Proof: First strengthen the lemma so that instead of “c = int” it says “the canonical form of
c is int” and similarly for the other items. The proof prooceeds by induction on the derivation
of Φ;CH ; Ψ; ε; ε � w : c. Consider the various cases for the last rule used in the derivation:
case (sv-int), (sv-ns), or (sv-sptr): Immediate.

case (svname): By inspection of the rule (VH) it must be that c = Ψ(�) and Φ;CH ; Ψ �h

VH (�) : c. The rest follows from Canonical Heap Forms.

case (subsume): In case Φ;CH ; Ψ; ε; ε � w : c′ and Φ; ε; ε � c′ ≤ c : T. By the induction
hypothesis, the items hold for c′ and w. By Lemma A.5 the normal forms of c′ and c have
the same outer form, therefore the same cases apply for c as for c′. If the normal form
of c′ is sptr(c′′′) and the normal form of c is sptr(c′′), then by the induction hypothesis
w = sptr(|c′′′|). By the (sub-sptr) rule Φ; ε; ε � c′′′ ≤ c′′ : S. Inspection of the subtyping
rules and induction show that |c′′| is defined and equal to |c′′′|. Thus w = sptr(|c′′|) as
required. The other cases are similar.

case (coerce): In this case w = δ(w′), Φ;CH ; Ψ; ε; ε � w′ : c′, and Φ;CH ; ε; ε � c′ : c ⇒.
Consider the various cases for δ:

case δ = [c′′]: In this case c′ = ∀t.c′′′, Φ;CH ; ε; ε � c′′ � t ⇒ @, and c = c′′′{@}. By the
induction hypothesis, either no items apply to c and w or item 3 applies to c′ and
w′. The conditions for item 3 for c and w are easy to establish from those for c′ and
Type Substitution.

100

case δ = rollc: Item 5 holds in this case; the conditions are easy to establish given the
induction hypothesis.

case δ = unroll: This case holds by the induction hypothesis, item 5, and Lemma A.9.
case δ = packc: In this case c = self α:T.c1, unrollCH ;ε(c′)c2 and Φ; ε; ε � c2 ≤ c1{α :=

c′} : T. The only types for which unrollCH ;ε(c′) is defined are type names and
recursive types. For both of these, roll(c′) is true, so by the induction hypothesis
w′ = rollc

′
w′′. This establishes the conditions for item 6; none of the other items

apply.

2

Theorem A.17 (Preservation) If �P P1 and P1 �→ P2 then �P P2.

Proof: The proof is very similar to the ones given by Morrisett et al. [MWCG99, MCGW98b],
so I will show only the new cases and the cases for load and store, since MooTal has poly-
morphic tuples unlike Tal or Stal. P1 has the form (CH ,VH , R, ι; I) or (CH ,VH , R, jmp v).
Let TD be the derivation of �P P1. Consider the following cases for ι:

case mov rd, [rs + i] : TD has the form:

�Int (Φ,Ψ)
Φ �CH CH : Φ

Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ

Φ;CH ; Ψ; ε; ε; Γ � rs : ∗tag(cφ)〈cφ0
0 , . . . , c

φn
n 〉

Φ;CH ; Ψ; ε; ε; Γ �i mov rd, [rs + i] : ε; Γ{rd:τi}
Φ;CH ; Ψ; ε; ε; Γ{rd:τi} �I I

Φ;CH ; Ψ; ε; ε; Γ �I ι; I
�P P

By the operational semantics P2 = (CH ,VH , R{rd �→ wi{�α := �c′}, I} where R(rs) =
[c′m](· · · [c′1](�) · · ·), VH (�) = tag(c′)Λ[t1, . . . , tm]〈w0, . . . , wn〉, and 0 ≤ i ≤ n. By R̂
Typing, Canonical Forms, Canonical Heap Forms, Subtyping, and Type Substitution
Φ;CH ; Ψ; ε; ε � wi{�α := �c′} : c+i . By inspection of the rules for word values having
varianced typing, it must be that Φ;CH ; Ψ; ε; ε � wi{�α := �c′} : ci. By Register File
Update Φ;CH ; Ψ �R R{rd �→ wi{�α := �c}} : Γ{rd:ci} and �P P2.

case mov [rd + i], rs: For this case let:

c1 = 〈cφ0
0 , . . . , c

φn
n 〉

c2 =
{
〈cφ0

0 , . . . , c
φi−1

i−1 , c
◦
i , c

φi+1

i+1 , . . . , c
φn
n 〉 φi = 0

c1 φi ≤ −
c3 = 〈c′0φ

′
0, . . . , c′n

φ′
n〉

c4 =
{
〈c′0φ

′
0, . . . , c′i−1

φ′
i−1, c′i

◦, c′i+1
φ′

i+1 , . . . , c′n
φ′

n〉 φi = 0
c3 φi ≤ −

Γ′ = Γ{rd:∗tag(cφ)c2}
TD has the form:

�Int (Φ,Ψ)
Φ �CH CH : Φ

Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ

Φ;CH ; Ψ; ε; ε; Γ � rd : ∗tag(cφ)c1
Φ;CH ; Ψ; ε; ε; Γ � rs : ci

Φ;CH ; Ψ; ε; ε; Γ �i mov [rd + i], rs : ε; Γ′

Φ;CH ; Ψ; ε; ε; Γ′ �I I

Φ;CH ; Ψ; ε; ε; Γ �I ι; I
�P P

101

By the operational semantics, P2 = (CH ,VH{� �→ tag(c′)Λ[t1, . . . , tm]〈w′
0, . . . , w

′
n〉}, R, I)

where R(rs) = [c′′m](· · · [c′′1](�) · · ·), VH (�) = tag(c′)Λ[t1, . . . , tm]〈w0, . . . , wn〉, 0 ≤ i ≤ n,
w′

j = wj if j �= i, and w′
i = R(rs). By R̂ Typing, Canonical Forms, Canonical Heap

Forms, and Subtyping, Ψ(�) = ∀[t1, . . . , tm]∗tag(c′◦)c3, φ′j �= + implies Φ; ε �tc c
′
j : T,

Φ;CH ; Ψ;∆;B � wi : c′i
φ′

i , and Φ; ε; ε � c′iφ
′
i{�α := �c′′} ≤ cφi

i : T. Since φi ≤ − or φi = 0,
φi �= +, and by Subtyping φ′i �= +, so Φ; ε; ε �tc c

′′
i : T. By Derived Judgements and Sub-

typing, Φ; ε; ε � ci ≤ c′′i : T. By R̂ Typing and subsumption, Φ;CH ; Ψ; ε; ε � R(Rs) : c′′i ,
and Φ;CH ; Ψ;∆;B �ĥ 〈w′

0, . . . , w
′
n〉 : c4 where ∆ = ∆(t1, . . . , tm) and B = B(t1, . . . , tm).

Now it is easy to establish that Φ;∆;B � c3 ≤ c4 : M, so Φ; ε; ε � ∀[t1, . . . , tm]∗tag(c′◦)c4 ≤
Ψ(�) : T. Let Ψ′ = Ψ{�:∀[t1, . . . , tm]∗tag(c′◦)c4}. Then, by Heap Update �Int (Φ,Ψ′),
Φ;CH ; Ψ′ �R R : Γ, and Φ;CH ; Ψ′ �VH VH {� �→ tag(c′)Λ[t1, . . . , tm]〈w′

0, . . . , w
′
n〉} : Ψ′.

It is easy to establish that Φ; ε; ε � c4{�α := �c′′} ≤ c2 : M and Φ;CH ; Ψ′; ε; ε � R(rd) :
∗tag(cφ)c2. By Register File Update Φ;CH ; Ψ′ �R R : Γ{rd:∗tag(cφ)c2} and �P P2.

case tagcmp: TD has the form:

�Int (Φ,Ψ)
Φ �CH CH : Φ

Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ

Φ;CH ; Ψ; ε; ε; Γ � v1 : ∗tag(c−1)c′1
Φ;CH ; Ψ; ε; ε; Γ � v1 : ∗tag(c+2)c′2 A

Φ;CH ; Ψ; ε; ε; Γ �i tagcmp v1, v2, vb : ε; Γ
Φ;CH ; Ψ; ε; ε; Γ �I I

Φ;CH ; Ψ; ε; ε; Γ �I ι; I
�P P

where A is:
Φ; ε; ε � c1 ≤ c2 : κ

⇒
Φ;CH ; Ψ; ε; ε; Γ � vb : ∗tag(cφb)code Γ

There are two cases. If P2 = (CH ,VH , R, I) then clearly �P P2. Otherwise P2 =
(CH ,CH , R, I ′{�α := �c}), R̂(v1) = Y1(�′), R̂(v2) = Y2(�′), R̂(vb) = Y (�), and VH (�) =
tag(c)Λ[t1, . . . , tn]code I ′. By Canonical Forms, VH (�′) = tag(c′)Λ[t′1, . . . , t

′
m]ĥ, Φ; ε; ε �

c1 ≤ c′ : κ, and Φ; ε; ε � c′ ≤ c2 : κ. By rule (sub-trans) and A, Φ;CH ; Ψ; ε; ε; Γ �
vb : ∗tag(cφb)code Γ. By R̂ Typing, Canonical Forms, Canonical Heap Forms, Type
Substitution, and Context Strengthening , Φ;CH ; Ψ; ε, ε,Γ �I I

′{�α := �c}. Hence �P P2.

case unpack: TD has the form:

�Int (Φ,Ψ)
Φ �CH CH : Φ

Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ

Φ;CH ; Ψ; ε; ε; Γ � v : self α:T.c
Φ;CH ; Ψ; ε; ε; Γ �i unpack α, r, v : α:T;α ≤ c; Γ{r:α}

Φ;CH ; Ψ;α:T;α ≤ c; Γ{r:α} �I I

Φ;CH ; Ψ; ε; ε; Γ �I ι; I
�P P

By the operational semantics, P2 = (CH ,VH , R{r:rollc
′′
(w)}, I{α := c′′}), where R̂(v) =

packc
′
(rollc

′′
(w)). By R̂ Typing and Canonical Forms, Φ;CH ; Ψ; ε; ε � rollc

′′
(w) : c′′ (1)

and Φ; ε; ε � unrollCH ;ε(c′′) ≤ c{α := c′′} : T (2). By (1) and Register File Update,
Φ;CH ; Ψ �R R{r �→ rollc

′′
(w)} : Γ{r:c′′}. By (2) and Type Substitution, Φ;CH ; Ψ; ε; ε;

Γ{r:α}{α := c′′} �I I{α := c′′}. By Derived Judgements, Φ; ε �RT Γ so Γ{r:α}{α :=
c′′} = Γ{r:c′′}. Thus Φ;CH ; Ψ; ε; ε; Γ{r:c′′} �I I{α := c′′} and �P P2.

102

2

Theorem A.18 (Progress) If �P P , then either P is a terminal configuration or P is re-
ducible (P �→ P ′ for some P ′).

Proof: The proof is very similar to the ones given by Morrisett et al. [MWCG99, MCGW98b],
so I will show only the new cases. Let P = (CH ,VH , R, Ifull) and TD be the derivation of
�P P .

case tagcmp: TD has the form:

�Int (Φ,Ψ)
Φ �CH CH : Φ

Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ

Φ;CH ; Ψ; ε; ε; Γ � v1 : ∗tag(c−1)c′1
Φ;CH ; Ψ; ε; ε; Γ � v1 : ∗tag(c+2)c′2 A

Φ;CH ; Ψ; ε; ε; Γ �i tagcmp v1, v2, vb : ε; Γ
Φ;CH ; Ψ; ε; ε; Γ �I I

Φ;CH ; Ψ; ε; ε; Γ �I Ifull

�P P

where A is:
Φ; ε; ε � c1 ≤ c2 : κ

⇒
Φ;CH ; Ψ; ε; ε; Γ � vb : ∗tag(cφb)code Γ

By Canonical Forms, R̂(v1) = [c1n1
](· · · [c11](�1) · · ·) and R̂(v2) = [c2n2

](· · · [c21](�2) · · ·). If
�1 �= �1 then P �→ (CH ,VH , R, I). Otherwise �1 = �2, so by Canonical Forms VH (�1) =
tag(c)Λ[t1, . . . , tn1]ĥ1, Φ; ε; ε � c1 ≤ c : κ, and Φ; ε; ε � c ≤ c2 : κ. By transitivity
of subtyping and A, Φ;CH ; Ψ; ε; ε; Γ � vb : ∗tag(cφb)code Γ. By Canonical Forms and
Canonical Heap Forms, R̂(vb) = [c′′n](· · · [c′′1](�) · · ·) and VH (�) = tag(c′b)Λ[t

′′
1, . . . , t

′′
n]code

I ′. Therefore P reduces to (CH ,VH , R, I ′{ �α′′ := �c′′}).

case unpack: TD has the form:

�Int (Φ,Ψ)
Φ �CH CH : Φ

Φ;CH ; Ψ �VH VH : Ψ
Φ;CH ; Ψ �R R : Γ

Φ;CH ; Ψ; ε; ε; Γ � v : self α:T.c
Φ;CH ; Ψ; ε; ε; Γ �i unpack α, r, v : α:T;α ≤ c; Γ{r:α}

Φ;CH ; Ψ;α:T;α ≤ c; Γ{r:α} �I I

Φ;CH ; Ψ; ε; ε; Γ �I Ifull

�P P

By R̂ Typing and Canonical Forms, v = packc
′
(rollc

′′
(w)). Hence P �→ (CH ,VH , R{r �→

rollc
′′
(w)}, I{α := c′′}).

2

Theorem A.19 (Type Soundness) If �P P and P �→∗ P ′ then P ′ is not stuck.

Proof: By induction on the length of P �→∗ P ′, Preservation, and Progress. 2

103

A.3.9 Execution

An initial program state is formed from an executable (CH ,VH , �) by combining CH and VH
with a register file that has an empty stack and an instruction sequence to jump to �.

(exec)
�∗tag(cφ)code{sp:se}

E (CH ,VH , �)

� (CH ,VH , �) exec
; (CH ,VH , {sp �→ se}, jmp �)

Execution always produces a well formed executable.

Theorem A.20 If � E exec
; P then �P P .

Proof: By inspection of the various typing and linking judgement rules. 2

A corollary of all the soundness theorems of this appendix is that well formed, complete,
and link compatible object files will not get stuck when linked, formed into an executable, and
executed. Since the link compatibility, completeness, and entry label checks require only the
interfaces of the object files, MooTal is a safe and modular language.

Bibliography

[AC93] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Transac-
tions on Programming Languages and Systems, 15(4):575–631, September 1993.

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer-Verlag, New York, NY, USA, 1996.

[ACPP91] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
typing in a statically typed language. ACM Transactions on Programming Lan-
guages and Systems, 13(2):237–268, April 1991.

[ACV96] Mart́ın Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpretation of ob-
jects and object types. In 23rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming languages, pages 396–409, St. Petersburgh Beach, FL, USA,
January 1996. ACM Press.

[BCP97] Kim Bruce, Luca Cardelli, and Benjamin Pierce. Comparing object encodings. In
Theoretical Aspects of Computer Software, volume 1281 of Lecture Notes in Com-
puter Science, pages 415–438, Sendai, Japan, September 1997. Springer-Verlag.
Also an invited lecture at FOOL 3, July 1996.

[BF98] Viviana Bono and Kathleen Fisher. An imperative, first-order calculus with ob-
ject extension. In 5th International Workshop on Foundations of Object-Oriented
Languages, pages 8–1 to 8–13, San Diego, California, USA, January 1998.

[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, and David Turner. The ML Kit (ver-
sion 1). Technical Report 93/14, Department of Computer Science, University of
Copenhagen, 1993.

[Bru94] Kim Bruce. A paradigmatic object-oriented programming language: Design,
static typing and semantics. Journal of Functional Programming, 4(2):127–206,
April 1994.

[BSP+95] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Sirer, Marc Fiuczyn-
ski, David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and
performance in the SPIN operating system. In 15th ACM Symposium on Operat-
ing Systems Principles, pages 267–284, Copper Mountain, CO, USA, December
1995. ACM Press.

[BSvG95] Kim Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe
polymorphic object-oriented language. In 9th European Conference on Object-
Oriented Programming, volume 952 of Lecture Notes in Computer Science, pages
27–51. Springer-Verlag, 1995.

104

105

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807–820, September 1988.

[Car88a] Luca Cardelli. A semantics of multiple inheritance. Information and Computa-
tion, 76(2/3):138–164, 1988.

[Car88b] Luca Cardelli. Structural subtyping and the notion of power type. In 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming languages, pages
70–79, San Diego, CA, USA, January 1988. ACM Press.

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming languages, pages
266–277, Paris, France, January 1997. ACM Press.

[CCH+89] Peter Canning, William Cook, Walter Hill, John Mitchell, and Walter Olthoff.
F-bounded quantification for object-oriented programming. In 4th International
Conference on Functional Programming and Computer Architecture, pages 273–
280, London, UK, September 1989. ACM Press.

[CGL95] Giuseppe Castanga, Giorgio Ghelli, and Guiseppe Longo. A calculus for over-
loaded functions with subtyping. Information and Computation, 117(1):115–135,
February 1995.

[Cha97] Craig Chambers. The Cecil language, specification and rationale. Technical
Report UW-CSE-93-03-05, Department of Computer Science and Engineering,
University of Washington, Box 352350, Seattle, WA 98195-2350, USA, March
1997.

[CHC90] William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyping. In
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming lan-
guages, pages 125–135, San Francisco, CA, USA, January 1990. ACM Press.

[CHW99] Karl Crary, Michael Hicks, and Stephanie Weirich. Type-safe dynamic linking
of native code. Submitted for publication, contact: weirich@cs.cornell.edu,
November 1999.

[Coo89] William Cook. A Denotational Semantics of Inheritance. Ph.D. dissertation,
Brown University, Box 1910, Computer Science Department, Brown University,
Providence, RI 02906, USA, May 1989. Available as technical report CS-89-33.

[Cra99] Karl Crary. Simple, efficient object encoding using intersection types. Technical
Report CMU-CS-99-100, School of Computer Science, Carnegie Mellon Univer-
sity, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA, 1999.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In 1999 ACM SIG-
PLAN International Conference on Functional Programming, pages 233–248,
Paris, France, September 1999. ACM Press.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism
in type-erasure semantics. In 1998 ACM SIGPLAN International Conference on
Functional Programming, pages 301–312, Baltimore Maryland, USA, September
1998. ACM Press.

106

[Dea97] Drew Dean. The security of static typing with dynamic linking. In 4th ACM
Conference on Computer and Communications Security, pages 18–27, Zurich,
Switzerland, April 1997.

[DFWB97] Drew Dean, Edward Felten, Dan Wallach, and Dirk Balfanz. Java security: Web
browsers and beyond. In Dorothy Denning and Peter Denning, editors, Internet
Beseiged: Countering Cyberspace Scofflaws. ACM Press, October 1997.

[DS98] Dominic Duggan and Constantinos Sourelis. Parameterized modules, recursive
modules and mixin modules. In ACM SIGPLAN Workshop on ML, pages 87–96,
Baltimore, MA, USA, September 1998.

[ESTZ95] Jonathan Eifrig, Scott Smith, Valery Trifonov, and Amy Zwarico. An interpre-
tation of typed oop in a language with state. Lisp and Symbolic Computation,
8(4):357–397, December 1995.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages.
In 1998 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 236–248, Montreal, Canada, June 1998. ACM Press.

[FHM94] Kathleen Fisher, F. Honsell, and John Mitchell. A lambda calculus of objects
and method specialization. Nordic Journal of Computing, 1:3–37, 1994.

[Fis96] Kathleen Fisher. Type Systems for object-oriented programming languages. Ph.D.
dissertation, Computer Science Department, Stanford University, CA 94305,
USA, May 1996. Available as technical report CS-TR-98-1602.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
languages, pages 171–183, San Diego, CA, USA, January 1998. ACM Press.

[FM95a] Kathleen Fisher and John Mitchell. A delegation-based object calculus with
subtyping. In 10th International Conference on Fundamentals of Computation
theory, volume 965 of Lecture Notes in Computer Science, pages 42–61. Springer-
Verlag, 1995.

[FM95b] Kathleen Fisher and John Mitchell. The development of type systems for object-
oriented languages. Theory and Practice of Object Systems, 1(3):189–220, 1995.

[FM96] Kathleen Fisher and John Mitchell. Classes = objects + data abstraction. Tech-
nical Report STAN-CS-TN-96-31, Computer Science Department, Stanford Uni-
versity, CA 94305, USA, January 1996.

[FM98] Kathleen Fisher and John Mitchell. On the relationship between classes, objects,
and data abstraction. Theory and Practice of Object Systems, 4(1):3–25, 1998.

[FR99] Kathleen Fisher and John Reppy. The design of a class mechanism for Moby.
In 1999 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, Atlanta, GA, USA, May 1999. ACM Press. Moby information is
available at http://www.cs.bell-labs.com/~jhr/moby.

107

[Gal90] Jean Gallier. On girard’s “candidats de reductibilité”. In Piergiorgio Odifreddi,
editor, Logic and Computer Science, number 31 in The APIC Series, pages 123–
204. Academic Press, 1990.

[Gir71] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’élimination de coupures dans l’analyse et la théorie des types. In
J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium,
pages 63–92. North-Holland, 1971.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. dissertation, Université Paris VII, 1972.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The
Java Series. Addison-Wesley, Reading, MA, USA, August 1996.

[Gle99a] Neal Glew. An efficient class and object encoding. Unpublished, author’s contact:
glew@cs.cornell.edu., August 1999.

[Gle99b] Neal Glew. Object closure conversion. In Andrew Gordon and Andrew Pitts,
editors, 3rd International Workshop on Higher Order Operational Techniques in
Semantics, volume 26 of Electronic Notes in Theoretical Computer Science, Paris,
France, September 1999. Elsevier. http://www.elsevier.nl/locate/entcs/
volume26.html.

[Gle99c] Neal Glew. Object closure conversion. Technical Report TR99-1763, Department
of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-
7501, USA, August 1999.

[Gle99d] Neal Glew. Type dispatch for named hierarchical types. Technical Report TR99-
1738, Department of Computer Science, Cornell University, 4130 Upson Hall,
Ithaca, NY 14853-7501, USA, April 1999.

[Gle99e] Neal Glew. Type dispatch for named hierarchical types. In 1999 ACM SIG-
PLAN International Conference on Functional Programming, pages 172–182,
Paris, France, September 1999. ACM Press.

[GM99a] Neal Glew and Greg Morrisett. Type safe linking and modular assembly language.
In 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming lan-
guages, pages 250–261, San Antonio, TX, USA, January 1999. ACM Press.

[GM99b] Dan Grossman and Greg Morrisett. Towards compiler-independent certifying
compilation. Submitted for publication, contact: danieljg@cs.cornell.edu,
November 1999.

[Hic99] Jason Hickey. Predicative type-theoretic interpretation of objects. Unpublished,
author’s contact: jyh@cs.cornell.edu, 1999.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In 21st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming languages, pages 123–137, Portland, OR, USA, January
1994. ACM Press.

108

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming languages, pages 130–141, San Francisco, CA, USA, January 1995.
ACM Press.

[HMM90] Robert Harper, Eugenio Moggi, and John Mitchell. Higher-order modules and the
phase distinction. In 17th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming languages, pages 341–354, San Francisco, CA, USA, January 1990.
ACM Press.

[HS97] Robert Harper and Christopher Stone. An interpretation of Standard ML in type
theory. Technical Report CMU-CS-97-147, School of Computer Science, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA, June 1997.

[Int97] Intel Corporation. Intel Architecuture Software Developer’s Manual, 1997. Three
volumes.

[Kam88] Samuel Kamin. Inheritance in smalltalk-80: A denotational definition. In 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming languages,
pages 80–87, San Diego, CA, USA, January 1988. ACM Press.

[Koz98] Dexter Kozen. Efficient code certification. Technical Report 98-1661, Department
of Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-
7501, USA, January 1998.

[Koz99] Dexter Kozen. Language-based security. In Mathematical Foundations of Com-
puter Science, volume 1672 of Lecture Notes in Computer Science, pages 248–298.
Springer-Verlag, September 1999.

[KR94] Samuel Kamin and Uday Reddy. Two semantic models of object-oriented lan-
guages. In Carl Gunter and John Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design, pages 464–495.
MIT Press, Cambridge, MA 02142, USA, 1994.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming languages, pages
109–122, Portland, OR, USA, January 1994. ACM Press.

[LR98] Xavier Leroy and François Rouaix. Security properties of typed applets. In 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming languages,
pages 391–403, San Deigo, CA, USA, January 1998. ACM Press.

[LST99] Christopher League, Zhong Shao, and Valerey Trifonov. Representing java classes
in a typed intermediate language. In 1999 ACM SIGPLAN International Confer-
ence on Functional Programming, pages 183–196, Paris, France, September 1999.
ACM Press.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, Reading, MA, USA, September 1996.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, Daivd Walker, Stephanie Weirich, and Steve Zdancewic. TALx86:

109

A realistic typed assembly language. In ACM SIGPLAN Workshop on Compiler
Support for System Software, pages 25–35, Atlanta, GA, USA, May 1999. INRIA
research report no. 0228.

[MCGW98a] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. In 2nd International Workshop on Types in Compilation,
volume 1473 of Lecture Notes in Computer Science, pages 28–52, Kyoto, Japan,
March 1998. Springer-Verlag.

[MCGW98b] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed as-
sembly language (extended version). Technical Report CMU-CS-98-185, School
of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pitts-
burgh, PA 15213, USA, December 1998. A version with proofs was submitted to
the Journal of Functional Programming.

[Mit90] John Mitchell. Toward a typed foundation for method specialization and inheri-
tance. In 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming languages, pages 109–124, San Francisco, CA, USA, January 1990. ACM
Press.

[Mor95] Greg Morrisett. Compiling with Types. Ph.D. dissertation, School of Computer
Science, Carnegie Mellon University, December 1995. Published as CMU Techni-
cal Report CMU-CS-95-226.

[MTC+96] Greg Morrisett, David Tarditi, Perry Cheng, Christopher Stone, Robert Harper,
and Peter Lee. The TIL/ML compiler: Performance and safety through types.
In ACM SIGPLAN Workshop on Compiler Support for System Software, Tucson,
AZ, USA, February 1996.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F
to typed assembly language. In 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming languages, pages 85–97, San Diego, CA, USA, January
1998. ACM Press.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):528–569, May 1999.

[Nec98] George Necula. Compiling with Proofs. Ph.D. dissertation, School of Computer
Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
USA, September 1998. Published as Carnegie Mellon University technical report
CMU-CS-98-154.

[PHH+93] Simon Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil
Wadler. The Glasgow Haskell compiler: a technical overview. In U.K.
Joint Framework for Information Technology Technology Conference, pages
249–257, Keele, U.K., March 1993. Somewhat out of date, see http://
www.haskell.org/ghc/.

[Pie94] Benjamin Pierce. Bounded quantification is undecidable. Information and Com-
putation, 112(1):131–165, July 1994. Also in Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design.

110

[PT94] Benjamin Pierce and David Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2):207–247, April
1994.

[Red88] Uday Reddy. Objects as closures: Abstract semantics of object-oriented lan-
guages. In ACM Symposium on LISP and Functional Programming, pages 289–
297, Snowbird, UT, USA, July 1988. ACM Press.

[Rém94] Didier Rémy. Programming objects with ML-ART, an extension to ML with
abstract and record types. In Masami Hagiya and John Mitchell, editors, Inter-
national Symposium on Theoretical Aspects of Computer Science, volume 789 of
Lecture Notes in Computer Science, pages 321–346, Sendai, Japan, April 1994.
Springer-Verlag.

[Rey74] John Reynolds. Towards a theory of type structure. In Programming Symposium,
volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer-Verlag,
1974.

[RR96a] John Reppy and Jon Riecke. Classes in Object ML via modules. In 3rd Interna-
tional Workshop on Foundations of Object-Oriented Languages, New Brunswick,
NJ, USA, July 1996.

[RR96b] John Reppy and Jon Riecke. Simple objects for Standard ML. In 1996 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 171–180, Philadelphia, PA, USA, May 1996. ACM Press.

[RV97] Didier Rémy and Jérôme Vouillon. Objective ML: A simple object-oriented ex-
tension of ML. In 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming languages, pages 40–53, Paris, France, January 1997. ACM Press.

[SFPB96] Emin Gún Sireer, Marc Fiuczynski, Przemyslaw Pardyak, and Brian Bershad.
Safe dynamic linking in an extensible operating system. In ACM SIGPLAN
Workshop on Compiler Support for System Software, Tucson, AZ, February 1996.

[SH00] Chris Stone and Robert Harper. Deciding type equivalence in a language with
singleton kinds. In 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming languages, Boston, MA, USA, January 2000. ACM Press.

[Sha97] Zhong Shao. An overview of the FLINT/ML compiler. In 1st International
Workshop on Types in Compilation, number BCCS-97-03 in the Boston College
Computer Science Technical Reports, Amsterdam, The Netherlands, June 1997.

[SMS96] Andrew Shalit, David Moon, and Orca Starbuck. The Dylan Reference Manual:
The Definitive Guide to the New Object-Oriented Dynamic Language. Addison-
Wesley, September 1996.

[TDMW97] Franklyn Turbak, Allyn Dimock, Robert Muller, and Joe Wells. Compiling with
polymorphic and ployvariant flow types. In 1st International Workshop on Types
in Compilation, number BCCS-97-03 in the Boston College Computer Science
Technical Reports, Amsterdam, The Netherlands, June 1997.

111

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper,
and Peter Lee. TIL: A type-directed optimizing compiler for ML. In 1996 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 181–192, Philadelphia, PA, USA, May 1996. ACM Press.

[Vis98] Ramesh Viswanathan. Full abstraction for first-order objects with recursive types
and subtyping. In 13th IEEE Symposium on Logic in Computer Science, pages
380–391, Indianapolis, IN, USA, June 1998. IEEE Computer Society.

[Vou98] Jérôme Vouillon. Using modules as classes. In 5th International Workshop on
Foundations of Object-Oriented Languages, pages 4–1 to 4–10, San Diego, CA,
USA, January 1998.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas Anderson, and Susan Graham. Efficient
software-based fault isolation. In 14th ACM Symposium on Operating Systems
Principles, pages 203–216, Asheville, NC, USA, December 1993. ACM Press.

[Wri95] Andrew Wright. Simple imperative polymorphism. LISP and Symbolic Compu-
tation, 8(4):343–355, December 1995.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In 1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 249–257, Montreal, Canada, June 1998. ACM
Press.

[ZGM99] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in programming
languages: A syntactic proof technique. In 1999 ACM SIGPLAN International
Conference on Functional Programming, pages 197–207, Paris, France, September
1999. ACM Press.

	Front Material
	Title Page
	Copyright Page
	Abstract
	Biographical Sketch
	Acknowledgements
	Table of Contents
	List of Figures

	Introduction
	Type-Directed Compilation
	Language-Based Security
	TAL
	Modules
	Object Encodings
	Downcasting and Other Type Dispatch

	Overview of the Dissertation

	Typed Assembly Language
	Notational Conventions
	The Tal Machine
	Instructions and Execution
	Types and Typing Rules
	Compiler

	Modular Typed Assembly Language
	Untyped Object Files and Linkers
	Object Files
	Linking Untyped Object Files
	Static Executables

	MTAL0
	Type Safety
	Object Files and Interfaces
	Linking
	Executables and Execution

	MTAL
	Abstract Types
	Abstract Type Constructors

	Dynamic Linking
	Related Work

	Object-Oriented Languages
	Object Template Language
	Closure Conversion

	Object and Class Encoding
	Object Encodings
	Class Encodings
	My Encoding
	Encoding Target
	Translation
	MooTal and Extended Compiler
	Extensions

	Type Tagging
	Four Type Dispatch Constructs
	Class Casting and Class Case
	Exceptions
	Hierarchical Extensible Sums
	Multimethods

	Translation Source
	Implementation
	Translation Target
	Translation
	Extended MooTal and Compiler

	TAL Implementation
	Base Types
	Singletons
	Memory Types
	Instructions
	Interfaces
	Experience

	Future Work
	Dynamic Linking
	Other Class-Based Models
	Prototypes and Delegation
	Full Abstraction
	Pragmatic Issues

	MooTal
	Notational Conventions
	Module Language
	Object Files
	Linking
	Executables

	Core Language
	Kinds
	Type Constructors
	Program States
	Heap Values
	Small Values
	Instructions
	Object Support
	Type Soundness
	Execution

	Bibliography

