
Type-Safe Linking and Modular Assembly Language ∗

Neal Glew and Greg Morrisett

Department of Computer Science
Cornell University

Abstract

Linking is a low-level task that is usually vaguely specified,
if at all, by language definitions. However, the security of
web browsers and other extensible systems depends crucially
upon a set of checks that must be performed at link time.
Building upon the simple, but elegant ideas of Cardelli, and
module constructs from high-level languages, we present a
formal model of typed object files and a set of inference rules
that are sufficient to guarantee that type safety is preserved
by the linking process.

Whereas Cardelli’s link calculus is built on top of the
simply-typed lambda calculus, our object files are based
upon typed assembly language so that we may model impor-
tant low-level implementation issues. Furthermore, unlike
Cardelli, we provide support for abstract types and higher-
order type constructors—features critical for building ex-
tensible systems or modern programming languages such as
ML.

1 Introduction

Linking separately compiled program units is an impor-
tant task that is typically omitted from language defini-
tions. In large part, this omission is due to low-level ar-
chitecture and compiler dependencies that seem outside
the realm of language design. However, extensible sys-
tems [LY97, WLAG93, BSP+95, Nec97, Koz98, HCC+98]
are being built based upon the strong safety guarantees that
language definitions provide. These systems use linking and
loading as a fundamental part of their operation, so it is
critical to precisely define the consistency checks a linker,
be it static or dynamic, must perform.

For example, Java-extensible web browsers, such as
Netscape’s Navigator and Microsoft’s Internet Explorer, rely
on static type systems with link checks to enforce a wide
class of important safety properties. Extensions (applets)
are written in a high-level language such as Java, and then

∗This material is based on work supported in part by the AFOSR
grant F49620-97-1-0013 and ARPA/RADC grant F30602-1-0317. Any
opinions, findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not reflect the views
of these agencies.

To appear in the 26th ACM SIGPLAN-SIGACT Sym-
posium on the Principles of Programming Languages,
January 1999, San Antonio, Texas, USA.

compiled by an untrusted compiler to a target language
(Java Virtual Machine bytecode). The integrity of the
browser does not depend on type soundness of Java, but
rather on type soundness (among other properties) of the
JVM. As the JVM supports dynamic linking and loading
of applets, a critical component of the JVM definition is
the description of well-formed compilation units and link
compatibility. Unfortunately, this component is vaguely
specified and has been a source of well publicised security
holes [MF96, Sar97].

Recently, Cardelli proposed a calculus of compilation
units for the simply-typed lambda-calculus and presented
a set of rules for determining link compatibility [Car97].
Cardelli’s work specified high-level abstractions for modules
and interfaces, and provided a set of inference rules for de-
termining that program fragments, when compiled under
certain typing assumptions, met a set of consistency require-
ments necessary to ensure that the resulting program was
well-formed and hence would not “go wrong” when evalu-
ated.

In previous work, we presented a Typed Assembly Lan-
guage (TAL) [MWCG98] that was suitable for compiling
high-level core languages, and it seemed natural to extend
this work with the ideas of Cardelli to give a detailed treat-
ment of type-safe linking. However, though Cardelli’s calcu-
lus is an elegant formulation of some of the high-level issues
involved in linking, we found that it abstracts from many im-
portant low-level details such as binding and alpha-variance
of labels, and omits certain critical features, notably support
for cyclic inter-object file references, user-defined type ab-
straction, and dynamic linking. Hence, the goal of this paper
is to build upon Cardelli’s work and provide a suitable treat-
ment of these issues. In particular, we extend core TAL with
a language of typed object files and formalise the concepts of
linking and link compatibility. The goals of the design were
to model important properties of conventional object files
and linkers (e.g., Unix’s ld or Win32’s link), and provide
a module structure that supports separate type-checking of
object files and separate compilation of high-level language
features such as the abstract types, signatures, structures,
and functors of SML.

Our design for typed object files borrows heavily from the
previous work on modules for high-level languages and hence
there are relatively few important innovations. However,
we believe this to be a virtue as it demonstrates that the
programming language community has identified most of the
critical issues for any module language, and it allows us to
concentrate on those issues specific to object files.

We have implemented the resulting design as part of
an on-going language-based security project. The imple-
mentation provides a set of tools for defining and type-
checking a variant of IA32 (Intel 80x86) object files and
interfaces. These tools, together with a compiler that
maps a variant of type-safe C code to type-safe object files
is available at http://www.cs.cornell.edu/home/walker/
talnet/tal.html#talc.

We proceed as follows: In Section 2, we present the ab-
stractions of conventional untyped object files and linkers
(e.g., Unix’s ld) and discuss the issues of link compatibil-
ity in this simplified setting. In Section 3, we briefly review
the type system of TAL and introduce a simple module lan-
guage MTAL0, which, in the spirit of Cardelli, provides sup-
port for separate compilation, separate type-checking, and a
stronger notion of link compatibility. We extend MTAL0 in
Section 4 with support for abstract types in the style of Clu
or Modula-2, higher-order type constructors in the style of
Objective Caml, and translucent types in the style of Harper
and Lillibridge [HL94] and Leroy [Ler94]. The resulting lan-
guage, MTAL (pronounced metal), is sufficiently expressive
that we may compile ML-style modules, including functors,
to the target language. Finally, in Section 5 we discuss ex-
tending our model to include dynamic linking and dynamic
loading.

2 Untyped Object Files and Linkers

We begin with a model of typical untyped object files and
the process of linking.

2.1 Untyped Assembly Language

Figure 1 shows a simple, operational model an of untyped
assembly language. We model execution as a one-step re-
duction relation between program states. In our model, the
state of an assembly language program consists of three com-
ponents: a heap representing memory, a register file, and an
instruction sequence representing the program counter. A
heap, H , is a finite mapping of labels (symbolic addresses),
`, to heap values, h. There are two types of heap values:
code sequences, code I , where I is an instruction sequence,
and tuples, 〈v1, . . . , vn〉, where the vi are small values such
as integers or labels. Instructions include typical RISC in-
structions (e.g., add rd, rs, v) and one special instruction,
malloc r[n]. This instruction allocates in the heap a new
tuple with n uninitialised entries and places the new label in
r. Small values are the word sized objects of the machine,
that is, objects that fit in a register. We also consider regis-
ters to be small values to simplify the syntax of operands.1

A register file is a finite map from registers, r, to small val-
ues. The reduction relation simulates the execution of one
instruction, such as:

(H,{r2 7→ 6}, add r1, r2, 3; I)
7−→
(H,{r1 7→ 9, r2 7→ 6}, I)

Here, the initial program state includes a register file that
maps r2 to the value 6, and the program counter points
to an instruction sequence where the first instruction is in-
tended to add 3 to the contents of register r2, placing the

1A proper account would need to distinguish word values that may
be stored in the heap or in a register from values that may be operands
(which include registers).

resulting value in r1. Hence, the reduction relation takes us
to a program state with the same heap, an updated register
file that maps r1 to the value 9, and an updated program
counter that points to the next instruction in the sequence
to be executed.

2.2 Object Files

Abstractly, an object file consists of three components:

1. A heap H .

2. An import set I: a set of labels not defined in the heap
of the object file, but possibly referenced by terms in
the heap.

3. An export set E: a subset of the labels defined in the
heap.

While this description of object files is generic, as heaps
could map labels to the terms of any language, in order to
provide specific examples, we will use the untyped assembly
language of the previous section.

We use [I ⇒ H : E] to denote an object file and give
the well-formedness conditions with the following inference
rule, where FL(e) denotes the set of free labels occurring in
a term e:

E ⊆ dom(H)
I ∩ dom(H) = ∅

∀` ∈ dom(H).FL(H(`)) ⊆ dom(H) ∪ I
` [I ⇒ H : E]

The set of labels that are defined in the heap but not in the
export set are said to be local labels, as the scope of these la-
bels is the object file only. Following standard convention for
fixed-scope identifiers, we consider object files to be equiva-
lent up to a systematic renaming (alpha-conversion) of local
labels. The justification for this implicit alpha-conversion is
that real object files represent local labels as relative offsets
from the base address of the object file. This base address is
adjusted during the linking and/or loading process to place
object files in different address ranges and hence the local
labels are implicitly adjusted, in a fashion similar to DeBrui-
jin indices. In contrast, exported labels do not alpha-vary
so that the linker may resolve cross references among object
files.

2.3 Linking Untyped Object Files

Linking is the process of taking two (or more) object files
and combining their heaps, import sets, and export sets in a
suitable fashion to produce a new object file. However, even
if the input object files are well-formed, the output may not
be, hence, the notion of link compatibility.

Definition 2.1 (Link Compatibility) Well formed ob-
ject files O1 = [I1 ⇒ H1 : E1] and O2 = [I2 ⇒ H2 : E2]

are link compatible, written O1
lc↔ O2, iff E1 ∩ E2 = ∅ (their

exported labels are disjoint).

2

Small Values v ::= i | r | ` | ? | . . .
Heap Values h ::= code I | 〈v1, . . . , vn〉
Instructions ι ::= add rd, rs, v | malloc r[n] | jmp v | halt | . . .
Heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
Register Files R ::= {r1 7→ v1, . . . , rn 7→ vn}
Instruction Sequences I ::= ι1; . . . ; ιn

Program States P ::= (H, R, I)

(H,R, I) 7−→ P ′ where:

I P ′ Conditions

add rd, rs, v; I ′ (H, R{rd 7→ R(rs) + R̂(v)}, I ′)
malloc r[n]; I ′ (H{` 7→ 〈?, . . . , ?︸ ︷︷ ︸

n

〉}, R{r 7→ `}, I ′) ` /∈ dom(H)

jmp v (H, R, I ′) R̂(v) = ` ∧ H(`) = code I ′

R̂(v) =




i v = i
R(r) v = r
` v = `
? v =?
...

Figure 1: Untyped Assembly Language

When two object files are link compatible, we may link
them to produce a new object file as follows:

` [I1 ⇒ H1 : E1]
` [I2 ⇒ H1 : E2]

` [I1 ⇒ H1 : E1]
lc↔ [I2 ⇒ H2 : E2]

dom(H1) ∩ dom(H2) = ∅
` [I1 ⇒ H1 : I1] link [I2 ⇒ H2 : I2];

[(I1 ∪ I2) \ (E1 ∪ E2) ⇒ (H1 ∪ H2) : (E1 ∪ E2)]

Because of the condition dom(H1) ∩ dom(H2) = ∅ (tech-
nically a side condition), in applying the link rule, alpha-
variants of the object files must be chosen such that their
local labels are disjoint. It follows from the definitions that
if ` O1 link O2 ; O then ` O (i .e., the resulting object file
is well-formed.)

2.4 Static Executables

The final operation the linker performs is to produce an
executable. An executable is just a closed heap paired with
an entry label defined in that heap, denoted (H,`). Thus,
an executable is well-formed according to the following rule:

` ∈ dom(H) ∀` ∈ dom(H).FL(H(l)) ⊆ dom(H)

` (H, `) executable

Given a well-formed object file and a distinguished la-
bel from its export set, we may produce a well-formed exe-
cutable only when the import set of the object file is empty:

` [I ⇒ H : E] I = ∅ ` ∈ E
` [I ⇒ H : E], `

prg
; (H,`)

To load and run an executable, the operating system cre-
ates a new process with the heap as its initial memory image

and jumps to the entry label passing in some parameters.2

Hence, ignoring the parameters, an executable is mapped
to an initial program state by taking the heap of the exe-
cutable, an empty register file, and a single-instruction se-
quence that jumps to the code bound to the entry label of
the executable:

` (H, `) executable

` (H,`)
exec
; (H, ∅, jmp `)

3 MTAL0

The goal of this paper is to formalise typed object files com-
bining the development in Section 2 with Cardelli’s high
level, typed linking ideas [Car97]. As a step towards this
goal, this section defines MTAL0, a simple, typed object file
calculus; the next section will extend MTAL0 to our full cal-
culus by adding (higher order) type abstraction. While our
module calculus is independent of the core calculus, MTAL0

is based on TAL [MWCG97, MCGW98] for concreteness. In
the following sections, we briefly review TAL and the bene-
fits of type safety, and then build a notion of typed object
files on top of TAL.

3.1 TAL

TAL is essentially a typed version of the assembly language
of Section 2.1. Its types include integers, tuples, and code
types. TAL also includes some “typing” instructions that
have no operational effect but make type checking easier
(see [MWCG98] for details.) The allocation instruction
malloc r[τ1, . . . , τn] includes the types of the entries of the
tuple to be allocated. It assigns r the tuple type 〈τ0

1 , . . . , τ0
n〉

2On Unix system the parameters are the command line arguments
and the environment. On GUI systems like Win32, the parameters
are GUI handles for the application and/or the main window and the
environment.

3

where the 0s indicate possibly uninitialised slots. Storing
into the first slot would give r the type 〈τ1

1 , τ0
2 , . . . , τ0

n〉 where
1 indicates a definitely initialised slot. A slot may be loaded
only if it is definitely initialised.

A register file type Γ = {r1:τ1, . . . , rn:τn} states that
ri contains a value of type τi and is used both to type-
check individual instructions and to assign a type to in-
struction sequences. In general, TAL code sequences have
the form code[α1, . . . , αn]Γ.I where the code is polymorphic
over the type variables α1, . . . , αn, and I is a typed instruc-
tion sequence whose first instruction expects the registers to
have register file type Γ. A label mapped to this code se-
quence is assigned the type ∀[α1, . . . , αn]Γ. When the code
is monomorphic, we abbreviate it as codeΓ.I and abbreviate
its label’s type as simply Γ.

An increment function might be written in TAL as:

inc 7→ code{r1:int, ra:{r1:int}}.add r1, r1, 1; jmp ra

To call inc, the caller must place an integer in r1 and a
return label in ra, the return label must accept an integer
in r1. Thus, the label inc is assigned the type:

{r1:int, ra:{r1:int}}
Finally, TAL assigns to heaps heap-typings, which are

finite maps from labels to types, {`1:τ1, . . . , `n:τn}. The
judgement Ψ1 ` H : Ψ2 asserts that H has heap-typing Ψ2

where free labels are typed by Ψ1. TAL heaps are unordered
maps and a heap value may refer to its own label directly or
indirectly. Thus, TAL’s type checker uses the final heap-type
during checking of the heap, Ψ ` H : Ψ, as done in Harper’s
system for mutable references [Har94]. Note that this allows
circular references such as {` 7→ 〈1, `〉} and thus extends
Cardelli’s work, which considered only DAG-like heaps, to
general graphs.

3.2 Type Safety

The main motivation for static typing is the property that
a well typed program never performs an illegal operation.
Consider a set of well formed and mutually link compatible
object files that together with a label are a complete pro-
gram. We desire that the link operation is type preserving,
so the resulting object file will be well formed. Similarly,
we desire that formation and creation of an initial program
state are type preserving, so the initial program state result-
ing from the execution of the linked object file is well formed.
TAL’s type safety means that the execution starting in this
well formed initial state will never perform an illegal oper-
ation. Thus if we define typed linking, program formation,
and formation of an initial state to be type preserving, then
MTAL0 will be type safe.

An extensible system writer may desire other guaran-
tees from MTAL0. For example, if an extension is checked
against a fixed import interface, the MTAL0 type system
guarantees that the extension can access only the labels
mentioned in that interface. The extensible system can use
this fact to ensure that a security monitor interposed be-
tween the extension and the underlying system is not cir-
cumvented. An overview of the necessary guarantees and
security properties of extensible systems is beyond the scope
of this paper, but Leroy and Rouaix [LR98] provide a dis-
cussion of some of these issues.

fact.tal:
export fact:{r1 : int, ra : {r1:int}}
fact 7→ code{r1:int, ra:{r1:int}}.

mov r2,r1
mov r1,1
jmp loop

loop 7→ code{r1:int, r2:int, ra:{r1:int}}.
bz r2,ra
mul r1,r2,r1
sub r2,r2,1
jmp loop

main.tal:
import fact:{r1 : int, ra : {r1:int}}
export main:{r1 : int}
main 7→ code{r1:int}.

mov ra,ret1
jmp fact

ret1 7→ code{r1:int}
halt[int]

Figure 2: Modular Factorial Example

3.3 Object Files and Interfaces

MTAL0’s object files extend untyped object files with types.
A MTAL0 object file is a triple [ΨI ⇒ H : ΨE] where
H is a TAL heap, ΨI is an import interface, and ΨE is
an export interface. An interface is a heap-typing, i .e.,
{`1:τ1, . . . , `n:τn}. Figure 2 shows an example MTAL0 pro-
gram consisting of two object files, fact.tal and main.tal.
The intention is that an integer n is passed in register r1 to
the entry label main. The main object file calls the other
object file’s fact label which computes and returns the fac-
torial of its argument. The main object file then halts with
n! in register r1. The keywords import and export are used
to show the import and export interfaces respectively.

In addition to the checks made in untyped object files,
the well formedness condition for MTAL0 object files re-
quires type checking:

` ΨI ` ΨA ≤ ΨE ΨI ∪ ΨA ` H : ΨA

dom(ΨI) ∩ dom(ΨA) = ∅
` [ΨI ⇒ H : ΨE]

The heap has an actual type ΨA and is checked in the con-
text ΨI ∪ ΨA as it may refer to imported labels or to it-
self. The heap must define labels different from the im-
ports, that is, ΨA and ΨI must have disjoint domains. The
heap must provide the exported labels at the types specified,
` ΨA ≤ ΨE .3

A typed object file can be checked in isolation. While
it contains type information about labels in other object
files, it does not contain any term level information about
those labels. Put another way, MTAL0 has a separate type
checking property and thus MTAL0 supports separate com-
pilation in the following fashion: If a source-level module
can be type checked using only source-level interfaces for
other modules, then it can be compiled to a typed object

3` ΨA ≤ ΨE means that ΨA is a subinterface of ΨE , formally,
∀` ∈ dom(ΨE) : ΨA(`) = ΨE (`). Note that in a subtype setting, this
could be extended to ∀` ∈ dom(ΨE) : ΨA(`) ≤ ΨE (`).

4

file without needing the implementations of the other mod-
ules.

3.4 Linking

Crucial to typed link compatibility is interface compatibility,
` Ψ1 ∼ Ψ2. In particular, if two interfaces mention the same
label then they must give it compatible types:4

∀` ∈ dom(Ψ1) ∩ dom(Ψ2) : Ψ1(`) = Ψ2(`)

` Ψ1 ∼ Ψ2

Given interface compatibility, link compatibility is easily de-
fined:

` ΨI1 ∼ ΨI2 ` ΨI1 ∼ ΨE2 ` ΨI2 ∼ ΨE1

dom(ΨE1) ∩ dom(ΨE2) = ∅
` [ΨI1 ⇒ H1 : ΨE1]

lc↔ [ΨI2 ⇒ H2 : ΨE2]

The two object files have compatible imports and exports,
and the exports must (as before) be disjoint. The link opera-
tion is defined in the same way as the untyped link operation
but uses typed object files and typed judgements. Again, if
` O1 link O2 ; O then ` O. This theorem is much stronger
than in the untyped case as it asserts that no type errors
are introduced by a linking operation.

MTAL0 has a separate link-checking property. That is,
link compatibility is defined entirely in terms of the imported
and exported interfaces of the two modules and is indepen-
dent of the modules’ heaps. A type safe linker will load
each object file and type check it separately, then perform
the linking, doing checks that involve only the interface in-
formation; the code need not be rechecked.

3.5 Programs and Execution

A program is a closed TAL heap and a label. The heap must
be well formed and the label must have an appropriate type:

` Ψ Ψ ` H : Ψ
` (H,`) executable

(Ψ(`) = τe)

where τe is the type the entry convention gives the entry
label. The factorial example’s intended entry convention has
τe = ∀[]{r1 : int}. The entry convention is an important
low-level detail of how programs get executed, which we can
formally specify as a MTAL0 type.

As before, we can check when an object file is complete:

` [∅ ⇒ H : ΨE]

` [∅ ⇒ H : ΨE]; ` complete
(ΨE(`) = τe)

However, programmers and language designers want to rea-
son about when a collection of object files together forms a
complete program. That is, they want a set of checks to en-
sure that when those object files are linked the result will be
a complete program according to the judgement above. In-
formally, each object file’s imports must be contained within
the exports of the other object files and the entry label must
be exported by one of the object files with type τe. We for-
malise these checks as a judgement and prove a correctness
theorem in appendix A.

4In MTAL0, compatible types are equal types. In a subtype set-
ting, this could be weakened.

export type file: T;
export val open: {r1 : string, ra : {r1 : file}}
export val readline: {r1 : file, ra : {r1 : string}}
...
; A file is access rights plus O/S handle
; Access rights: bit 0 read, bit 1 write, ...

file 7→ 〈int1, int1〉
open 7→ code{r1 : string, ra : {r1 : file}}.
; Call O/S open on r1 putting result in r3
; preserving ra. Determine access rights and
; store in r4 preserving r3 and ra.
malloc r1[int, int]
st r1.0, r4
st r1.1, r3

; Coerce r1 from 〈int, int〉 to file

coerce rollfile(r1)
jmp ra

readline 7→ code{r1 : file, ra : {r1 : string}}.
; Coerce r1 from file to 〈int, int〉

coerce unroll(r1)
; Check read allowed

ld r3, r1.0
and r3, 1
bz r3,error

; Read allowed place O/S handle in r1
ld r1, r1.1
; Call O/S read line on r1 putting result in
; r1 preserving re and ra
jmp ra

...

; Client
import type file: T
; Since file is abstract the client cannot coerce
; file to 〈int, int〉 or vice versa.

Figure 3: File Example

The production of an executable and the process of exe-
cution is the same as in the untyped calculus. However, the
consistency checks are sound: the formation of an executable
implies the executable is well formed, and the formation of
an initial state implies the initial state is well formed. (TAL
program state well formedness and reduction are described
in detail in [MWCG97].)

4 MTAL

MTAL0 is a typed low-level calculus with a formalised no-
tion of link compatibility. It extends the work of Cardelli
making important low level concerns explicit, and it very
closely models the tasks of real linkers. However, MTAL0

does not address other shortcomings of Cardelli’s calculus.
We will progressively add constructs to MTAL0 in the fol-
lowing sections to obtain our full calculus MTAL. A com-
plete description of MTAL, including its syntax and static
semantics, appears in appendix A and forms the basis of our
implementation.

5

4.1 Abstract Types

MTAL0 provides many type safety guarantees but does not
provide type abstraction guarantees.5 Consider a security
monitor for file access that exports an operation open that
takes a string and returns a file handle. Suppose further that
the file handle pairs the extension’s access rights with an op-
erating system file handle, each represented as an integer.
In a system without type abstraction, the implementation
must expose the representation of the file handle giving open
the type string → 〈int, int〉. Because clients see this type,
not a type like string → file, they can ignore the abstrac-
tion and use integer operations to directly modify the access
rights. Following high-level module designs which address
this issue, we add to MTAL the ability to declare abstract
types in interfaces and use them in the types given to labels.

A MTAL interface, Int, is a pair (Φ, Ψ) consisting of
a type part Φ and a value part Ψ. The type part, also
called a type-heap kinding, is a finite map from type-labels
to kinds.6 Object files are still a triple [IntI ⇒ (TH ,VH) :
IntE] consisting of an import and export interface, but there
are now two heaps: one for types and one for values. Type
heaps are finite mappings from labels to types. Program
states are also extended to include a type heap.

The file example is shown in Figure 3. It exports an
abstract type file which is used in the types of the values
that it exports. The concrete type of file is a pair of in-
tegers, and the example sketches the relevant details of the
implementation of the operations.

Definitions of typed object files, link compatibility, link-
ing, executable formation, and execution similar to that in
Sections 2 and 3 can be repeated for MTAL; we mention
just the highlights.

Just as value heaps can contain cyclic references we also
allow cyclic type heap references, introducing the possibility
of recursive types. Following standard type theory, in a type
heap TH a type label ` is isomorphic to TH (`). There are
two ways to reflect this isomorphism in the type system. The
first way implicitly treats ` and TH (`) as equal types. This
makes a decision procedure for type equality considerably
more complex. We choose the second way and introduce
explicit roll and unroll operations that witness the isomor-
phism ` ∼= TH (`). Roll coerces an object from a concrete
type to an abstract type; Unroll does the opposite.

The value heap of an object file is checked using its type
heap. Thus, the roll`(·) can be used if and only if the type
heap defines `. An object file implementing ` will have a
definition for ` in its type heap. A client of the abstract
type `, however, will import `, and since the import inter-
face is disjoint from the type heap, the latter will not contain
a definition for `. Thus, neither roll nor unroll can be ap-
plied in the client code. That is, the client cannot create
or directly manipulate members of ` and thus ` really is
abstract. Consequently, the roll and unroll operations are
used not only to mediate recursive types, but also to provide
explicit coercions to and from abstract types.

In this respect, our treatment of label types is similar to
the “generative” datatypes of SML. Unlike SML, however,
our abstract type labels have global scope. This simplifies
link consistency and provides a means to split mutually-

5Technically TAL has existential and polymorphic types which can
be used to implement type abstractions. However, because of the
“local” scope of the quantifiers, this is too cumbersome in practice.

6For now there is only one kind, the kind T of types. Kinds are
included in anticipation of future developments.

recursive type definitions across compilation units as with
Mixins [DS98, FF98]. The price paid, however, is that pro-
grammers or compilers must ensure that two compilation
units that are to be linked together do not define the same
type label.

Our implementation includes two extensions omitted
from MTAL. In our implementation of interfaces, a type
label may be declared abstract, given a definition, or given
a bound. When given a definition, a type label is like a
translucent type, as in Harper and Lillibridge [HL94] and
Leroy [Ler94]. This definition is included along with the type
heap of an object file during the type checking of the object
file’s value heap. When given a bound, a type label is like
a partially abstract type. The typing rules allow a bounded
type label to be unrolled to its bound but do not allow a
roll operation on that type label. This approach is based
upon standard type theory on singleton kinds7 and power
kinds [Car88, Car91] respectively. However, as we only sup-
port globally-scoped type labels, the setting is greatly sim-
plified because we do not need both internal and external
names for types as in Harper and Lillibridge. Again, the
price paid is that programmers or compilers must manage
the flat name space.

In summary, MTAL chooses to treat type labels as
globally scoped identifiers. This simplifies the treatment
of separately-compiled recursive types, generative abstract
types, and translucent types but at the price of a flat name
space. Since traditional linkers only provide a flat name
space for value labels, we felt that the symmetry at the
type-level, together with the simplification of these language
features justified the cost. A promising approach to alleviate
the software engineering problems of a flat name space is to
provide a means to restrict the scope of a type- or value-label
during the linking process, just as the restriction operator of
the pi-calculus limits the scope of a channel [Mil91]. Oper-
ationally, a restriction operator could be implemented by a
tool that systematically turned global labels into local labels
(i .e., an explicit alpha-conversion.)

4.2 Abstract Type Constructors

Good modular programming requires more than just ab-
stract types. For example, there is a large class of container
abstractions whose types are parameterised by the types of
the objects they contain. For instance, a stack datatype
exports an abstract type constructor taking one argument
(the type of the elements to be placed in the stack.) To han-
dle such constructors, MTAL’s types are extended to a type
constructor language and its kinds are extended to include
functions and products, resulting in a three tiered system
very similar to Fω [Gir71, Gir72].

Figure 4 shows how the stack abstraction might look as
a MTAL interface. It declares an abstract type construc-
tor stack$t which takes the element type and returns the
type of the stacks. Each of the operations is polymorphic
over the element type α and the stack arguments and re-
sults have type stack$t α (the application of the stack type
constructor to α). An implementation of this interface will
have to give a concrete type for stack$t, for example:

stack$t 7→ λβ:T . 1 + 〈β1, (stack$t β)1〉
To deal with this higher-order recursive type, the roll and

7Robert Harper, personal communication, July 1998.

6

Interface:

type stack$t: T → T
val stack$empty: ∀[α:T]{ra : {r1 : stack$t α}}
val stack$isempty: ∀[α:T]{r1 : stack$t α, ra : {r1 : bool}}
val stack$push: ∀[α:T]{r1 : α, r2 : stack$t α, ra : {r1 : stack$t α}}
val stack$pop: ∀[α:T]{r1 : stack$t α, ra : {r1 : stack$t α}}
val stack$top: ∀[α:T]{r1 : stack$t α, ra : {r1 : α}}

Figure 4: Stack Example

unroll coercions must be able to operate “under” type ap-
plication and type projection. Details are in appendix A.

Note that since we have essentially embedded Fω into
our calculus, we can use phase splitting [HMM90, Sha98] to
compile functor systems into MTAL.

5 Dynamic Linking

Modern operating systems and languages provide dynamic
linking and dynamic loading. Dynamic linking allows the
linker to produce “executables” that contain references to
labels that will be resolved at the time the operating system
loads the executable into a process’s address space. Each
executable contains a set of names for dynamically linked
libraries, and for each name a set of labels it imports from
that library. When the executable is loaded, the operating
system searches for appropriate libraries and links them with
the executable to form the initial process image. In our
model, dynamically linked executables can be represented
by normal object files. Indeed, the only difference between
the dynamic and static linking in the model is that the final
steps of linking and the formation of the “real” executable
are delayed until load-time.

Dynamic loading involves linking object files or libraries
into the process image during execution. A program might
contain references to labels in these dynamically loaded ob-
ject files. It must ensure that it loads an appropriate ob-
ject file before using these references. However, it can delay
loading until right before use, and if it does not use the refer-
ences, it need not load the object file. With dynamic loading
there is also the possibility of unloading, that is, removing a
linked object file from the process image during execution,
making references to that object file unusable.

We believe that our model should extend to incorporate
dynamic loading. In fact, during the course of this work, we
sketched several possible extensions, each resulting from dif-
ferent choices in resolving specific issues. But in contrast to
our previous development, none of these extensions seemed
to be “the right” model. In particular, dynamic loading
introduces new failure modes and many interface choices.
For example, we could make it the responsibility of an ex-
ecutable to explicitly load definitions for labels before they
may be dereferenced. Failure can then be isolated to points
where dynamic loading explicitly occurs. Alternatively, as
in Java, we could support implicit loading upon reference
to an undefined label. Failure in this model can potentially
occur at any label dereference.

An important technical issue with dynamic loading is
that we must extend our evaluation relation to support ex-
ecution on program states with unresolved labels. Type
or kind information for those labels must be maintained

at run-time in order to ensure consistency when dynamic
loading is performed. This begs the question of exactly how
much type and interface information must be retained and
whether it is under program control or operating system con-
trol. The presence of this information enables further pos-
sibilities, particularly introspection or reflection: the ability
of a program to query what labels are defined and at what
types.

6 Related Work and Implementation

Our work is closely related to Cardelli’s [Car97] and builds
on the type theory of high level modules including work by
Leroy [Ler94] and Harper and Lillibridge [HL94]. More re-
cently, Flatt and Felleisen have proposed a new advanced
module system [FF98]. Their system includes a first class
notion of modules called units. Units can import and ex-
port named types and values. The named types and values
of one unit can be connected to the named types and values
of other units. Units can be abstracted over and linking is
a first class primitive. MTAL is similar but describes what
operating systems provide at the low level, whereas Flatt
and Felleisen concentrate on source level module systems.
Dean has investigated the dynamic linking and loading as-
pect of Java; his work focuses on the class loader and how
its operation interacts with static typing [Dea97]. His work
is a very abstract description of this interaction and does
not describe actual linking and link compatibility.

Our work is also related to the security of extensible sys-
tems. We formalise the checks necessary for linking, but do
not address the orthogonal security concerns such as deter-
mining what interfaces principals may link against or au-
thenticating principals. Other systems, such as the SPIN
project [SFPB96], have addressed these concerns and their
ideas could be combined with MTAL’s.

We have implemented the ideas presented in this paper
in our compiler as part of a language called Talx86. Talx86,
based on the instruction set of IA32 (Intel’s 80x86 architec-
ture), scales the ideas of TAL up to handle real languages,
and uses the ideas of MTAL for its module language. As
well as TAL’s tuples and code, Talx86 includes sums, ar-
rays, recursive types, exceptions, abstract types, translu-
cent types, subtyping and bounded type labels. We have a
type checker for Talx86 object files, a link compatibility and
program completeness checker, and two front ends for toy
languages meant to demonstrate the viability of Talx86 as
a target language. We are also working on a front end for
KML [Cra98], a variant of ML with higher order modules,
full polymorphism, and subtyping among other features.

7

7 Conclusion

This paper presents MTAL a calculus that formalises a low
level notion of linking similar to the linker tools of mod-
ern operating systems. MTAL extends the earlier work
of Cardelli [Car97], providing a better explanation of in-
termodule references, handling cyclic dependencies between
modules, supporting abstract type constructors and the
compilation of phase-splitable functor systems, and mod-
eling dynamic linking and loading. MTAL unifies previous
work on typed assembly languages [MWCG98, MWCG97,
MCGW98] with previous work on the type theory of mod-
ules [Ler94, HL94, FF98].

Our account is a straightforward combination of the pre-
vious work of Cardelli and on typed assembly languages.
The contribution of our paper is a complete account of type-
safe linking for a realistic, low-level language.

References

[BSP+95] Brian Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Sirer, Marc Fiuczynski, David Becker, Craig
Chambers, and Susan Eggers. Extensibility, safety and
performance in the SPIN operating system. In Fif-
teenth ACM Symposium on Operating Systems Princi-
ples, pages 267–284, Copper Mountain, December 1995.

[Car88] Luca Cardelli. Structural subtyping and the notion of
power type. In Fifteenth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 70–79, San Diego, CA, USA, January 1988.

[Car91] Luca Cardelli. Typeful programming. In Formal De-
scription of Programming Concepts. Springer-Verlag,
1991.

[Car97] Luca Cardelli. Program fragments, linking, and modu-
larization. In Twenty-Fourth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 266–277, Paris, France, January 1997.

[Cra98] Karl Crary. Type-Theoretic Methodology for Practical
Programming Languages. PhD thesis, Department of
Computer Science, Cornell University, 4130 Upson Hall,
Ithaca, NY 14853-7501, USA, August 1998.

[DE98a] Sophia Drossopoulou and Susan Eisenbach. Is the
Java type system sound? In Theory and Practice
of Object systems, 1998. To appear, available at
http://www-dse.doc.ic.ac.uk/projects/slurp/.

[DE98b] Sophia Drossopoulou and Susan Eisenbach. Towards an
Operational Semantics and a Proof of Type Soundness
for Java. Springer-Verlag, 1998. To appear, available at
http://www-dse.doc.ic.ac.uk/projects/slurp/.

[Dea97] Drew Dean. The security of static typing with dynamic
linking. In Fourth ACM Conference on Computer
and Communications Security, pages 18–27, Zurich,
Switzerland, April 1997.

[DS98] Dominic Duggan and Constantinos Sourelis. Parameter-
ized modules, recursive modules and mixin modules. In
ACM SIGPLAN Workshop on ML, pages 87–96, Balti-
more, MA, USA, September 1998.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool mod-
ules for HOT languages. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, Montreal, Canada, June 1998. To appear.

[Gir71] Jean-Yves Girard. Une extension de l’interprétation
de Gödel à l’analyse, et son application à l’élimination
de coupures dans l’analyse et la théorie des types. In
J. E. Fenstad, editor, Proceedings of the Second Scan-
dinavian Logic Symposium, pages 63–92. North-Holland
Publishing Co., 1971.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élim-
ination des coupures de l’arithmétique d’ordre sup-
érieur. PhD thesis, Université Paris VII, 1972.

[Har94] Robert Harper. A simplified account of polymorphic ref-
erences. Information Processing Letters, 51:201–206,
1994.

[HCC+98] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkow-
ski, Deyu Hu, and Thorsten von Eicken. Implementing
multiple protection domains in Java. In 1998 USENIX
Annual Technical Conference, New Orleans, LA, USA,
June 1998.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
the Twenty-First ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages
123–137, Portland Oregon, USA, January 1994.

[HMM90] Robert Harper, Eugenio Moggi, and John Mitchell.
Higher-order modules and the phase distinction. In
Seventeenth ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 341–354,
January 1990.

[Koz98] Dexter Kozen. Efficient code certification. Technical
Report 98-1661, Department of Computer Science, Cor-
nell University, 4130 Upson Hall, Ithaca, NY 14853-7501,
USA, January 1998.

[Ler94] Xavier Leroy. Manifest types, modules, and sepa-
rate compilation. In Twenty-First ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 109–122, Portland Oregon, USA, Jan-
uary 1994.

[LR98] Xavier Leroy and François Rouaix. Security properties
of typed applets. In Twenty-Fifth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 391–403, San Deigo, California, USA,
January 1998.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Ma-
chine Specification. Addison-Wesley, 1997.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David
Walker. Stack-based typed assembly language. In Work-
shop on Types in Compilation, pages 95–118, Kyoto,
Japan, March 1998.

[MF96] Gary McGraw and Edward Felten. Java Security: Hos-
tile Applets, Holes and Antidotes. John Wiley and Sons,
New York, USA, 1996.

[Mil91] Robert Milner. The polyadic π-calculus: a tutorial.
Technical Report ECS-LCFS-91-180, Edinburgh Univer-
sity, 1991. Reprinted in Logic and Algebra of Specifi-
cation, F. Brauer, W. Brauer, and H. Schwichtenberg,
Eds, Springer Verlag, 1993, 203–246.

[MWCG97] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language (ex-
tended version). Technical Report TR97-1651, Depart-
ment of Computer Science, Cornell University, 4130 Up-
son Hall, Ithaca, NY 14853-7501, USA, November 1997.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language.
In Twenty-Fifth ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 85–97,
San Diego California, USA, January 1998.

[Nec97] George Necula. Proof-carrying code. In Twenty-Fourth
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 106–119, Paris, France,
1997.

[Sar97] Vijay Saraswat. Java is not type-safe. URL: http://
www.research.att.com/~vj/bug.html, August 1997.

[SFPB96] Emin Gún Sireer, Marc Fiuczynski, Przemyslaw Pard-
yak, and Brian Bershad. Safe dynamic linking in an
extensible operating system. In Workshop on Compiler
Support for System Software, February 1996.

[Sha98] Zhong Shao. Typed cross-module compilation. In Third
ACM SIGPLAN International Conference on Func-
tional Programming, pages 141–152, Baltimore, MD,
USA, September 1998.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas Anderson, and
Susan Graham. Efficient software-based fault isolation.
In Fourteenth ACM Symposium on Operating Systems
Principles, pages 203–216, Asheville, December 1993.

8

kinds κ ::= T | κ1 → κ2 | 〈κ1, . . . , κn〉
type constructors c ::= α | ` | λα:κ.c | c1 c2 | 〈c1, . . . , cn〉 | c.i | . . .
constructor heap types Φ ::= {`1:κ1, . . . , `n:κn}
value heap types Ψ ::= {`1:c1, . . . , `n:cn}
type variable contexts ∆ ::= α1:κ1, . . . , αn:κn

register file types Γ ::= {r1:c1, . . . , rn:cn}

registers r ::= r1 | . . .
heap values h ::= . . .
word values w ::= roll`(w) | unroll(w) | . . .
constructor heaps CH ::= {`1 7→ c1, . . . , `n 7→ cn}
value heaps VH ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {r1 7→ w1, . . . , rn 7→ wn}

instruction sequences I ::= . . .

interfaces Int ::= (Φ, Ψ)
object files O ::= [IntI ⇒ (CH ,VH) : IntE]
executables E ::= (CH ,VH , `)
program states P ::= (CH ,VH , R, I)

Figure 5: Syntax of MTAL

A MTAL

This appendix gives a full technical description of our cal-
culus MTAL as well as statements of important theorems.
The calculus is fairly independent of the core language and
does not have to be used at the assembly language level.
The presentation style follows closely that of previous TAL
papers [MWCG97].

The syntax for MTAL appears in Figure 5. The core lan-
guage constructs fit in the ellipses of c, h, w, and I . The α
in λα:κ.c binds α in c. Type constructor heap typings, value
heap typings, register file typings, type constructor heaps,
value heaps, and register files are considered unordered fi-
nite maps. The notation dom(M) is the domain of the fi-
nite mapping M . All constructs are equivalent up to alpha
conversion and reordering of unordered maps. The capture
avoiding substitution of z for y in x is denoted x[y := z].

The judgements for the static semantics are summarised
in Figure 6, and the typing rules appear in Figure 7. The
rules for type constructor kinding are standard except for
the rule for type labels:

Φ;∆ ` ` : κ
(Φ(`) = κ)

The rules for type constructor equality are the usual reflex-
ive, transitive, and congruence rules, and rules for the core
calculus. The rules for heap values, word values (except for
roll and unroll), and instructions are given by the core cal-
culus. The rules for the judgements for type constructor
and value heap typings are similar as they are both similar
to record types. A heap typing is well formed when the la-
bels defined are disjoint, and kinds/types are well formed.
Two heap typings are equal when they define the same set
of labels, and, map a given label to equal kinds/types. A
heap typing is a heap subtype of another heap typing when
it defines at least the labels of the later, the common labels
are mapped to equal kinds/types, and the extra labels are
mapped to well formed kinds/types. Two heap typings are
disjoint when they define disjoint sets of labels. Two heap

typings are compatible when they are both well formed, and
labels common to both are mapped to equal kinds/types.
Interface well formedness, equality, subinterfacing, disjoint-
ness, and compatibility are defined pairwise in terms of the
same judgements on type constructor heap and value heap
typings. The rules for roll and unroll are the standard ones
except they are in terms of type labels rather than recursive
types. The rules for type constructor heaps, value heaps,
and register files are all similar to the rule for records. The
labels must be distinct and the type maps the same labels
to the types that correspond to the items.

The interesting typing rules are those for object files,
` O, executables, ` E executable, and program states,
` P state. An object file is well formed if there is an ac-
tual interface for the heaps that is disjoint from the import
interface and a subinterface of the export interface. The
heaps must have types matching the actual interface, but
are checked in a context that includes the imports. The
value heap is checked in a context that also includes the
type constructor heap, as the latter defines abstract types
the object file implements. The rules for executables and
program states are similar. They require an interface that
describes their heaps but this time their are no imports. In
the case of executables the entry label must satisfy the entry
convention. In the case of program states the register file
must also have a type and the instruction sequence must be
well formed.

The linking and execution judgements are in Figure 8.
The linking and execution operations are specified as type
directed translations and include the conditions that specify
when a linking operation is valid. M − L is the mapping
M with entries for labels in the set L removed; M1 − M2

denotes M1 − dom(M2); (M11, M12) − (M21, M22) denotes
(M11 − M21, M12 − M22); (M11, M12) ∪ (M21, M22) denotes
(M11 ∪ M21, M12 ∪ M22).

The first operation is the linking of two object files:
` O1 link O2 ; O. Linking is governed by link compatibil-
ity. Two object files are link compatible when their import

9

Judgement Meaning Judgement Meaning
Φ;∆ ` c : κ type constructor kinding Φ;CH ; Ψ ` h : c hval heap value typing
Φ;∆ ` Γ valid register file type Φ;CH ; Ψ;∆ ` w : c wval word value typing
Φ;∆ ` c1 = c2 : κ type constructor equality Φ;CH ; Ψ;∆; Γ ` I valid instruction sequence
Φ;∆ ` Γ1 = Γ2 equal register file types Φ1 ` CH : Φ2 type constructor heap typing
` Φ valid type constructor heap type Φ;CH ; Ψ1 ` VH : Ψ2 value heap typing
` Φ1 ≤ Φ2 type constructor heap subtyping Φ;CH ; Ψ ` R : Γ register file typing
` Φ1 | Φ2 disjoint type constr. heap typings ` O valid object file
` Φ1 ∼ Φ2 compatible type constr. heap typings ` E executable valid executable
Φ ` Ψ valid value heap typing ` P state valid program state

Φ ` Ψ1 = Ψ2 equal value heap typings ` (IntI1, IntE1)
lc↔ link compatible

Φ ` Ψ1 ≤ Ψ2 value heap subtyping (IntI2, IntE2) import/export interfaces

` Ψ1 | Ψ2 disjoint value heap typings ` O1
lc↔ O2 link compatible object files

Φ ` Ψ1 ∼ Ψ2 compatible value heap typings ` O1 link O2 ; Om linking
` Int valid interface ` O; ` complete program completeness

` Int1 = Int2 equal interfaces ` (O, `)
prg
; E executable formation

` Int1 ≤ Int2 subinterface ` E
exec
; P execution

` Int1 | Int2 disjoint interfaces
` Int1 ∼ Int2 compatible interfaces

Figure 6: Static Semantics of MTAL (judgements)

and export interface pairs are link compatible. The later
holds when the imports of one are compatible with the im-
ports of the other and vice versa, the imports of both are
compatible, and the exports of both are disjoint. The actual
rule for linking looks daunting but is actually straightfor-
ward. It requires two well formed and link compatible input
object files. The output object file combines the heaps and
exports of the input object files and imports what the input
object files imported but did not export. Note that the side
condition forces the choice of alpha variants of the source
heaps that have disjoint domains. This corresponds to the
linker relocating source object files. Linking two object files
results in a well formed object file. In other words, the op-
eration is type correct:

Theorem A.1 If ` O1 link O2 ; O then ` O.

The second operation is the formation of an executable

from an object file and an entry label: ` (O, `)
prg
; E. This

operation requires the object file and entry label to be com-
plete, that is, the object file to import nothing and the entry
label to exist in the object file’s exports at the type required
by the entry convention (in this formulation ∀[]{}). Exe-
cutable formation is type correct:

Theorem A.2 If ` (O, `)
prg
; E then ` E executable.

The last operation is the execution of an executable: `
E

exec
; P . It is type correct:

Theorem A.3 If ` E
exec
; P then ` P state.

10

` Φ ` Φ1 ≤ Φ2 ` Φ1 | Φ2 ` Φ1 ∼ Φ2

` {`1:κ1, . . . , `n:κn} (`1, . . . , `n are distinct)

` {`1:κ1, . . . , `m:κm} ≤ {`1:κ1, . . . , `n:κn} (m ≥ n and `1, . . . , `m are distinct)

` {`1:κ1, . . . , `m:κm} | {`′1:κ′
1, . . . , `

′
n:κ′

n}
({`1, . . . , `m} ∩ {`′1, . . . , `′n} = ∅)

` Φ1 ` Φ2 ∀` ∈ dom(Φ1) ∩ dom(Φ2) : Φ1(`) = Φ2(`)

` Φ1 ∼ Φ2

Φ ` Ψ Φ ` Ψ1 = Ψ2 Φ ` Ψ1 ≤ Ψ2 ` Ψ1 | Ψ2 Φ ` Ψ1 ∼ Ψ2

Φ ` Ψ = Ψ
Φ ` Ψ

Φ;∅ ` ci = di : T

Φ ` {`1:c1, . . . , `n:cn} = {`1:d1, . . . , `n:dn} (`1, . . . , `n are distinct)

∀1 ≤ i ≤ n : Φ; ∅ ` ci = di : T ∀n < i ≤ m : Φ; ∅ ` ci : T

Φ ` {`1:c1, . . . , `m:cm} ≤ {`1:d1, . . . , `n:dn} (m ≥ n and `1, . . . , `m are distinct)

` {`1:c1, . . . , `m:cm} | {`′1:c′1, . . . , `′n:c′n}
({`1, . . . , `m} ∩ {`′1, . . . , `′n} = ∅)

Φ ` Ψ1 Φ ` Ψ2 ∀` ∈ dom(Ψ1) ∩ dom(Ψ2) : Φ; ∅ ` Ψ1(`) = Ψ2(`) : T

Φ ` Ψ1 ∼ Ψ2

` Int ` Int1 = Int2 ` Int1 ≤ Int2 ` Int1 | Int2 ` Int1 ∼ Int2

` Φ Φ ` Ψ
` (Φ, Ψ)

` Φ Φ ` Ψ1 = Ψ2

` (Φ,Ψ1) = (Φ,Ψ2)

` Φ1 ≤ Φ2 Φ1 ` Ψ1 ≤ Ψ2

` (Φ1, Ψ1) ≤ (Φ2, Ψ2)

` Φ1 | Φ2 ` Φ1 | Φ2

` (Φ1, Ψ1) | (Φ2, Ψ2)

` Φ1 ∼ Φ2

Φ1 ∩ Φ2 ` Ψ1 ∼ Ψ2

` (Φ1, Ψ1) ∼ (Φ2, Ψ2)

Φ;CH ; Ψ;∆ ` w : c wval

Φ;CH ; Ψ;∆ ` w : τ wval

Φ;CH ; Ψ;∆ ` roll`(w) : ` wval
(CH (`) = τ)

Φ;CH ; Ψ;∆ ` w : ` wval

Φ;CH ; Ψ;∆ ` unroll(w) : τ wval
(CH (`) = τ)

Φ ` CH : Φ Φ;CH ; Ψ ` VH : Ψ Φ;CH ; Ψ ` R : Γ

Φ; ∅ ` ci : κi

Φ ` {`1 7→ c1, . . . , `n 7→ cn} : {`1:κ1, . . . , `n:κn} (`1, . . . , `n are distinct)

Φ;CH ; Ψ ` hi : ci hval

Φ;CH ; Ψ ` {`1 7→ h1, . . . , `n 7→ hn} : {`1:c1, . . . , `n:cn} (`1, . . . , `n are distinct)

Φ;CH ; Ψ; ∅ ` wi : ci wval

Φ;CH ; Ψ ` {r1 7→ w1, . . . , rn 7→ wn} : {r1:c1, . . . , rn : cn} (r1, . . . , rn are distinct)

` O ` E executable ` P state

` (ΦI , ΨI) ` (ΦA, ΨA) ≤ (ΦE , ΨE)
` (ΦI , ΨI) | (ΦA, ΨA) ΦI ∪ ΦA ` CH : ΦA

ΦI ∪ ΦA;CH ; ΨI ∪ ΨA ` VH : ΨA

` [(ΦI , ΨI) ⇒ (CH , VH) : (ΦE , ΨE)]

` Φ Φ ` Ψ
Φ ` CH : Φ

Φ;CH ; Ψ ` VH : Ψ

` (CH ,VH , `) executable
(Ψ(`) = ∀[]{})

` Φ Φ ` CH : Φ Φ ` Ψ Φ;CH ; Ψ ` VH : Ψ Φ;CH ; Ψ ` R : Γ Φ;CH ; Ψ; ∅; Γ ` I

` (CH ,VH , R, I) state

Figure 7: Static Semantics of MTAL, Judgements for Heap Typing, Interfaces, and Object Files

11

` (IntI1, IntE1)
lc↔ (IntI2, IntE2) ` O1

lc↔ O2

` IntI1 ∼ IntI2 ` IntI1 ∼ IntE2 ` IntI2 ∼ IntE1 ` IntE1 | IntE2

` (IntI1, IntE1)
lc↔ (IntI2, IntE2)

` (IntI1, IntE1)
lc↔ (IntI2, IntE2)

` [IntI1 ⇒ (CH 1,VH 1) : IntE1]
lc↔ [IntI2 ⇒ (CH 2,VH 2) : IntE2]

` O1 link O2 ; O

` [IntI1 ⇒ (CH 1,VH 1) : IntE1]
` [IntI2 ⇒ (CH 2,VH 2) : IntE2]

` [IntI1 ⇒ (CH 1,VH 1) : IntE1]
lc↔ [IntI2 ⇒ (CH 2,VH 2) : IntE2]

` [IntI1 ⇒ (CH 1,VH 1) : IntE1] link [IntI2 ⇒ (CH 2,VH 2) : IntE2];
[(IntI1 ∪ IntI2) − (IntE1 ∪ IntE2) ⇒ (CH 1 ∪ CH 2,VH 1 ∪ VH 2) : IntE1 ∪ IntE2]

(1)

(1) is dom(CH 1) ∩ dom(CH 2) = dom(VH 1) ∩ dom(VH2) = ∅.

` O; ` complete ` O
prg
; E ` E

exec
; P

` [(∅, ∅) ⇒ (CH ,VH) : (ΦE, ΨE)]; ` complete
(ΨE(`) = ∀[]{})

` [(∅, ∅) ⇒ (CH ,VH) : (ΦE, ΨE)] ` [(∅, ∅) ⇒ (CH ,VH) : (ΦE, ΨE)]; ` complete

` ([(∅, ∅) ⇒ (CH ,VH) : (ΦE, ΨE)], `)
prg
; (CH ,VH , `)

` (CH ,VH , `) executable

` (CH ,VH , `)
exec
; (CH ,VH , ∅, jmp `)

Figure 8: MTAL Linking and Execution Judgements

12

