
Object Closure Conversion ∗

Neal Glew
Cornell University

24 August 1999

Abstract

An integral part of implementing functional languages is closure conversion—the process
of converting code with free variables into closed code and auxiliary data structures. Closure
conversion has been extensively studied in this context, but also arises in languages with
first-class objects. In fact, one variant of Java’s inner classes are an example of objects that
need to be closure converted, and the transformation for converting these inner classes into
Java Virtual Machine classes is an example of closure conversion.

This paper argues that a direct formulation of object closure conversion is interesting and
gives further insight into general closure conversion. It presents a formal closure-conversion
translation for a second-order object language and proves it correct. The translation and
proof generalise to other object-oriented languages, and the paper gives some examples to
support this statement. Finally, the paper discusses the well known connection between
function closures and single-method objects. This connection is formalised by showing that
an encoding of functions into objects, object closure conversion, and various object encodings
compose to give various closure-conversion translations for functions.

1 Introduction

The process of closure conversion and the concept of closures are old and well studied ideas
arising in any language with first-class functions. Briefly, if a function f nested within a function
g has free variables that are defined in g, the compiler will need to propagate the values of these
variables from the time they are computed in g to the times at which f executes. The usual
solution is to compile functions to closures, which are data structures that pair closed code
with the values of free variables. The application of a function f to an argument a becomes an
expression that extracts the closed code for f from the closure and then applies the code to the
original argument and a part of the closure containing the values of the free variables.

The necessity for closure conversion is not limited to functional languages. In particular, Abadi
and Cardelli’s object calculi [AC96] have first-class objects, and an inner-nested object’s meth-
ods could refer to variables defined in an outer-nested object. It might seem that object closure
conversion is less important to mainstream object-oriented languages, so first I shall argue that

∗This paper is based on work supported in part by the NSF grant CCR-9708915, AFOSR grant F49620-97-
1-0013, and ARPA/RADC grant F30602-1-0317. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author and do not reflect the views of these agencies.

1

this is not the case. One objection is that mainstream object-oriented languages are class based,
and because classes are typically second class, closure conversion is not needed. However, Java
was recently extended with inner classes, including a form that requires closure conversion. In
fact, this form was introduced to alleviate the tedium of manual closure conversion. Another
objection is that the combination of an object encoding and functional closure conversion gives
object closure conversion. While this indirect approach is adequate, the results of this paper
show that this approach misses many important points that a direct account exposes.

First, the indirect approach, if implemented naively, misses opportunities for sharing. Since
most object encodings produce separate functions for each method, the methods of an object
will be closure converted separately and will not share their environments. A direct approach
naturally shares the environments.

Second, the object closure-conversion translation presented here is simpler than typed functional
closure-conversion translations. Objects combine code and data in a single construct, so the
values of free variables are paired with closed code simply by adding extra fields. Instead of
using existential types to hide the types of the environment, the translation uses subsumption,
a natural feature of any object calculus.

Third, this paper shows that functional closure conversion is equivalent to the composition of
an encoding of functions as objects, object closure conversion, and an object encoding. This
result formalises the well known connection between closures and single method objects. We
will see that standard choices in functional closure conversion correspond to choices in the
object closure conversion and the object encoding.

A difficult and still open issue, even in the functional literature, is the correctness of clo-
sure conversion. Minamide et al. [MMH95] discuss closure conversion for simply-typed and
polymorphically-typed lambda calculi. They describe both conversions as two-step translations,
and prove both type preservation and operational correctness. Their notion of correctness is an
observational equivalence defined inductively over source types, and their correctness argument
is a logical-relations argument. However, this proof does not extend to recursive functions.
Morrisett and Harper [MH99] have used a similar technique, but extended with an unwinding
lemma, to prove correct a number of typed closure-conversion translations for recursive func-
tions. Their unwinding lemma is proved by defining a model and proving the result there.
Unfortunately, it is difficult to define models for languages with recursive types, and harder to
prove results in models of languages with state and advanced control features. These proofs
are unsatisfying since they do not scale well to real language features.

Steckler and Wand [SW96] describe an optimised closure-conversion process for a simple un-
typed lambda calculus. They also prove their analysis and transformation correct, and this is
a harder task than other proofs described in this paper, as it shows correctness of the optimi-
sations as well as the basic translation. They avoid some of the problems of the above proofs
by carefully defining their source semantics and translation so that a simulation argument is
possible. Their real contribution, however, is the analysis and optimisation of known closures,
and the proof that this optimisation is correct. This proof probably could be used in other
settings. As mentioned above, functional closure conversion is object closure conversion com-
posed with an object encoding. Therefore, the proof of object closure conversion’s correctness
should be simpler. However, it does retain the key difficulty that makes these proofs hard to

2

construct. Thus defining a direct object closure-conversion translation allows us focus on this
essential problem.

This paper makes three contributions: it defines a direct object closure-conversion translation,
it proves this translation correct using syntactic methods that extend to recursive types, and
it relates object closure conversion to functional closure conversion, formalising the well known
connection between closures and single-method objects. First, the basic ideas are explained in
the setting of a very simple object calculus. The translation is formalised in Section 4, for a
second-order object calculus with method parameters described in Section 3. Some extensions
of the translation to other language constructs are discussed in Section 5, and the connection
between closures and single-method objects is shown in Section 6.

2 The Basic Idea

This section describes the basic idea of a direct object closure-conversion translation. This
translation will transform a simple object calculus to itself, taking arbitrary terms as input,
and producing closed code as output.

The syntax of the language is:

Types τ, σ ::= [mi:τi; fj:σj]i∈I,j∈J

Terms e, b ::= x | [mi = xi.bi:τi; fj = ej]i∈I,j∈J | e.m | e.f | e1.f ← e2

The only form of type is the object type [mi:τi; fj:σj]i∈I,j∈J, which is for objects with methods
mi of type τi and fields fj of type σj.1 Objects are created by an object constructor [mi =
xi.bi:τi; fj = ej]i∈I,j∈J. The newly created object responds to method mi by executing bi with
xi bound to the object, and has ej as its value for field fj . Note that ej is evaluated at the time
the object is created, and its free variables do not need to be closed over. Method invocation
is written e.m, field selection e.f , and field update e1.f ← e2. I defer the formal semantics and
typing rules to the next section.

For functions, the variables that need to be closed over are the free variables of the function.
For objects, however, the variables that need to be closed over are not the free variables of the
object, but just the free variables of the object’s methods. Therefore, I define the notion of
closure variables for object constructors:

cv([mi = xi.bi:τi; fj = ej]i∈I,j∈J) =
⋃
i∈I

(fv(bi)− {xi})

The goal of object closure conversion is to eliminate all closure variables of all object constructors
that appear in the program.

The idea behind object closure conversion is simple: In functional closure conversion, closed
code is paired with the values of free variables. Since objects already pair code and data, we

1The indices i and j range over index sets I and J . For the purposes of this paper, these index sets are
unordered and object types and objects are considered equivalent up to reordering. Ordered index sets could
also be considered, and the results apply in this case also. The translation defined preserves ordering.

3

simply add new fields to the object to store the free variables of its methods, and access them
through the self variable. For example, the expression

[apply = self 1.[me = self 2.(self 1.apply):τ ;]:τ ;].apply

where τ = [me:[;];] is closure converted to

[apply = self 1.[me = self 2.(self 2.f.apply):τ ; f = self 1]:τ ;].apply

This idea leads directly to the following syntax-directed translation:

|x| = x
|e.m| = |e|.m
|e.f | = |e|.f
|e1.f ← e2| = |e1|.f ← |e2|
|e| = [mi = xi.b

′
i:τi; fj = |ej|, gk = yk]i∈I,j∈J,1≤k≤n

where e = [mi = xi.bi:τi; fj = ej]i∈I,j∈J

cv(e) = {y1, . . . , yn}
b′i = |bi|{y1, . . . , yn := xi.g1, . . . , xi.gn}
gk are fresh

The notation x{y := z} denotes capture-avoiding substitution of z for y in z. The translation is
straightforward for all expression forms exception object constructors. In particular, notice that
method invocation, the analogue of function application, has a trivial translation. For object
constructors, the new object has the same methods and fields as the original objects, and some
extra fields gk. There is one extra field for each of the closure variables. After translating the
method bodies, each closure variable is replaced by a selection from the self variable of the field
that corresponds to the closure variable.

It is worth pointing out that the typing translation is the identity. In functional closure con-
version a function type is translated into a more elaborate type, which usually employs an
existential to hide the types of the closure variables. In this translation, the new object has the
same methods and fields with the same types, and some extra fields. So its principle type is a
subtype of the original object’s type, and subsumption is used to hide the types of the closure
variables. As we shall see, this simplicity is due to the fact that this translation is only half
of a functional closure-conversion translation. The other half is an object encoding that does
considerable type level translation and further term translation.

Now I will formalise the developments of this section in a scaled up language. This more
complex language includes features needed for a comparison with functional closure conversion,
in particular, method parameters. Also it supports the claim that the ideas scale to real
languages. In particular, the scaled up language will include polymorphism, as past attempts
to scale closure conversion to include polymorphism have encountered difficulties.

3 The Object Language

This section formalises an object language. The next section will define a formal translation
from this language to itself that takes arbitrary terms to closed terms. The language is a

4

variant of Abadi and Cardelli’s second-order object calculus [AC96] with a distinction between
methods and fields, variances on fields, method parameters, only unbounded polymorphism,
and no method update (lifting the latter two restrictions will be discussed in Section 5). The
syntax of the language is:

Types τ, σ ::= α | [mi:si; fj:σ
φj

j]i∈I,j∈J | ∀α.τ

Method Signature s ::= [~α](~τ)→ τ
Variances φ ::= + | − | ◦
Terms e, b ::= x | [mi = Mi; fj = ej]i∈I,j∈J | e.m[~τ](~e) |

e.f | e1.f ← e2 | Λα.b | e[τ]
Method Definition M ::= x[~α](x1:τ1, . . . , xn:τn).b:τ

The notation ~X denotes a sequence of elements drawn from syntax category X . For example,
~α means α1, . . . , αn, and −→x:τ means x1:τ1, . . . , xn:τn.

The types include type variables α, object types [mi:si; fj:σ
φj

j]i∈I,j∈J, and polymorphic types
∀α.τ . Methods now take both type and value parameters, so have they signatures s instead
of types. The signature [α1, . . . , αm](τ1, . . . , τn) → τ specifies a methods that takes m type
parameters α1 through αm and n value parameters of types τ1 through τn and produces a
result of type τ . Object types also specify variances φ for fields. A read only field has variance
+; a write only field has variance −; a read write field has variance ◦.

The terms include variables x, object constructors [mi = Mi; fj=ej]i∈I,j∈J, method invocation
e.m[~τ](~e), field selection e.f , field update e1.f ← e2, type abstraction Λα.b, and type application
e[τ]. An object constructor gives each of its methods a method definition M . The method
definition x[α1, . . . , αm](x1:τ1, . . . , xn:τn).b:τ takes type parameters α1 through αm and value
parameters x1 through xn of types τ1 through τn and executes b with x bound to the object.
A method invocation e.m[~τ](~e) includes both the actual type arguments ~τ and the actual value
arguments ~e. I intend a type-erasure interpretation of polymorphism. Consequently, Λα.b does
not suspend the execution of b until type application but evaluates it immediately.

There are several syntactic restrictions that simplify the technical development. In particular,
the mi in an object type or an object constructor must be distinct, and similarly for the field
names, type parameters, and value parameters. Syntactic objects are equal up to α-equivalence.

The operational semantics appears in Figure 1. The notation E〈e〉 denotes the substitution
of e for the unique hole 〈〉 in E. The semantics is a deterministic, left to right, call by value,
context based, reduction semantics. Again, note that fields are evaluated to values at object-
creation time. The notation e↓ means that e 7→∗ v for some v; e↑ means that e starts an infinite
reduction sequence.

The typing rules are standard and appear in Figure 2. The calculus has full breadth and depth
subtyping, methods are contravariant in their arguments and covariant in their results, and the
depth subtyping of fields is determined by their variance.2 The notation ε is used for an empty
typing context. Note that applying a typing rule with ∆, α in a hypothesis, implicitly requires
α /∈ ∆, and similarly for value contexts.

The typing rules are sound with respect to the operational semantics; this property can be
2Abadi and Cardelli [AC96] provide a description of variances and the rules for variance subtyping.

5

Syntax:

Contexts E ::= 〈〉 | [mi = Mi;
−−−→
f = v, f = E,−−−→g = e]i∈I | E.m[~τ](~e) |

v.m[~τ](~v, E, ~e) | E.f | E.f ← e | v.f ← E |
Λα.E | E[τ]

Values v, w ::= [mi = Mi; fj = vj]i∈I,j∈J | ∀α.v

Reduction rules:
E〈ι〉 7→ E〈e〉

Where v = [mi = Mi; fj = vj]i∈I,j∈J and:

ι e Side Conditions
v.mk[~τ](v1, . . . , vn) b{~α, x, ~x := ~τ , v, ~v} k ∈ I, Mk = x[~α](x1:σ1, . . . , xn:σm).b
v.fk vk k ∈ J

v.fk ← w [mi = Mi; fj = v′j]i∈I,j∈J k ∈ J, v′j =
{

vj j 6= k

w j = k
(Λα.w)[τ] w{α := τ}

Figure 1: Operational Semantics

proven by standard techniques. The proof of correctness uses some other properties of the type
system, which I state here; these are also proven by standard techniques.

Lemma 3.1 (Free Variables) If ∆; Γ ` e : τ then fv(e) ⊆ dom(Γ). If ∆ ` Γ then ftv(Γ) ⊆ ∆.

Lemma 3.2 (Context Strengthening) If ∆ ` τ then ∆, α ` τ . If ∆ ` τ1 ≤ τ2 then ∆, α `
τ1τ2. If ∆; Γ ` e : τ then ∆, α; Γ ` e : τ . If ∆; Γ1, x:τ2, Γ2 ` e : τ and ∆ ` τ1 ≤ τ2 then
∆; Γ1, x:τ1, Γ2 ` e : τ .

Lemma 3.3 (Substitution) If ∆; Γ ` e1 : τ and ∆; Γ ` e2 : Γ(x) then ∆; Γ ` e1{x := e2} : τ .
If ∆; x:τ1 ` e : τ and ∆; y:τ2 ` e′ : τ1 then ∆; y:τ2 ` e{x := e′} : τ . If ∆, α; Γ ` e : τ and ∆ ` σ

then ∆; Γ{α := σ} ` e{α := σ} : τ{α := σ}.

The free variables of an expression are:

fv(x) = {x}
fv([mi = Mi; fj = ej]i∈I,j∈J) =

⋃
i∈I fv(Mi) ∪

⋃
j∈J fv(ej)

fv(e.m[~τ](e1, . . . , en)) = fv(e) ∪⋃
1≤i≤n fv(ei)

fv(e.f) = fv(e)
fv(e1.f ← e2) = fv(e1) ∪ fv(e2)
fv(Λα.b) = fv(b)
fv(e[σ]) = fv(e)
fv(x[~α](x1:τ1, . . . , xn:τn).b:τ) = fv(b)− {x, x1, . . . , xn}

The closure variables of an object constructor are:

cv([mi = Mi; fj = ej]i∈I,j∈J) =
⋃
i∈I

fv(Mi)

6

Typing Contexts:

∆ ::= α1, . . . , αn where α1, . . . , αn are distinct
Γ ::= x1:τ1, . . . , xn:τn where x1, . . . , xn are distinct

Type well formedness, typing context well formedness, and subtyping:

∆ ` τ
(ftv(τ) ⊆ ∆)

∆ ` τi

∆ ` x1 : τ1, . . . , xn : τn ∆ ` α ≤ α
(α ∈ ∆)

i ∈ I2 : ∆ ` si ≤ s′i
j ∈ J2 : ∆ ` σ

φj

j ≤ σ′
j
φ′

j

∆ ` [mi:si; fj:σ
φj

j]i∈I1,j∈J1

∆ ` [mi:si; fj:σ
φj

j]i∈I1,j∈J1 ≤ [mi:s′i; fj:σ′
j
φ′

j]i∈I2,j∈J2

(I2 ⊆ I1; J2 ⊆ J1)

∆, α ` τ1 ≤ τ2

∆ ` ∀α.τ1 ≤ ∀α.τ2

∆, ~α ` σi ≤ τi ∆, ~α ` τ ≤ σ

∆ ` [~α](τ1, . . . , τn)→ τ ≤ [~α](σ1, . . . , σn)→ σ

∆ ` σ1 ≤ σ2

∆ ` σφ
1 ≤ σ+

2

(φ ∈ {+, ◦}) ∆ ` σ2 ≤ σ1

∆ ` σφ
1 ≤ σ−

2

(φ ∈ {−, ◦}) ∆ ` σ
∆ ` σ◦ ≤ σ◦

Expression typing:

∆; Γ ` e : τ1 ` τ1 ≤ τ2

∆; Γ ` e : τ2 ∆; Γ ` x : τ
(Γ(x) = τ)

∆ ` τ ∆; Γ; τ `Mi : si ∆; Γ ` ej : σj

∆; Γ ` [mi = Mi; fj = ej]i∈I,j∈J : τ
(τ = [mi:si; fj:σ◦

j]i∈I,j∈J)

∆; Γ ` e : [m:[α1, . . . , αm](τ1, . . . , τn)→ τ ;] ∆ ` σi ∆; Γ ` ei : τi{~α := ~σ}
∆; Γ ` e.m[σ1, . . . , σm](e1, . . . , en) : τ{~α := ~σ}

∆; Γ ` e : [; f :σφ]
∆; Γ ` e.f : σk

(φ ∈ {+, ◦})

∆; Γ ` e1 : τ ∆ ` τ ≤ [; f :σφ] ∆; Γ ` e2 : σ

∆; Γ ` e1.f ← e2 : τ
(φ ∈ {−, ◦})

∆, α; Γ ` b : τ

∆; Γ ` Λα.b : ∀α.τ

∆; Γ ` e : ∀α.τ ∆ ` σ

∆; Γ ` e[σ] : τ{α := σ}
∆, ~α; Γ, x:τ, x1:τ1, . . . , xn:τn ` b : σ

∆; Γ; τ ` x[~α](x1:τ1, . . . , xn:τn).b:σ : [~α](τ1, . . . , τn)→ σ

Figure 2: Typing Rules

7

|x| = x
|e.m[~τ](e1, . . . , en)| = |e|.m[~τ](|e1|, . . . , |en|)
|e.f | = |e|.f
|e1.f ← e2| = |e1|.f ← |e2|
|Λα.b| = Λα.|b|
|e[σ]| = |e|[σ]
|e| = e′

where e = [mi = Mi; fj = ej]i∈I,j∈J

e′ = [mi = M ′
i ; fj = |ej|, g1 = y1, . . . , gn = yn]i∈I,j∈J

cv(e) = {y1, . . . , yn}
Mi = xi[~αi](−−→xi:τi).bi:τi

M ′
i = xi[~αi](−−→xi:τi).|bi|{y1, . . . , yn := xi.g1, . . . , xi.gn}:τi

g1, . . . , gn are fresh

Figure 3: Object Closure Conversion Translation

Note that the closure variables do not include the free variables of the field initialisers, ej,
because the field initialisers are evaluated at object-creation time. An object constructor is
code closed if and only if it has no closure variables. An arbitrary expression is code closed if
and only if every object-constructor subexpression is code closed.

4 Object Closure Conversion

This section formalises the translation described in Section 2 for the object language in Section 3.
Exactly the same ideas are used: An object constructor is extended with fields for its closure
variables, and method bodies reference these closure variables by field selection of the self
variable. The typing translation is the identity translation, and the term translation is defined
inductively over the syntax of expressions and appears in Figure 3.

4.1 Observational Equivalence

An important aspect of the correctness of the translation is that it preserves the meaning of
expressions. There are a number of ways to define notions of meaning preservation. Unfortu-
nately, the simplest of these, simulation arguments, does not hold for this language. Consider
the example given in Section 2. The source term makes this transition:

[apply = self 1.[me = self 2.(self 1.apply):τ ;]:τ ;].apply
7→ [me = self 2.([apply = self 1.[me = self 2.(self 1.apply):τ ;]:τ ;].apply):τ ;]

But the translated term makes this transition:

[apply = self 1.[me = self 2.(self 2.f.apply):τ ; f = self 1]:τ ;].apply
7→ [me = self 2.(self 2.f.apply):τ ;

f = [apply = self 1.[me = self 2.(self 2.f.apply):τ ; f = self 1]:τ ;]]

8

The reduced source term is code closed and translates to itself not the reduced translated term.
In particular, notice that the outer object is part of the method body of me in the reduced
source term but an extra field in the reduced target term. In general, closure conversion shifts
free variables to extra fields, but does not shift the values that get substituted for them to extra
fields. In effect the environment is in the method bodies in the source term, but in extra fields
in the target term. While this does not change the behaviour of terms, a simulation argument
cannot prove correctness.

Instead, this paper uses contextual equivalence [Mor68, Plo77]: two terms are equivalent if they
are indistinguishable in any context of the language. Following standard practice, termination
behaviour is used as the primitive notion of observable difference. The formal definition of
contextual equivalence, which I shall call observational equivalence, requires the definition of
contexts.

Contexts C are an extension of the syntax category e with holes 〈〉. Holes may appear in a
number of places in C and within type or term variable binders, and these binders capture
the free type and term variables of the hole. The notation C〈e〉 denotes the expression that
results from replacing the holes in C with e. A context C is typed by the judgement ∆1; Γ1 `
C : τ1〈∆2; Γ2:τ2〉, and this holds exactly when ∆1; Γ1 ` C : τ1 is derivable with the extra rule
∆1, ∆2; Γ1, Γ2 ` 〈〉 : τ2. Clearly if ∆1, ∆2; Γ1, Γ2 ` e : τ2 then ∆1; Γ1 ` C〈e〉 : τ1.

Most previous work, which considered untyped languages, used an untyped version of equiv-
alence. However, closure conversion is not correct under this version. A translated object
constructor has extra fields, so a context that selects these extra fields will for the source term
get stuck, and for the translated term converge. Therefore, the correctness criteria must rule
out run-time type errors by using a typed version of equivalence. A term and its translation
will be equivalent at the type of the source term.

Definition 4.1 (Observational Equivalence)

• e1 and e2 are Kleene equivalent, e1 ∼ e2, iff: 3

ε; ε ` e1 : [;] ∧ ε; ε ` e2 : [;] ∧ e1↓ ⇔ e2↓ ∧ e1↑ ⇔ e2↑

• e1 and e2 are ∆; Γ-observationally equivalent at τ , e1 ≡∆;Γ:τ e2, iff:

∆; Γ ` e1 : τ ∧ ∆; Γ ` e2 : τ ∧ ∀C : ε; ε ` C : [;]〈∆; Γ:τ〉 ⇒ C〈e1〉 ∼ C〈e2〉

Note that the first two clauses of observational equivalence imply the first two clauses of the
Kleene equivalence of the third clause, so proofs of observational equivalence need only establish
the first two clauses of observational equivalence and the third and fourth clause of the Kleene
equivalence for all appropriate contexts.

The above relations are equivalence relations and observational equivalence is a congruence.
These properties are proven in Appendix B, as part of a basic theory of observational equiv-
alence. Some basic properties are proven: equivalence is preserved under equivalent substitu-
tions and under reduction, and equivalence at a subtype is finer than equivalence at a supertype.

3The third and fourth clauses are redundant in a deterministic language, such as the one of this paper. I state
the more general definition to be consistent with my scalability theme.

9

Some principles for establishing equivalence are also proven. First, to show arbitrary open terms
are equivalent it suffices to show that under all appropriate substitutions they are equivalent.
Second, to show closed terms are equivalent it suffices to show that the values they evaluate to
are equivalent.

Third, a coinduction principle is proven. To motivate this principle, consider proving v1 and v2

equivalent at [m:τ ;]. Placing v1 and v2 in arbitrary contexts results in arbitrary reductions, but
such reductions will not observe a difference unless it includes a method invocation of m. Thus,
most previous work includes a theorem of the form that v1 and v2 are equivalent if they are
Kleene equivalent in all contexts of the form C〈〈〉.m〉. However, if v1.m 7→ e1 and v2.m 7→ e2

this still requires reasoning about e1 and e2 in arbitrary contexts. My coinduction principle goes
further and considers just contexts of the form 〈〉.m. It requires showing that (v1, v2, [m:τ ;])
is a member of a set of triples that is closed under reduction. For this example, closed under
reduction means that e1 and e2 are either equivalent or that (e1, e2, τ) is another triple in the
set. In general the type at which v1 and v2 are to be equivalent determines the contexts that
need to be considered, details are in Appendices A and B.

This coinduction principle is not enough. Consider proving [m = x.b1;] equivalent to [m = x.b2;]
as part of a proof by induction on the structure of expressions. Using the coinduction principle
this requires showing that bi{x := [m = x.bi;]} for i ∈ {1, 2} are equivalent or in some set of
triples. The induction hypothesis says that b1 and b2 are equivalent assuming x is substituted
with equivalent values, but x is substituted by the values we are trying to prove equivalent. This
is the fundamental problem with extending the proof of Minamide et al. [MMH95] to recursive
functions. Morrisett and Harper [MH99] use an unwinding lemma to solve this problem. The
0th unwinding of [m = x.bi;] for i ∈ {1, 2} diverge when method m is invoked so they are
clearly equivalent. The n+1th unwinding reduces to bi with the nth unwinding substituted for
x, so by induction on n, we can establish that the nth unwindings of the objects are equivalent
for all n. The unwinding lemma then tells us that the objects themselves are equivalent. The
basic theory mentioned above proves an unwinding lemma for the object language, and a more
powerful coinduction principle.

4.2 Correctness

There are three aspects to correctness: the translation produces code closed expressions, pre-
serves types, and preserves the meaning of expressions.

Theorem 4.1 (Translation Correctness) If ∆ ` Γ and ∆; Γ ` e : τ then:

• |e| is code closed

• ∆; Γ ` |e| : τ

• e and |e| are ∆; Γ-observationally equivalent at τ

Before proving correctness, I will prove some auxiliary lemmas.

10

Lemma 4.2 If ∆; Γ ` e : τ and ∆; Γ ` yk : σ′
k then e ≡∆;Γ:τ e′ where:

e = [mi = Mi; fj = ej]i∈I,j∈J

e′ = [mi = Mi; fj = ej, gk = yk]i∈I,j∈J,k∈K

τ = [mi:si; fj:σ◦
j]i∈I,j∈J

Proof: The result follows by Lemma B.10 if the right hand side of that lemma holds. Let ρ be
a value substitution such that ∆ ` ρ : Γ. If e{ρ}↑ then by inspection of the reduction rules, there
must be j ∈ J such that ej{ρ}↑. Therefore e′{ρ}↑ also. Similarly e′{ρ}↑ implies e′{ρ}↑. Now if
either e{ρ} or e′{ρ} converges then the other also converges and they converge to values of the
form v = [mi = Mi{ρ}; fj = vj]i∈I,j∈J and v′ = [mi = Mi{ρ}; fj = vj , gk = ρ(yk)]i∈I,j∈J,k∈K

respectively. It remains to show that v ≡∆;ε:τ v′. By Lemma B.16 this follows if A is closed
under reductions where:

A =

(v1, v2, τ)

∣∣∣∣∣∣
v1 = [mi = Mi{ρ}; fj = v1j]i∈I,j∈J

v2 = [mi = Mi{ρ}; fj = v2j, gk = ρ(yk)]i∈I,j∈J,k∈K

v1j ≡∆;ε:σj v2j

The reductions that apply are 〈〉.mi[~σ](~v) for i ∈ I , 〈〉.fj for j ∈ J, and 〈〉.fj ← v for j ∈ J.

For the first reduction assume Mi = x[~α](x1:τ1, . . . , xn:τn).b:τ ′ and si = [~α](τ1, . . . , τn) → τ ′.
Note that ∆, ~α; Γ, x:τ,−→x:τ ` b : τ ′. Let τ ′′

i = τi{~α := ~σ}, τ ′′ = τ ′{~α := ~σ}, and Γ′ = Γ, x:τ,
−−→
x:τ ′′.

Let v1h ≡∆;ε:τ ′′
h

v2h for 1 ≤ h ≤ n then:

v1.mi[~σ](~v1) 7→ b{ρ}{~α, x, ~x := ~σ, v1, ~v1}
= b{~α := ~σ}{ρ, ~x := ~v1}{x := v1}

v2.mi[~σ](~v2) 7→ b{ρ}{~α, x, ~x := ~σ, v2, ~v2}
= b{~α := ~σ}{ρ, ~x := ~v2}{x := v2}

By Substitution ∆; Γ, x:τ,
−−→
x:τ ′′ ` b{~α := ~σ} : τ ′{~α′ := ~σ}, so by reflexivity b{~α := ~σ} ≡∆;Γ′:τ ′′

b{~α := ~σ}. Clearly, ρ, ~x := ~v1 ≡
∆:Γ,
−−→
x:τ ′′ ρ, ~x := ~v2, so by Lemma B.14 b{~α := ~σ}{ρ1, ~x :=

~v1} ≡∆;x:τ :τ ′′ b{~α := ~σ}{ρ2, ~x := ~v2} as required.

For the second reduction v1.fj 7→ v1j, v2.fj 7→ v2j, and v1j ≡∆;ε:σj v2j as required. For
the third reduction let v{f := v′} denote the value v with its f field replaced by v′. Let
v′1 ≡∆;ε:σj v′2 then v1.fj ← v′1 7→ v1{fj := v′1} and v2.fj ← v′2 7→ v2{fj := v′2}. Clearly
(v1{fj := v′1}, v2{fj := v′2}, τ) ∈ A. 2

Lemma 4.3 If ∆; Γ ` e1 : τ and b1 ≡∆′;Γ′:σ b2 then e1 ≡∆;Γ:τ e2 where:

e1 = [m = x[~α](−→x:τ).b1:σ, mi = Mi; fj = ej, gk = yk]i∈I,j∈J,k∈K

e2 = [m = x[~α](−→x:τ).b2{ρ2}:σ, mi = Mi; fj = ej , gk = yk]i∈I,j∈J,k∈K

ρ2 = {yk := x.gk}k∈K

τ = [m:[~α](~τ)→ σ, mi:si; fj:σ◦
j , gk:σ′

k
+]i∈I,j∈J,k∈K

∆′ = ∆, ~α

Γ′ = Γ, x:τ,−→x:τ

11

Proof: Let X(b) = x[~α](−→x:τ).b:σ. The proof is very similar to the one for Lemma 4.2. Instead
of A the following set suffices:

(v1, v2, τ)

∣∣∣∣∣∣
v1 = [m = X(b1{ρ}), mi = Mi{ρ}; fj = v1j, gk = ρ(yk)]i∈I,j∈J,k∈K

v2 = [m = X(b2{ρ2}{ρ}), mi = Mi{ρ}; fj = v2j, gk = ρ(yk)]i∈I,j∈J,k∈K

v1j ≡∆;ε:σj v2j

The reasoning is very similar to that in Lemma 4.2 except for the case of invocation of method
m. Assuming n value parameters, again with τ ′′

i = τi{~α := ~σ}, let v1i ≡∆;ε:τ ′′
i

v2i. Then:

v1.m[~σ](~v1) 7→ b1{ρ}{~α, x, ~x := ~σ, v1, ~v1}
= b1{~α := ~σ}{ρ}{~x := ~v1}{x := v1}

v2.m[~σ](~v2) 7→ b2{ρ2}{ρ}{~α, x, ~x := ~σ, v2, ~v2}
= b2{~α := ~σ}{ρ′}{~x := ~v2}{x := v2}

where ρ′(z) =
{

ρ(z) ∀k ∈ K : z 6= yk

v2.gk z = yk

Since v2.gk 7→ ρ(yk), by Lemma B.9 ρ(yk) ≡∆;ε:σ′
k

v2.gk. Therefore ρ ≡∆:Γ ρ′. Let Γ′′ =

x:τ,
−−→
x:τ ′′. By assumption and Lemma B.11 b1{~α := ~σ} ≡∆;Γ,Γ′′:σ{~α:=~σ} b2{~α := ~σ}. By

Lemma B.14 b1{~α := ~σ}{ρ} ≡∆;Γ′′:σ{~α:=~σ} b2{~α := ~σ}{ρ′}. Clearly ~x := ~v1 ≡
∆:
−−→
x:τ ′′ ~x := ~v2 so

by Lemma B.14 b1{~α := ~σ}{ρ}{~x := ~v1} ≡∆;x:τ :σ{~α:=~σ} b2{~α := ~σ}{ρ′}{~x := ~v2} as required.
2

Proof (Correctness): First, I will show that |e| is code closed and that fv(|e|) ⊆ fv(e). The
proof proceeds by induction on the structure of e, and splits into cases based on the outer form
of e. All cases are straightforward except for e an object constructor. In this case:

cv(|e|) = ∪i∈I fv(M ′
i)

= ∪i∈I(fv(b′i)− {xi, ~xi})
⊆ ∪i∈I(((fv(|bi|)− {yk}1≤k≤n) ∪ {xi})− {xi, ~xi})
⊆ ∪i∈I(((fv(bi)− {yk}1≤k≤n) ∪ {xi})− {xi, ~xi})
⊆ ∪i∈I(({xi, ~xi} ∪ {xi})− {xi, ~xi})
= ∅

The subterms of |e| are code closed by the induction hypothesis and inspection (note that the
substitutions |bi|{yk := xi.gk} do not introduce new closure variables in code closed subterms).
So |e| is code closed. Finally, fv(|e|) = cv(e) ∪j∈J fv(|ej|) ∪ {yk}1≤k≤n ⊆ ∅ ∪j∈J fv(ej) ∪
{yk}1≤k≤n ⊆ fv(e).

Next, I will establish that ∆; Γ ` |e| : τ . The proof proceeds by induction on the derivation of
∆; Γ ` e : τ , and splits into cases based on the last rule used:

Subsumption Rule In this case, τ = τ2, ∆; Γ ` e : τ1, and ∆ ` τ1 ≤ τ2. By the induction
hypothesis ∆; Γ ` |e| : τ1 and so by subsumption ∆; Γ ` |e| : τ2 as required.

Variable Rule In this case, e = x = |e|, so the result follows immediately from the assumption.

Object Rule In this case, e = [mi = Mi; fj = ej]i∈I,j∈J, τ = [mi : si; fj : σ◦
j]i∈I,j∈J, ∆; Γ; τ `

Mi : si, and ∆; Γ ` ej : σj. Let y1, . . . , yn be the closure variables for e. By Free Variables

12

yi ∈ dom(Γ). Let σ′
k = Γ(yk), and τ ′ = [mi : si; fj : σ◦

j , gk : σ′
k
◦]i∈I,j∈J,1≤k≤n. Since g1≤k≤p

were chosen to be fresh, it is easy to establish that ∆ ` τ ′ and that ∆ ` τ ′ ≤ τ . Assume
for the moment that ∆; Γ; τ ′ ` M ′

i : si. By the induction hypothesis ∆; Γ ` |ej| : σj.
Clearly, ∆; Γ ` yk : σ′

k, so by the Object Rule ∆; Γ ` |e| : τ ′. The result follows by
subsumption.

It remains to show that ∆; Γ `M ′
i : si. Consider an arbitrary Mi = x[~α](−→x:τ).b:σ. By the

Method Definition Rule si = [~α](~τ) → σ and ∆, ~α; Γ, x:τ,−→x:τ ` b : σ. By the induction
hypothesis ∆, ~α; Γ, x:τ,−→x:τ ` |b| : σ. By Context Strengthening ∆, ~α; Γ, x:τ ′,−→x:τ ` |b| : σ.
By the Variable Rule and the Field Selection Rule ∆, ~α; Γ, x:τ ′,−→x:τ ` x.gk : σ′

k, so by
Substitution ∆, ~α; Γ, x:τ ′,−→x:τ ` |b|{y1, . . . , yn := x.g1, . . . , x.gn} : σ. So by the Method
Definition Rule ∆; Γ; τ ′ `Mi : si.

Method Invocation Rule In this case, e = e′.m[~σ](~e), τ = τ ′{~α := ~σ}, ∆ ` σi, ∆; Γ `
e′ : [m:[~α](~τ) → τ ′;], and ∆; Γ ` ei : τi{~α := ~σ}. By the induction hypothesis ∆; Γ `
|e′| : [m:[~α](~τ) → τ ′;] and ∆; Γ ` |ei| : τi{~α := ~σ}. So by the Method Invocation Rule
∆; Γ ` |e′|.m[~σ](

−→|e|) : τ . The result follows since |e′|.m[~σ](
−→|e|) = |e.m[~σ](~e)| = |e|.

Field Selection Rule In this case, e = e′.f , ∆; Γ ` e′ : [; f : τφ], and φ ∈ {+, ◦}. By the
induction hypothesis ∆; Γ ` |e′| : [; f : τφ]. By the field selection rule ∆; Γ ` |e′|.f : τ .
The result follows since |e′|.f = |e′.f | = |e|.

Field Update Rule In this case, e = e1.f ← e2, τ = [; f : σφ], ∆; Γ ` e1 : τ , ∆; Γ ` e2 : σ,
and φ ∈ {−, ◦}. By the induction hypothesis twice, ∆; Γ ` |e1| : τ and ∆; Γ ` |e2| : σ.
By the field update rule ∆; Γ ` |e1|.f ← |e2| : τ . The result follows since |e1|.f ← |e2| =
|e1.f ← e2| = |e|.

Type Abstraction Rule In this case, e = Λα.e′, τ = ∀α.τ ′, and ∆, α; Γ ` e′ : τ ′. By the
induction hypothesis ∆, α; Γ ` |e′| : τ ′, so by the Type Abstraction Rule ∆; Γ ` Λα.|e′| : τ .
The result follows since Λα.|e′| = |Λα.e′| = |e|.

Type Application Rule In this case, e = e′[σ], τ = τ ′{α := σ}, ∆; Γ ` e′ : ∀α.τ ′, and
∆ ` σ. By the induction hypothesis ∆; Γ ` |e′| : ∀α.τ ′, so by the Type Application Rule
∆; Γ ` |e′|[σ] : τ ′{α := σ}. The result follows since |e′|[σ] = |e′[σ]| = |e|.

Finally, I will show that e ≡∆;Γ:τ |e|. Note that only the third clause of the definition of
observational equivalence needs to be established. The proof proceeds by induction of the
structure of e and then on the height of the derivation of ∆; Γ ` e : τ , and splits into cases
based on the last rule in the derivation:

Subsumption Rule In this case, τ = τ2, ∆; Γ ` e : τ1, and ∆ ` τ1 ≤ τ2. By the induction
hypothesis e ≡∆;Γ:τ1 |e|. By OE Refinement e ≡∆;Γ:τ2 |e| as required.

Variable Rule In this case, e = x = |e| and τ = Γ(x). The result follows by reflexivity as
proven in Lemma B.1.

13

Object Rule For this case:

e = [mi = Mi; fj = ej]1≤i≤m,1≤j≤n

|e| = [mi = M ′
i ; fj = |ej|, gp = yp]1≤i≤m,1≤j≤n,1≤k≤p

cv(e) = {y1, . . . , yp}
Mi = xi[~αi](−−→xi:τi).bi:τi

M ′
i = xi[~αi](−−→xi:τi).b′i:τi

b′i = |bi|{y1, . . . , yp := xi.g1, . . . , xi.gp}
τ = [mi:si; fj:σ◦

j]1≤i≤m,1≤j≤n

τ ′ = [mi:si; fj:σ◦
j , gk:σ′

k
+]1≤i≤m,1≤j≤n,1≤k≤p

si = [~αi](~τi)→ τi

σ′
k = Γ(yk)

∆i = ∆, ~αi

Γi = Γ, xi:τ,−−→xi:τi

Γ′
i = Γ, xi:τ ′,−−→xi:τi

An argument similar to the Field Selection Rule case will be denoted FSR argument. The
result follows by transitivity from:

e

≡∆;Γ:τ 〈FSR argument〉
[mi = Mi; f1 = |e1|, fj = ej]1≤i≤m,2≤j≤n

≡∆;Γ:τ · · · 〈FSR argument〉
[mi = Mi; fj = |ej|]1≤i≤m,1≤j≤n

≡∆;Γ:τ 〈Lemma 4.2〉
[mi = Mi; fj = |ej|, gk = yk]1≤i≤m,1≤j≤n,1≤k≤p

≡∆;Γ:τ 〈See Below〉
[m1 = M ′

1, mi = Mi; fj = |ej|, gk = yk]2≤i≤m,1≤j≤n,1≤k≤p

≡∆;Γ:τ · · · 〈See Below〉
[mi = M ′

i ; fj = |ej|, gk = yk]1≤i≤m,1≤j≤n,1≤k≤p

= 〈Definition of | · |〉
|e|

Just need to show that [m1 = M ′
1, . . . , mi−1 = M ′

i−1, mi = Mi, . . . , mn = Mn; fj =
|ej|, gk = yk]j∈J,k∈K ≡∆;Γ:τ [m1 = M ′

1, . . . , mi = M ′
i , mi+1 = Mi+1, . . . , mn = Mn; fj =

|ej|, gk = yk]j∈J,k∈K.

By the typing rule for method bodies, it must be that ∆i; Γi ` bi : τi. As argued
for type preservation ∆ ` τ ′ ≤ τ , so by Context Strengthening ∆i; Γ′

i ` bi : τi. By the
induction hypothesis bi ≡∆i;Γ′

i:τ
′ |bi|. So by Lemma 4.3 [m1 = M ′

1, . . . , mi−1 = M ′
i−1, mi =

Mi, . . . , mn = Mn; fj = |ej|, gk = yk]j∈J,k∈K ≡∆;Γ:τ ′ [m1 = M ′
1, . . . , mi = M ′

i , mi+1 =
Mi+1, . . . , mn = Mn; fj = |ej|, gk = yk]j∈J,k∈K. The result follows by OE Refinement.

Method Invocation Rule In this case e = e′.m[~σ](e1, . . . , en). Arguments similar to the
Field Selection Rule case establish each of the following, from which the result follows by
transitivity.

e ≡∆;Γ:τ |e′|.m[~σ](e1, . . . , en)
≡∆;Γ:τ |e′|.m[~σ](|e1|, e2, . . . , en)
≡∆;Γ:τ · · ·
≡∆;Γ:τ |e′|.m[~σ](|e1|, . . . , |en|)
= |e|

14

Field Selection Rule In this case e = e′.f and ∆; Γ ` e′ : τ ′ where τ ′ = [; f : τφ]. By the
induction hypothesis e′ ≡∆;Γ:τ ′ |e′| (∗). Let C = 〈〉.f , then ∆; Γ ` C : τ〈ε; ε:τ ′〉, e = C〈e′〉
and |e| = E〈|e′|〉. By (∗) and OE Congruence C〈e′〉 ≡∆;Γ:τ C〈|e′|〉 and the result follows.

Field Update Rule In this case, e = e1.f ← e2. An argument similar to the Field Selection
Rule case establishes e ≡∆;Γ:τ |e1|.f ← e2, and a similar argument establishes |e1|.f ←
e2 ≡∆;Γ:τ |e1|.f ← |e2| = |e|. The result follows by transitivity.

Type Abstraction Rule This case is similar to the Field Selection Rule case.

Type Application Rule This case is similar to the Field Selection Rule case.

2

A couple of points are worth mentioning. First, the proof actually proves full abstraction.
Full abstraction is the property that the target language cannot distinguish the translation of
equivalent source terms, formally: e1 ≡∆;Γ:τ e2 implies |e1| ≡∆;Γ:τ |e2|. This holds for object
closure conversion, for if e1 ≡∆;Γ:τ e2 then |e1| ≡∆;Γ:τ e1 ≡∆;Γ:τ e2 ≡∆;Γ:τ |e2|.

Second, the proof should extend to a number of other features. Consider recursive types.
For equirecursive types, the definitions and proofs remain unchanged. For isorecursive types,
the definition of closed under reduction needs to include unroll, but otherwise the proof goes
through. The proof should also easily extend to cover all of the features mentioned in the next
section, thus supporting my claim that the proof really does scale to real languages.

5 Some Extensions

The translation scales to a number of other language features and variations in the language
semantics; in some sense, it is a canonical object closure-conversion translation for object calculi
without method update or method extension. The translation, as stated, works for the same
language but with field update interpreted imperatively rather than applicatively. It also works
for the same language but with right-extension subtyping (i.e., methods and fields in an object
constructor are ordered, and a subtype has more methods and fields on the right). The transla-
tion preserves the right-extension property. As right-extension subtyping can be implemented
more efficiently, a source language with both first-class objects and right-extension subtyping
has an efficient implementation. If other noncode4 constructs such as integers, products, sums,
and arrays, are added to the language, the translation can be extended to these constructs by
adding trivial rules such as |i| = i, |e1 + e2| = |e1|+ |e2|, |(e1, e2)| = (|e1|, |e2|), |e.1| = |e|.1, et
cetera. Recursive types and their roll and unroll coercions could be added with similar trivial
rules. This addition would not require serious changes to the proof of correctness, as is the
case for the all the proofs described in the introduction. If functions are added to the language,
then the translation could be extended with functional closure conversion or with the ideas of
Section 6.

4A code construct is one that suspends expressions, for example, functions and method definitions. In general
code constructs require closure conversion, while noncode constructs do not.

15

On polymorphism, the translation already includes unbounded parametric polymorphism both
as a separate construct and for methods. Extending this to ordinary-bounded, F-bounded,
or matching-based parametric polymorphism is straightforward. It is worth noting that in
implementing the object language, after converting objects to records of functions, and before
lifting these functions to the top level, the free type variables must be closed over using the
ideas of Morrisett et al. [MWCG98]. If a type-passing interpretation is desired, the translation
must be changed to close over type variables as well. There are two approaches: The first
uses the ideas of Crary, Weirich, and Morrisett [CWM98] to convert type variables to value
variables and a type-erasure interpretation. This paper’s translation would then close over the
value variables. The other approach involves adding type fields to an object constructor to store
the free type variables. This would require a type system for objects with type fields, which
likely would involve the complexity described by Minamide et al. [MMH96], Leroy [Ler94], and
Harper and Lillibridge [HL94]. Otherwise, I believe the translation would look much the same,
although the proof would be considerably more complicated.

Next, consider object calculi with method update and method extension. A method update
operation e.m ← M changes (either imperatively or applicatively, depending on the desired
semantics) object e’s response to method m to be M . The translation of this expression needs
to close over the closure variables of M . To achieve this e must be extended with new fields to
store the free variables, so a field-extension operation is needed. Consider a language with all
of these operations:

e ::= . . . | e.m←M | e1 + f = e2 | e + m = M

The expression e1 + f = e2 is the extension of object e1 with a new field f with initial value
e2; similarly, e + m = M is the extension of e with a new method m with definition M . The
intended operational semantics of the extended language is the dictionary semantics of Riecke
and Stone [RS98].

The translation extends as follows:

|e1 + f = e2| = |e1|+ f = |e2|
|e.m←M | = (|e|+1≤i≤n gi = yi).m←M ′

|e + m = M | = (|e|+1≤i≤n gi = yi) + m←M ′

where M = x[~α](−→x:τ).b:τ
M ′ = x[~α](−→x:τ).|b|{y1, . . . , yn := x.g1, . . . , x.gn}:τ
cv(M) = {y1, . . . , yn}
g1, . . . , gn are fresh

Finally, as well as extensions to other language features, the translation has variants that express
other environment representations. The translation of method bodies is b′i = |bi|{−−−−−−→y := xi.g}. It
could also be b′i = |bi{−−−−−−→y := xi.g}|, which would result in a different environment representation.
The first choice leaves y1 through yp free in all inner-nested object constructors and so these
variables will be closed over in the inner objects, resulting in a flat environment representation.
The second choice replaces the yp in an inner-nested object constructor with a (free) reference
to xi which will be closed over, resulting in a linked environment representation.

16

|x| = x
|i| = i

|[mi = Mi; fj = ej]i∈I,j∈J| = 〈mi = |Mi|, fj = |ej|〉i∈I,j∈J

|e.m[~τ](~e)| = let x = |e| in x.m(x, ~|e|)
|e.f | = |e|.f
e1.f ← e2	=	e1	.f ←	e2
Λα.b	=	b		
e[σ]	=	e		
x[~α](−→x:τ):τ.b	= λ(x, ~x).	b		

Figure 4: Untyped Self Application Semantics Translation

6 Closures and Functional Closure Conversion

We are finally in a position to compare object closure conversion and functional closure conver-
sion, and to formalise the well known connection between closures and single-method objects.
This section will show this connection by providing a translation from a typed lambda calculus
to the language of this paper, and show that the encoding composed with object closure con-
version and some object encoding results in a functional closure conversion. I will demonstrate
this for two particular object encodings, showing their equivalence to a closure passing and
environment passing style of functional closure conversion.

Consider a simply-typed lambda calculus with recursive functions:

Types τ, σ ::= int | τ1 → τ2

Expressions e, b ::= x | i | fix f(x1:τ1):τ2.b | e1 e2

For the remainder of this section, assume an object language with integers. The lambda calculus
can be encoded into the object language as follows:

|int| = int
|τ1 → τ2| = [apply:[](|τ1|)→ |τ2|;]
|x| = x

|i| = i
|fix f(x1:τ1):τ2.b| = [apply = f [](x1:|τ1|).|b|:|τ2|;]
|e1 e2| = |e1|.apply[](|e2|)

If the object closure conversion translation is composed with the above encoding, the combined
rule for functions is:

|fix f(x1:τ1):τ2.b| = [apply = f [](x1:|τ1|).|b|{yi := f.gi}; gi = yi]
where fv(b)− {f, x1} = {yi}

Now, consider converting the object calculi back into a functional calculi via an object encoding.
The notation 〈−−−→f = e〉 denotes a record with fields ~f and values ~e, e.f denotes field projection,

17

|α| = α
|[mi:si;]i∈I| = ∃α.〈〈mi = |si|(α)〉+i∈I, α

+〉
|∀α.τ | = ∀α.|τ |
|[~α](~τ)→ τ |(σ) = ∀[~α](σ, ~|τ |)→ |τ |

|x| = x
|i| = i

|[mi = Mi; fj = ej]i∈I,j∈J:τ | = letrec mi = |Mi|(τ, τe) in
pack [τe, 〈〈mi = mi〉i∈I, 〈fj = |ej|〉j∈J〉] as |τ |
where τ = [mi:si; fj:σ

φj

j]i∈I,j∈J

τe = 〈fj :|σj|φj〉j∈J

|e.m[~τ](~e)| = unpack [α, x] = |e| in x.1.m[~|τ |](x.2, ~|e|)
|x.f | = xe.f
|x.f ← e2| = pack [τe, 〈〈mi = mi〉i∈I, xe.f ← |e2|〉] as |τ |
|Λα.b| = Λα.|b|
|e[σ]| = |e|[|σ|]
|x[~α](−→x:τ):τ.b|(τ, τe) = λ[~α](xe:τe,

−−→
x:|τ |):|τ |.

let x = pack [τe, 〈〈mi = mi〉i∈I, xe〉] as |τ | in
|b|

Where x maps 1-1 to xe and all xe are unnamable in the source calculus.

Figure 5: Typed Pierce and Turner Translation

and e1.f ← e2 denotes field update. First, consider an encoding based on the self-application
semantics [Kam88]. An untyped version of this translation appears in Figure 4. Ignoring typing,
the interesting composed translation rules are:

|fix f(x1:τ1):τ2.b| = 〈apply = λ(f, x1).|b|{yi := f.gi}, gi = yi〉
where fv(b)− {f, x1} = {yi}

|e1 e2| = let x = |e1| in x.apply(x, |e2|)

These rules are just functional closure conversion with a closure-passing style and a flat envi-
ronment representation.

Second, consider Pierce and Turner’s object encoding [PT94]. A typed version of this translation
appears in Figure 5, assuming that methods are public and fields are private. Ignoring typing,
the interesting composed translation rules are:

|fix f(x1:τ1):τ2.b| = let fix fcode(fenv , x1) =
let f = 〈〈apply = fcode〉, fenv〉 in |b|{yi := fenv .gi} in

〈〈apply = fcode〉, 〈gi = yi〉〉
where fv(b)− {f, x1} = {yi}

|e1 e2| = let x = |e1| in x.1.apply(x.2, |e2|)

These rules are just functional closure conversion with an environment-passing style and a flat
environment representation.

18

Thus we see that closures and single method objects are equivalent, as witnessed by the trans-
lation given at the beginning of this section. We also see that functional closure conversion
factors into this equivalence translation, object closure conversion, and an object encoding.

Other schemes mentioned in Morrisett and Harper [MH99] could also be described as specialised
object encodings for single-method objects composed with object closure conversion. In fact, the
ideas of this section suggest a general framework for explaining functional closure conversion, as
follows. First, a closure language would be defined, which would be the object language of this
paper restricted to single methods. Second, a closure-conversion translation would be defined
on this language, and various choices for environment representation would be described as
variations on this translation. Third, a closure-representation translation would be presented,
and various passing styles would be described as various closure representations. This general
framework then allows Java’s inner-class transformation to be explained as a generalisation to
a full object language.

7 Related Work and Summary

Closure conversion has been studied extensively for functions [AJ89, Han95, KKR+86, Lan64,
MMH96, MWCG98, Rey72, Ste78, SW96]. To the best of my knowledge, object closure con-
version has not been described before.

The connection between closures and objects is well known, and has been hinted at in the
literature. As far as I am aware, this is the first paper to formalise the connection explicitly.
Reddy [Red98] discuss objects as closures. Minamide et al. [MMH96] informally discuss closures
as objects, but do not formalise the connection. Abadi and Cardelli [AC96] give several versions
of an encoding of functional calculi into object calculi. Their encoding is different from the one
here as they do not consider method parameters. Also they do not talk at all about closure
conversion nor make connections between functional calculi and object calculi at the level of
closures.

Correctness proofs for functional closure conversion are given by Minamide et al. [MMH95],
Stekler and Wand [SW96], Morrisett and Harper [MH99], and possibly other authors. Only the
latter considers recursive functions, and none of them consider recursive types. Observational
equivalence has been studied and used to prove correctness in both functional settings (e.g.,
[Mor68, Plo77, MST96]) and in object settings (e.g., [GHL98]). My results use similar tools and
similar proof techniques, further supporting the claim that my proof will scale to real languages.

This paper has presented an object language with first-class objects and a closure-conversion
translation for it. This translation was used to show a formal connection between closures and
single-method objects, and that functional closure conversion factors through object closure
conversion. These results lend further insight into the general problem of closure conversion
and foundations for the implementation of object-oriented languages.

19

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory Of Objects. Springer-Verlag, 1996.

[AJ89] Andrew Appel and Trevor Jim. Continuation-passing, closure-passing style. In 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 293–302, Austin, Texas, USA, January 1989.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism
in type-erasure semantics. In 1998 ACM SIGPLAN International Conference on
Functional Programming, pages 301–312, Baltimore Maryland, USA, September
1998.

[GHL98] Andrew Gordon, Paul Hankin, and Søren Lassen. Compilation and equivalence of
imperative objects. Technical Report RS-98-55, BRICS, Department of Computer
Science, University of Aarhus, Ny Munkegade, building 540, DK-8000 Aarhus C,
Denmark, December 1998. URL: http://www.brics.dk/RS/98/55.

[Han95] J. Hannan. A type system for closure conversion. In The Workshop on Types for
Program Analysis, 1995.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 123–137, Portland Oregon, USA, January 1994.

[Kam88] Samuel Kamin. Inheritance in smalltalk-80: A denotational definition. In 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 80–87, San Diego, CA, USA, January 1988.

[KKR+86] David Kranz, R. Kelsey, J. Rees, P. R. Hudak, J. Philbin, and N. Adams. ORBIT:
An optimizing compiler for Scheme. In Proceedings of the ACM SIGPLAN ’86
Symposium on Compiler Construction, pages 219–233, June 1986.

[Lan64] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,
6(4):308–320, 1964.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
109–122, Portland, OR, USA, January 1994.

[MH99] Greg Morrisett and Robert Harper. Simply-typed closure conversion. Unpublished,
authors contact: jgm@cs.cornell.edu, April 1999.

[MMH95] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conver-
sion. Technical Report CMU-CS-95-171, Carnegie Mellon University, Pittsburgh,
PA 15213, July 1995.

[MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conver-
sion. In 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 271–283, St. Petersburg, January 1996.

[Mor68] J. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, Mas-
sachuetts Institute of Technology, 1968.

20

[MST96] Ian Mason, Scott Smith, and Carolyn Talcott. From operational semantics to
domain theory. Information and Computation, 128:26–47, 1996.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. In 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 85–97, San Diego California, USA, January 1998.
ACM Press.

[Plo77] Gordon Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5:223–255, 1977.

[PT94] Benjamin Pierce and David Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2):207–247, April
1994.

[Red98] Uday Reddy. Objects as closures: Abstract semantics of object-oriented languages.
In ACM Symposium on LISP and Functional Programming, pages 289–297. ACM,
July 1998.

[Rey72] John Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of the Annual ACM Conference, pages 717–740, 1972.

[RS98] Jon Riecke and Christopher Stone. Privacy via subsumption. In 5th International
Workshop on Foundations of Object Oriented Programming Languages, San Diego,
CA, USA, January 1998.

[Ste78] Guy Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, MIT, 1978.

[SW96] Paul Steckler and Mitchell Wand. Lightweight closure conversion. ACM Transac-
tions on Progamming Languages and Systems, pages 48–86, January 1996.

A Unwinding

Consider an extension of the object language where object constructors have the form:

[mi = Mi; fj = ej]ni∈I,j∈J n ∈ N ∪ {ω}

The n is called an unwinding number, and limits the number of recursive invocations of a
method on the object. The old language can be mapped to the new one by decorating all
object constructors with ω. The new language can be mapped to the old one by erasing the
unwinding numbers. It is easy to verify that these mappings form an embedding-projection
pair.

The operational semantics for the new language consists of the old rules with the rule for
method invocation replaced by:

vn.m[~τ](~v) 7→ b{~α, x, ~x := ~τ , vn−1, ~v} n > 0
v0.m[~τ](~v) 7→ v0.m[~τ](~v)

21

Where ω − 1 = ω. It is easy to verify that the embedding (mentioned above) commutes with
reduction. Thus an expression is equivalent in behaviour to its embedding.

If e1 7→ e2 then by inspection of the reduction rules, observe that each unwinding number in e2

corresponds to one of the unwinding numbers of e1, and is equal to or 1 less than that unwinding
number. In the theorems below we will be interested in some set of a term’s unwinding numbers
and will write e[·] to denote a term e with some set of unwinding numbers distinguished. Then
e[n] will be e with the distinguished unwinding numbers replaced by n, e[≥ n] will mean the
distinguished unwinding numbers are all at least n, and if e1 7→ e2 then e2[·] will be e2 with the
unwinding numbers that correspond to e1’s distinguished unwinding numbers distinguished.

Lemma A.1 If e1[≥ n], n ≥ 1, and e1 7→ e2 then e2[≥ n− 1].

Proof: By inspection of the reduction rules, no unwinding numbers are introduced, and
no unwinding numbers are changed except by the method invocation rule, which reduces one
unwinding number by 1. 2

Lemma A.2 If e[ω]↓n then e[n]↓. If e[n]↓ then e[ω]↓.

Proof: Observe that e[ω] and e[n] differ only in that the former has unwinding numbers ω
is some places and the latter has n instead. Therefore, if n ≥ 1 the same reduction rules apply
to both, and if e[ω] 7→ e′[ω] then e[n] 7→ e′[≥ n − 1]. Let the reduction sequence for e[ω]↓n be
e1[ω] 7→ · · · 7→ en[ω]. Then by induction and Lemma A.1, e1[≥ n] 7→ · · · 7→ en[≥ 0]. Note that
changing unwinding numbers in a value still makes it a value, so e[n]↓.

If the second new rule mentioned above is ever used in a reduction sequence, that rule is used
for the rest of the reduction sequence, and an infinite loop results. Therefore if e[n]↓ that rule
is never used. By similar reasoning to above, the same rules apply to e[n] as do to e[ω]. So if
the reduction sequence for e[n]↓ is e1[n1] 7→ · · · 7→ em[nm] then e[ω] = e1[ω] 7→ · · · 7→ em[ω],
that is, e[ω]↓. 2

Lemma A.3 If ∀n ∈ N : e1[n] ≡∆;ε:τ e2[n] then e1[ω] ≡∆;ε:τ e2[ω].

Proof: Since the typing rules ignore unwinding numbers, the typing requirements are easy
to establish. Let C be such that ε; ε ` C : [;]〈∆; ε:τ〉, need to show that C〈e1[ω]〉 ∼ C〈e2[ω]〉.
Assume C〈e1[ω]〉↑, then by Lemma A.2 C〈e1[n]〉↑ for all n. By assumption C〈e2[n]〉↑ for all n,
so by Lemma A.2 C〈e2[ω]〉↑. Assume C〈e1[ω]〉↓, then it must do so in some number of steps,
say n. Then by Lemma A.2 C〈e1[n]〉↓, so by assumption C〈e2[n]〉↓. By Lemma A.2 C〈e2[ω]〉↓.

2

B Observational Equivalence

This appendix contains some basic theory on observational equivalence. It includes some basic
results: observational equivalence is an equivalence and is a congruence, observational equiva-
lence at a subtype is a refinement of observational equivalence at a supertype, and observational

22

equivalence is preserved under type substitutions and substitutions of convergent observation-
ally equivalent terms. It also shows several characterisations of observational equivalence: two
terms are observationally equivalent if they have the same termination behaviour and values
they evaluate to are observationally equivalent, two terms are observationally equivalent if they
have the same termination behaviour under all closed instances and uses (see [MST96]), and
two terms are observationally equivalent if they are observationally equivalent under all appro-
priate substitutions. Finally, I show a coinduction principle for concluding that two terms are
observationally equivalent by constructing a set that is closed under reductions (defined later).
The results are stated generally, but several of the proofs assume that reduction is deterministic,
which it is for the object language. The results can be proven for nondeterministic reduction
systems, but the proofs are more complicated.

B.1 Basics

Definition B.1

• A type substitution % is a mapping from type variables to types.

• ∆1 ` % : ∆2 if and only if dom(%) = ∆2 and ∀α ∈ ∆2 : ∆1 ` %(α).

Definition B.2

• A (term) substitution ρ is a mapping from term variables to expressions. A value substi-
tution is a mapping from term variables to values.

• ∆; Γ1 ` ρ : Γ2 if and only if dom(ρ) = dom(Γ2) and ∀x ∈ dom(Γ2) : ∆; Γ1 ` ρ(x) : Γ2(x).

Definition B.3 e1 ≡CIU
∆;Γ:τ e2 if and only if ∆; Γ ` e1 : τ , ∆; Γ ` e2 : τ , and for all type

substitutions %, value substitutions ρ, and E such that ε ` % : ∆, ε; ε ` ρ : Γ{%}, and ε; ε ` E :
[;]〈ε; ε:τ{%}〉, E〈e1{%}{ρ}〉 ∼ E〈e2{%}{ρ}〉.

Lemma B.1 ∼ is an equivalence relation on {e|ε; ε ` e : [;]}. ≡∆;Γ:τ is an equivalence relation
on {e|∆; Γ ` e : τ}. ≡CIU

∆;Γ:τ is an equivalence relation on {e|∆; Γ ` e : τ}.

Proof: The latter results follow from the first result. The first result follows from the reflexive,
symmetric, and transitive nature of e1↑ ⇔ e2↑ and e1↓ ⇔ e2↓. 2

Lemma B.2 (OE Congruence) If e1 ≡∆1,∆2;Γ1,Γ2:τ2 e2 and ∆1; Γ1 ` C : τ1〈∆2; Γ2:τ2〉 then
C〈e1〉 ≡∆1;Γ1:τ1 C〈e2〉.

Proof: Let ε; ε ` C′ : [;]〈∆1; Γ1:τ1〉. By replacing the use of the hole rule in the derivation
for C′ with the derivation for C, is easy to establish that ε; ε ` C′〈C〉 : [;]〈∆1, ∆2; Γ1, Γ2:τ2〉
thus C′〈C〉〈e1〉 ∼ C′〈C〉〈e2〉. The result follows since C′〈C〉〈ei〉 = C′〈C〈ei〉〉. 2

Lemma B.3 (OE Refinement) If ∆ ` τ1 ≤ τ2 and e1 ≡∆;Γ:τ1 e2 then e1 ≡∆;Γ:τ2 e2.

23

Proof: Let ∆ ` τ1 ≤ τ2 (1) and e1 ≡∆;Γ:τ1 e2 (2). By (2) ∆; Γ ` ei : τ1 so by (1) and
subsumption ∆; Γ ` ei : τ2. Let C be such that ε; ε ` C : [;]〈∆; Γ:τ2〉. By modifying the
derivation of ε; ε ` C : [;]〈∆; Γ:τ2〉 to use the subsumption rule with (1) after the rule for holes,
we can establish that ε; ε ` C : [;]〈∆; Γ:τ1〉. By (2) C〈e1〉 ∼ C〈e2〉 as required. 2

Lemma B.4 Let O(b) = [m = x[~α](−→x:τ):τ ′.b, mi = Mi; fj = ej]i∈I,j∈J be such that ε; ε ` O(b) :
τ if ~α; Γ ` b : τ ′ where Γ = x:τ,−→x:τ . Then, if b1 ≡CIU

~α;Γ:τ ′ b2 then O(b1) ≡CIU
ε;ε:τ O(b2).

Proof: (Assume deterministic reduction.)

Let E be such that ε; ε ` E : [;]〈ε; ε:τ〉 (the substitutions do not matter in the empty contexts).
Need to show that E〈O(b1)〉 ∼ E〈O(b2)〉. If both E〈O(b1)〉 and E〈O(b2)〉 diverge then the result
follows. Otherwise, without loss of generality assume that E〈O(b1)〉↓. I will show by induction
on computation length that e{z := O(b1)}↓ implies e{y := O(b2)}↓ where ε; y:τ ` e : [[];]
(E〈y〉 is such an e). If e{z := O(b)} 7→ e′{z := O(b)} for all appropriate b then the result
follows from the induction hypothesis. Otherwise, by inspection of the reduction rules there
exists E ′, m, ~τ , and ~v (actually E ′ and ~v may have z where values are normally required such
that E ′{z := v} is an evaluation context and similarly for ~v) such that for all appropriate b,
e = E〈z.m[~τ](

−→
(v))〉 and e{z := O(b)} 7→ E ′{z := O(b)}〈b{~α, x, ~x := ~τ , O(b),

−−−−−−−−−→
v{z := O(b)}}〉.

By the induction hypothesis E ′{z := O(b2)}〈b1{~α, x, ~x := ~τ , O(b2),
−−−−−−−−−−→
v{z := O(b2)}}〉↓. Then by

assumption E ′{z := O(b2)}〈b2{~α, x, ~x := ~τ , O(b2),
−−−−−−−−−−→
v{z := O(b2)}}〉↓ as required. 2

Lemma B.5 e1 ≡CIU
∆;Γ:τ e2 if and only if for all % and ρ such that ε ` % : ∆ and ε ` ρ : Γ{ρ},

e1{%}{ρ} ≡CIU
ε;ε:τ{%} e2{%}{ρ}.

Proof: By the definitions and the observation that substitutions are irrelevant for empty
contexts. 2

Lemma B.6 (CIU Congruence) If e1 ≡CIU
∆1,∆2;Γ1,Γ2:τ2

e2 and ∆1; Γ1 ` C : τ1〈∆2; Γ2:τ2〉 then
C〈e1〉 ≡CIU

∆1;Γ1:τ1
C〈e2〉.

Proof: (Assume deterministic reduction.) By Lemma B.5 it suffices to show the result for
∆1 = ε and Γ1 = ε.

The proof produces by induction on the structure of C. If C = 〈〉 then the result follows by
assumption. If C = x then the result follows by reflexivity. Next consider C = C1.f ← C2.
The result follows by transitivity from C1〈e1〉.f ← C2〈e1〉 ≡CIU

ε;ε:τ1
C2〈e1〉.f ← C2〈e2〉 (1) and

C2〈e1〉.f ← C2〈e2〉 ≡CIU
ε;ε:τ1

C2〈e2〉.f ← C2〈e2〉 (2). By the induction hypothesis C1〈e1〉 ≡CIU
ε;ε:τ

C2〈e2〉 (3). Let E be such that ε; ε ` E : [;]〈ε; ε:τ〉. Let E ′ = E〈〈〉.f ← C2〈e1〉〉. Then
ε; ε ` E ′ : [;]〈ε; ε:τ〉, so by (3) E ′〈e1〉 ∼ E ′〈e2〉. Since E ′〈ei〉 = E〈C1〈ei〉.f ← C2〈e1〉〉 (1)
follows. For (2), by the induction hypothesis C2〈e1〉 ≡CIU

ε;ε:τ ′ C2〈e2〉 (4) for some τ ′. Let E be
such that ε; ε ` E : [;]〈ε; ε:τ〉. Let e′i = E〈C1〈e2〉.f ← C2〈ei〉〉. If both e′1 and e′2 diverge the
result follows. Otherwise without loss of generality assume e′1↓. Then by induction on the
length of e′1 7→∗ v, I will show e′2↓. If C1〈e2〉 7→ e′ then e′i 7→ E〈e′.f ← C2〈ei〉〉 and the result
follows by the induction hypothesis. Otherwise C1〈e2〉 is a value, so let E ′ = E〈C1〈e2〉.f ← 〈〉〉
and the result follows by (4) in a similar manner as argued above. The cases for C a method
invocation, field selection, type abstraction, or type application are similar. For C an object
constructor, a similar argument shows that the field initialisers can be replaced, then the result
follows by multiple applications of Lemma B.4. 2

24

Lemma B.7 (CIU) e1 ≡∆;Γ:τ e2 if and only if e1 ≡CIU
∆;Γ:τ e2.

Proof: (⇒) Assume e1 ≡∆;Γ:τ e2. Let %, ρ, and E be such that ε ` % : ∆, ε; ε ` ρ :
Γ{%}, and ε; ε ` E : [;]〈ε; ε:τ{%}〉. Let C = E〈[apply = x[∆](Γ):τ.〈〉;].apply[%(∆)](ρ(dom(Γ)))〉.
Clearly, ε; ε ` C : [;]〈∆; Γ:τ〉, and C〈ei〉 7→ E〈ei{%}{ρ}〉. By assumption C{e1} ∼ C{e2} so
E〈e1{%}{ρ}〉 ∼ E〈e2{%}{ρ}〉 as required.

(⇐) Assume e1 ≡CIU
∆;Γ:τ e2. Let C be such that ε; ε ` C : [;]〈∆; Γ:τ〉. Then by CIU Congruence

C〈e1〉 ≡CIU
ε;ε:[;] C〈e2〉. Thus for % = ε, ρ = ε, and E = 〈〉, E〈C〈e1〉{%}{ρ}〉 ∼ E〈C〈e2〉{%}{ρ}〉,

that is, C〈e1〉 ∼ C〈e2〉 as required. 2

Lemma B.8 If r is a sequence of expressions all of type τ in context ∆; ε, ε; ε ` E : [;]〈∆; ε:τ〉,
and ε ` % : ∆ then: E〈r〉 is a reduction sequence if and only if r is a reduction sequence if and
only if r{%} is a reduction sequence.

Proof: By inspection of the reduction rules. 2

Lemma B.9 If all reduction sequences for e1 go through e2 and ∆; ε ` e1 : τ then e1 ≡∆;ε:τ e2.

Proof: By type soundness ∆; ε ` e2 : τ . By CIU and Lemma B.5 if suffices to show the result
for ∆ = ε. Let E be such that ε; ε ` E : [;]〈ε; ε:τ〉 then need to show that E〈e1〉 ∼ E〈e2〉. By
assumption and Lemma B.8 all reduction sequences of E〈e1〉 go through E〈e2〉. 2

Lemma B.10 If ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ then: e1 ≡∆;Γ:τ e2 if and only if for all value
substitutions ρ such that ∆ ` ρ : Γ:

• e1{ρ}↑ ⇔ e2{ρ}↑
• e1{ρ} 7→∗ v1 implies ∃v2 : e2{ρ} 7→∗ v2 ∧ v1 ≡∆;ε:τ v2

• e2{ρ} 7→∗ v2 implies ∃v1 : e1{ρ} 7→∗ v1 ∧ v1 ≡∆;ε:τ v2

Proof: By CIU and Lemma B.5 twice it remains to show that for all value substitutions ρ
such that ∆; ε ` ρ : Γ, e1{ρ1} ≡∆;ε:τ e2{ρ} if and only if the right hand side. Let ρ be such that
∆; ε ` ρ : Γ, e′1 = e1{ρ}, and e′2 = e2{ρ}.

(Assume reduction is deterministic.)

(⇒) Let e′1 ≡∆;ε:τ e′2 (1). Consider C = [; 1 = [apply = x[∆]():τ.〈〉;].apply[~[;]]()] then e1↑ ⇔
C〈e1〉↑ and e2↑ ⇔ C〈e2〉↑. It is easy to establish that ε; ε ` C : [;]〈∆; ε:τ〉, so by (1) C{e′1}↑ ⇔
C{e′2}↑. Now, let e′1 7→∗ v1. Since reduction is deterministic e′2 7→∗ v2 for some v2, so it remains
to show that v1 ≡∆;ε:τ v2. By Lemma B.9 e′i ≡∆;ε:τ vi, the result follows by transitivity and
(1). The argument for e′2 7→∗ v2 is symmetric.

(⇐) Since reduction is deterministic and by the first part of the assumption, either both e′1 and
e′2 converge or both diverge. In the former case e′1 7→∗ v1, e′2 7→∗ v2, and v1 ≡∆;ε:τ v2 by either
of the other two parts. By Lemma B.9 e′i ≡∆;ε:τ vi, so the result follows by transitivity. In the
latter case, by CIU let % and E be such that ε ` % : ∆ and ε; ε ` E : [;]〈ε; ε:τ{%}〉. Then by
Lemma B.8 both E〈e1{%}〉 and E〈e2{%}〉 diverges as required. 2

25

Lemma B.11 If ∆1 ` % : ∆2 and e1 ≡∆1,∆2;Γ:τ e2 then e1{%} ≡∆1 ;Γ{%}:τ{%} e2{%}.

Proof: Follows by Lemma B.5 and the fact that a ∆1 type substitution and a ∆2 type
substitution can be spliced together to form a ∆1, ∆2 type substitution. 2

Lemma B.12 If e 7→ v, ε; ε ` e : τ , and ε; x:τ ` e′ : σ then e′{x := e} ≡ε;ε:σ e′{x := v}.

Proof: By CIU, let E be such that ε; ε ` E : [;]〈ε; ε:σ〉. If both E〈e′{x := e}〉 and E〈e′{x :=
v}〉 diverge, then the result follows. Otherwise, consider e1{x := e} and e1{x := v} where one
converges, the goal is show that both converge by induction on the least convergence length.
If e1{x := e2} 7→ e3{x := e2} for all e2 and some e4 then the result follows by the induction
hypothesis. Otherwise e1{x := e} = E〈x〉{x := e} and e1{x := v} = E〈x〉{x := v}. Then
e1{x := v} 7→∗ E{x := e}〈v〉, so by induction on the number of occurrences of x in E, the other
case eventually holds. 2

Lemma B.13 If e1 ≡ε;x:τ :σ e2 and v1 ≡ε;ε:τ v2 then e1{x := v1} ≡ε;ε:σ e2{x := v2}.

Proof: By CIU Congruence and CIU [apply = [](x:τ):σ.e1;] ≡ε;ε:[apply:[](τ):σ] [apply =
[](x:τ):σ.e2;]. Since for any appropriate E E〈[; 1 = v1, 2 = v2]〉 7→ vi, it is easy to estab-
lish that [; 1 = [apply = [](x:τ):σ.e1;], 2 = v1] ≡ε;ε:τ ′ [; 1 = [apply = [](x:τ):σ.e2;], 2 = v2]
for τ ′ = [; 1 = [apply:[](τ):σ]+, 2 = τ+]. By CIU Congruence for C = 〈〉.1.apply[](〈〉.2),
C〈[; 1 = [apply = [](x:τ):σ.e1;], 2 = v1]〉 ≡ε;ε:σ C〈[; 1 = [apply = [](x:τ):σ.e2;], 2 = v2]〉.
The result follows since C〈[; 1 = [apply = [](x:τ):σ.ei;], 2 = vi]〉 7→3 ei{x := vi}. 2

Definition B.4 Γ = Γ1 + Γ2 if and only if dom(Γ) = dom(Γ1)∪ dom(Γ2)∧ (x:τ ∈ Γ⇔ (x:τ ∈
Γ1 xor x:τ ∈ Γ2))

Lemma B.14 For term substitutions ρ1 and ρ2 such that for all x ∈ dom(Γ)1 both ρ1(x) and
ρ2(x) converge, if Γ = Γ1 + Γ2, ρ1 ≡∆:Γ1 ρ2, and e1 ≡∆;Γ:τ e2 then e1{ρ1} ≡∆;Γ2:τ e2{ρ2}.

Proof: By CIU and Lemma B.5 it suffices to show the result for ∆ = ε and Γ2 = ε. The
result follows by induction on the size of Γ1. Let e1 ≡ε;x:τ ′:τ e2 (1), e′1 ≡ε;ε:τ ′ e′2 (2), e′1 7→∗ v1,
and e′2 7→∗ v2. By (2) and Lemma B.9 v1 ≡ε;ε:τ v2. Then by Lemma B.12 ei{x := e′i} ≡ε;ε:σ

e1{x := vi}. The result follows by Lemma B.13. 2

B.2 Closed Under Reduction

Definition B.5

• A ∆-TP (typed pair) is a triple (v1, v2, τ) such that ∆; ε ` v1 : τ and ∆; ε ` v2 : τ .

• A ∆; Γ-STP (set of typed pairs) is a set of ∆-TPs.

• A ∆-STP {(vi
1, v

i
2, τ

i)} is ∆-TOE (typed observationally equivalent) if and only if

vi
1 ≡∆;ε:τ i vi

2

26

• A pair of contexts E1 and E2 is a ∆:τ1⇒τ2-reduction pair if and only if they satisfy one
of the forms in the table below.

E1/E2 τ1/τ2 Side Conditions
〈〉.m[~σ](v11, . . . , v1n) [m:[~α](τ ′

1, . . . , τ
′
n)→ τ ′] v1i ≡∆;ε:τ ′{~α:=~σ} v2i

〈〉.m[~σ](v21, . . . , v2n) τ ′{~α := ~σ}
〈〉.f [; f :τφ

2] φ ∈ {+, ◦}
〈〉.f
〈〉.f ← v1 [; f :τφ] φ ∈ {−, ◦}; v1 ≡∆;ε:τ v2

〈〉.f ← v2 τ1

〈〉[σ] ∀α.τ ′

〈〉[σ] τ ′{α := σ}

• For a ∆-STP A: v1 ≡∆;ε;A:τ v2 if and only if either v1 ≡∆;ε:τ v2 or there exists τ ′ such
that (v1, v2, τ

′) ∈ A and ∆ ` τ ′ ≤ τ .

• A ∆-STP A is strictly closed under reduction if and only if for each ∆-TP (v1, v2, τ) ∈ A
and every ∆:τ1⇒τ2-reduction pair E1 and E2 such that ∆ ` τ ≤ τ1:

– E1〈v1〉 7→ v′1 implies ∃v′2 : E2〈v2〉 7→ v′2∧(v′1 ≡∆;ε;A:τ2 v′2∨(v′1 = E1〈v1〉∧v′2 = E2〈v2〉))
– E2〈v2〉 7→ v′2 implies ∃v′1 : E1〈v2〉 7→ v′1∧(v′1 ≡∆;ε;A:τ2 v′2∨(v′1 = E1〈v1〉∧v′2 = E2〈v2〉))

• Closed under reduction is the same as strictly closed under reduction except that the self
variable is ignored in the method invocation rule. To be precise, if by the method invocation
rule E1〈v1〉 7→ v′1{x := v1} where x is the self variable, and E2〈v2〉 7→ v′2{x := v2} then
v′1 ≡∆;x:τ :τ2 v′2 must hold.

• Two value substitutions ρ1 and ρ2 are Γ-observational equivalent substitutions of A, ρ1 ≡A
Γ

ρ2, if and only if ∀x ∈ dom(Γ) : (ρ1(x), ρ2(x), Γ(x)) ∈ A.

Lemma B.15 If a ∆-STP A is strictly closed under reduction then A is ∆-TOE.

Proof: (Assume reduction is deterministic.)

By CIU and Lemma B.5 it suffices to show that for all % such that ε ` % : ∆ that A{%} is
ε-TOE. Let A′ = A{%}∪ {(v1, v2, τ)|v1 ≡ε;ε:τ v2} for an arbitrary % such that ε ` % : ∆. Clearly
the union of two sets that are strictly closed under reductions is also strictly closed under
reductions. By a tedious inspection of the definitions, A′ is ε-STP that is strictly closed under
reduction. Consider an arbitrary (v1, v2, τ) ∈ A′, let C be such that ε; ε ` C : [;]〈ε; ε:τ〉, need to
show that C〈v1〉 ∼ C〈v2〉. If both these sequences diverge the result follows, otherwise without
loss of generality assume that C〈v1〉↓, need to show that C〈v2〉↓. I will show by induction on
the length of e{ρ1} 7→∗ v that e{ρ2}↓ where ε; Γ ` e : and ρ1 ≡A′

Γ ρ2 for some Γ. If e{ρ1} is a
value then clearly so is e{ρ2} as both ρ1 and ρ2 are value substitutions. If e{ρ} 7→ e′{ρ} for all
appropriate ρ then the result follows by the induction hypothesis. Otherwise, by inspection of
the reduction rules there exists E, E ′, and x ∈ dom(Γ) (but, see proof of Lemma B.4) such that
e{ρ} = E ′〈E〈x〉〉{ρ} for all appropriate ρ and where E has one of the forms 〈〉.m[~τ](~e), 〈〉.f ,
〈〉.f ← e, or 〈〉[τ]. Since (ρ1(x), ρ2(x), Γ(x)) ∈ A′ and A′ is strictly closed under reductions,
E〈x〉{ρi} 7→ vi and either vi = E〈x〉{ρi}, v1 ≡ε;ε:σ v2, or (v1, v2, σ) ∈ A′ for some σ. In the
first case clearly e{ρi}↑ as required. In the other two cases (v1, v2, σ) ∈ A′. Let y be fresh,

27

ρ′1 = ρ1, y := v1, ρ′2 = ρ2, y := v2, Γ′ = Γ, y:σ′ and the result follows from the induction
hypothesis on E ′〈y〉{ρ′i}. 2

Lemma B.16 If a ∆-STP A is closed under reduction then A is ∆-TOE.

Proof: Let A[n] be the set of ∆-TPs obtained from A by inserting unwinding numbers
as follows: on object constructors that are values of a triple place n, and on all other object
constructors place ω. I will prove by induction on i ∈ N that A[i] is ∆-TOE, the result follows by
Lemma A.3. I claim that A[i] is strictly closed under reduction. Let (vi

1, v
i
2, τ) ∈ A, E1 and E2

be a ∆:τ1⇒τ2-reduction pair, and ∆ ` τ ≤ τ1. Then since A is closed under reduction, either the
required conditions hold, or E1〈vω

1 〉 7→ v′1{x := vω
1 }, E2〈vω

2 〉 7→ v′2{x := vω
2 }, and v′1 ≡∆;x:τ :τ2 v′2

(1). If i > 0 then E1〈vi
1〉 7→ v′1{x := vi−1

1 } and similarly for v2. Since (vi−1
1 , vi−1

2 , τ) ∈ A[i− 1],
by the induction hypothesis vi−1

1 ≡∆;ε:τ vi−1
2 . Thus by (1) v′1{x := vi−1

1 } ≡∆;ε:τ2 v′2{x := vi−1
2 }

satisfying the first part of ≡∆;ε;A:τ2. If i = 0 then E1〈v0
1〉 7→ E1〈v0

1〉 and E2〈v0
2〉 7→ E2〈v0

2〉 as
required. Thus A[i] is strictly closed under reduction, so by Lemma B.15 A[i] is ∆-TOE. 2

28

