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ABSTRACT
An object encoding translates a language with object prim-
itives to one without. Similarly, a class encoding translates
classes into other primitives. Both are important theoreti-
cally for comparing the expressive power of languages and
for transferring results from traditional languages to those
with objects and classes. Both are also important founda-
tions for the implementation of object-oriented languages
as compilers typically include a phase that performs these
translations.

This paper describes a language with a primitive notion of
classes and objects and presents an encoding of this language
into one with records and functions. The encoding uses
two techniques often used in compilers for single-inheritance
class-based object-oriented languages: the self-application
semantics and the method-table technique. To type the
output of the encoding, the encoding uses a new formula-
tion of self quantifiers that is more powerful than previous
approaches.

1. INTRODUCTION
An object encoding is a translation from a language with a

primitive notion of objects to one without, typically one that
has functions and records instead. Object encodings are im-
portant theoretically for comparing the expressive power of
object-oriented languages versus functional languages and
for transferring results proven about functional languages
to object-oriented languages. Object encodings are also im-
portant for building solid foundations for the implementa-
tion of object-oriented languages as known implementation
techniques typically involve a phase that turns objects into
records and functions.
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A typical implementation of an object-oriented language
uses a translation that corresponds to the self-application se-
mantics [Kam88] (this paper uses the term self-application
semantics to refer to both the implementation technique and
the semantics). In the self-application semantics, an object
becomes a record with entries for the object’s fields and
methods. Methods become functions which take an extra
argument, and the object itself is always passed as this ex-
tra argument—because part of the object is applied to the
object itself, the terminology “self application” is used.

Similarly, a class encoding is a translation from a lan-
guage with a primitive notion of classes into one without. A
class encoding might target a pure object language or might
be combined with an object encoding to produce records
and functions. Class encodings are important for the same
reason as object encodings: they illuminate the additional
expressiveness of classes and provide foundations for the im-
plementation of class-based languages.

A typical implementation of a class-based language uses
the method-table technique in addition to the self-application
semantics. In this refinement, objects become records with
entries for the object’s fields and an entry for a method
table, which is another record with entries for the object’s
methods. Only one method table is constructed per class
and is shared amongst all the class’s instances.

It is important to distinguish between typed and untyped
encodings. An untyped encoding translates into a language
without a static typing discipline. A typed encoding trans-
lates a statically typed language into a statically typed lan-
guage and must, if given type-correct input, produce type-
correct output. Typed encodings provide foundations for
type-directed compilers, which in addition to translating
code also maintain and translate type information. There
are several benefits to type-directed compilers: They can be
debugged by turning on intermediate language type check-
ers (e.g., [MTC+96]). They can use type information to
guide or enable optimisation or better run-time systems
(e.g., [TMC+96]). They can produce certificates of safety
for target code [NL98, MCG+99]. Typed object and class
encodings describe how to produce the necessary type infor-
mation for an intermediate language based on records and
functions.

The search for object and class encodings is also an at-
tempt to tease apart the various aspects of objects: packag-
ing of code and data, self reference, information hiding, et
cetera. Teasing these aspects apart breaks the object con-
struct into a number of separate concepts. Many of these
concepts match well with traditional records, functions, and



type systems. Indeed, the self-application semantics and
method-tables are easily expressed as untyped object en-
codings. But one concept does not: the type of self, and
this mismatch makes it difficult to extend these encodings to
produce type correct output in some typed language. Typed
encodings must somehow capture the type of self using ex-
isting type constructors or by inventing new ones.

The extensive previous work on typed object and class en-
codings, is discussed in detail with references in Section 5.
These encodings have used a combination of recursive types
and some flavour of existential types to capture the type of
self. Recursive types are used because objects can refer to
themselves. Existential types are used to try to capture the
information hiding aspect of objects. Unfortunately, these
combinations of recursive and existential types do not quite
capture self’s type, forcing these encodings to include work
arounds: extra data structures, extra indirections, and ex-
tra operations. For theoretical purposes, these work arounds
are no problem, and these encodings answer important the-
oretical questions such as the comparative expressiveness of
object-oriented languages versus functional languages and
how to transfer results about functional languages to object-
oriented languages. But for practical purposes, implemen-
tations based directly on these encodings are not efficient,
and so these encodings cannot be considered foundations for
language implementation.

This paper tackles the type of self directly by introducing
a new type constructor, the self quantifier, to capture it. To
explain what a self quantifier does, consider some object and
the static types assigned to it at various program points. In
general the static types will not be the actual run-time type
of the object, but rather a supertype of the run-time type.
Self quantifiers allow the supertype to refer to the actual, but
unknown, run-time type of the object. This paper uses self
quantifiers to devise a new typed object and class encoding
that is faithful to the self-application semantics and method-
table techniques. In particular, methods become functions
which require an argument of the actual run-time type, and
self quantifiers are used to capture this requirement.

The main contribution of this paper is a new typed ob-
ject and class encoding based on a new formulation of self
quantifiers. The key to understanding object encodings is
the typing of self, and self quantifiers naturally capture
this type. The new formulation of self quantifiers avoids
certain problems with previous typed encodings and allows
the self-application semantics and method-table techniques
to be used as the term translation. Since these techniques
are used in real compilers, the new encoding provides a for-
mal foundation for implementations. A minor contribution
of this paper is a new object language with primitive notions
of classes and objects.

1.1 Roles of Classes
In typical class-based object-oriented languages, classes

play a number of roles. Primarily, a class provides a tem-
plate for the creation of objects, specifying which fields the
objects will have and how they will respond to methods. But
classes play other roles as well. For example, in Java [GJS96]
a class provides a template, a named type, an explicit sub-
typing relationship between this named type and the named
type of the superclass, constructors that allow for the con-
trolled creation and initialisation of objects, and the ability
to downcast objects based on the class from which they were

class Window {

Rectangle extent;

boolean handleEvent(Event) {· · · };
boolean contains(Point) {· · · };

}

class ContainerWindow extends Window {

Window[] children;

boolean handleEvent(Event) {· · · };
void addChild(Window) {· · · };

}

Figure 1: Example Class Hierarchy

created. This paper just concentrates on the role of classes
as templates for objects. The role of classes in downcast-
ing is addressed in another paper [Gle99b]. The other roles,
while important, are beyond the scope of this paper and are
left to future work.

2. OBJECT TEMPLATE LANGUAGE
To begin, this section defines a language with primitive

notions of objects and object templates. Object templates
capture the role of classes as templates for objects. Con-
sider the example class hierarchy shown in Figure 1 that
includes classes from a hypothetical GUI toolkit. The class
Window represents windows on the user’s screen and the class
ContainerWindow represents windows that are the compo-
sition of a number of child windows. Class Window has a
field containing the current position and size of the window
and methods for handling user events and for determining
if a pixel is within the window. Class ContainerWindow has
a field containing the current children and a new method
for adding children. Additionally, it overrides handleEvent

perhaps to distribute the event to one of children according
to screen location.

Class Window provides a template for objects with a field
extent and methods handleEvent and contains. Similarly,
ContainerWindow provides a template for objects with fields
extent and children and methods handleEvent, contains,
and addChild. One way to construct these templates is to
start with the superclass’s template and then apply opera-
tions that add fields, add methods, and override methods.
Since adding a field is not dependent upon the other fields
or methods, adding a single field could be a basic operation.
Adding or overriding methods, however, is not independent,
because the new methods may refer to other methods be-
ing added. Therefore, the addition and overriding of several
methods is the most basic operation. Using et to denote the
empty template, + to denote field addition, and ←+ to de-
note method addition and overriding, templates for Window

and ContainerWindow are constructed as follows:

let Windowt =
et + extent : Rectangle
←+[handleEvent = · · · , contains = · · · ] in

let ContainerWindowt =
Windowt + children : array(Window)

←+[handleEvent = · · · , addChild = · · · ] in

Objects are created by instantiating classes, or more pre-
cisely, their templates. The new object will have all the
fields and methods in the template and will respond to the



methods according to the code given in the template. The
instantiation operation must provide initial values for the
fields as the template only lists the fields and their types.
(Most object-oriented languages provide more sophisticated
creation and initialisation mechanisms; these mechanisms
are beyond the scope of this paper.) Writing instantiation
as new template[field = initial value], objects from Window

and ContainerWindow are created as follows:

let w1 = new Windowt[extent = r1] in
let w2 = new ContainerWindowt

[extent = r2, children = array()] in

where r1 and r2 are rectangles.
Objects are manipulated using the operations of method

invocation, field selection, and field update. For example,
the operation w2.addChild(w1) adds w1 as a child of w2.

The language informally described so far captures the key
features of a single-inheritance class-based language such as
Java. The rest of this section formalises an object template
language called O, and the next section shows how to encode
it into a language with records and functions. The term
language of O is:

Expressions e ::= x |
et | e + f : σ | e←+[mi = Mi]i∈I |
new e[fj = ej ]j∈J |
e.m | e.f | e1.f := e2

Methods M ::= x.e:τ

Metavariable x ranges over term variables, m over method
names, and f over field names.

In O, templates are values distinct from the objects that
are created from them, and are built from the empty tem-
plate by the operations of field addition and method ad-
dition/override. The empty template is written et; its in-
stances have no fields and no methods. The operation e+f :
σ adds field f with type σ to template e producing a new
template. The template e must not have field f , and the
new template has all the methods, method implementations,
and fields of e, as well as field f with type σ. The operation
e←+[mi = Mi]i∈I adds or overrides methods mi of template
e with implementations Mi, producing a new template. The
new template will have methods mi with implementation Mi

plus all the methods in e not in {mi|i ∈ I}, as well as all
fields of e. A method implementation M has the form x.e:τ .
Unlike Java, O does not have an explicit keyword for self,
but instead the programmer chooses a variable x and uses
this variable to refer to self in the method body. In x.e:τ ,
x is the variable chosen to stand for self, e is the method
body, and τ is the return type. If object o has x.e:τ as its
implementation of method m then the method invocation
o.m will result in the execution of e with x replaced by o.
Note that methods are parameterless, Section 4 describes
extensions of O with method parameters.

Objects are created by instantiating templates and can be
manipulated by method invocation, field selection, and field
update. Instantiation is written new e[fj = ej ]j∈J , where
e is the template to be instantiated and ej is the initial
value of field fj . The new object will respond to methods as
dictated by template e. Method invocation is written e.m,
field selection e.f , and field update e1.f := e2.

The type language of O is:

Types τ, σ ::= tempt r | objt r
Rows r ::= [mi : si; fj : σj ]i∈I,j∈J

Signatures s ::= τ

As templates are distinct from objects, they have their own
types, which are different from the types for objects. Tem-
plates are given the type tempt r where r, called a row,
describes the objects that result from instantiating the tem-
plate. The row [mi:si; fj :σj ]i∈I,j∈J describes objects with
methods mi of signature si and fields fj of type σj . The
order of the methods and fields matters,1 so I and J can be
thought of as ordered index sets. Methods in O are param-
eterless and just compute a result, so a signature is a type,
the type of the result. Section 4 describes extensions of O
with more complicated signatures. There is no interesting
subtyping for template types as the operations on templates
have conflicting subtyping requirements.

Objects have type objt r where r is a row as above. Ob-
ject types have right-extension breadth subtyping: an object
type with more methods on the right end and more fields on
the right end is a subtype of an object type with less. Ob-
jects types also have depth subtyping for methods: methods
of the subtype may have subsignatures of the methods of the
supertype. Because fields are mutable, they have no depth
subtyping. The following rule captures these properties:

k ∈ I2 : `O sk ≤ s′k
`O objt[mi:si; fj :σj ]i∈I1,j∈J1 ≤ objt[mi:s

′
i; fj :σj ]i∈I2,j∈J2

where I2 is a prefix of I1 and J2 is a prefix of J1.
Type checking terms is separated into two judgements:

one for expressions and one for methods. (This separation
along with the distinct syntactic classes for signatures and
methods will facilitate later extensions of O with method
arguments, type arguments, and self types.) Judgement
Γ `M

O M : τ � s asserts that method implementation M
has signature s when self has type τ or one of its subtypes.

Type checking the template operations is fairly straight-
forward. The empty template has the empty template type
tempt[; ]. The operation e+f :σ requires e to have a template
type without field f , and the result type is the same template
type but with f added. Method addition/override is more
complicated. This operation is type checked by first com-
puting the row for the new template, then checking that the
method implementations are correct assuming self has the
new row, and finally checking that any overridden methods
have compatible signatures, that is, the overriding method
has a subsignature of the overridden method. Formally, the
typing rule is:

Γ `O e : tempt[mi:si; fj :σj ]i∈I,j∈J

k ∈ K : Γ `M
O Mk : objt r′ � s′k

k ∈ I ∩K : `O s′k ≤ sk

Γ `O e←+[mi = Mi]i∈K : tempt r′

where r′ = [mi:s
′′
i ; fj :σj ]i∈(I,K−I),j∈J , s′′i = si if i ∈ I −K,

and s′′i = s′i if i ∈ K.
Instantiation new e[fj = ej ]j∈J requires e to have a tem-

plate type, {fj |j ∈ J} to be exactly the fields in e’s type,

1The encoding is also correct if the order of methods and
fields is unimportant, so long as the order of record fields in
the target language is unimportant.



and ej to have the type of field fj :

Γ `O e : tempt r Γ `O ej : σj

Γ `O new e[fj = ej ]j∈J : objt r
(r = [mi:si; fj :σj ]i∈I,j∈J )

Method invocation e.m requires e to have an object type
with method m and the result type is m’s signature. Field
selection e.f requires e to have an object type with field f
and the result type is f ’s type. Field update e1.f := e2

requires e1 to have an object type with field f , e2 to have
f ’s type, and the result type is e1’s type.

Appendix A gives an operational semantics and a full set
of typing rules for O. O could be given either a functional
or an imperative semantics, and so long as the target lan-
guage in the next section has the same kind of semantics, the
encoding in the next section will be correct. Since a func-
tional semantics is more concise, it is used in this paper.
The typing rules are sound with respect to the operational
semantics [Gle00a].

3. ENCODING O
This section presents a typed encoding of O into a lan-

guage with records and functions, using the self-application
semantics and the method-table technique. Before getting
into formal details, this part of the section informally spells
out the self-application semantics and method-table tech-
nique in more detail and discusses the issues that arise in
trying to type them. These typing issues motivate a new
type constructor, the self quantifier, as well as other fea-
tures needed in the target language. Section 3.1 formalises
the target language and Section 3.2 formalises the encoding.

This section informally describes the encoding, and some-
times uses the the formal translation syntax to refer to other
parts of the encoding. Unfortunately, it is necessary to refer
to some parts of encoding before they are defined. To ease
the burden, here is a summary of the parts of the encoding,
the formal translation syntax, and their intended meanings.

[[τ ]]type The translation of type τ
[[r]]mt(τ ) The record type of the method table

of a translated object where τ is
the type of self

[[r]]full(τ ) The record type of the translation of
an object where τ is the type of self

[[s]]sig(τ ) The translation of signature s
[[e]]exp The translation of expression e
[[M ]]mth(τ ) The translation of method body M where

τ is the type of self

Two of these deserve a little elaboration. Objects are trans-
lated into records, one of whose fields is the method table,
also a record. The types [[r]]full(τ ) and [[r]]mt(τ ) are the re-
spective record types for these records where τ is the type
of self. The translation of object and template types use
these types, but also have quantifiers to introduce self’s
type as described later.

Under the self-application semantics, a method is com-
piled into a function taking an extra argument, and dur-
ing method invocation the object itself is always passed as
the extra argument. Thus, the method handleEvent in the
class Window is compiled to a function of the following form,
named say Window::handleEvent:

λ(x:α, y:Event).b

where x is the extra self parameter, b is the body of the
method, and α is, for now, a type variable that stands for
the type of self. This function has type (α, Event)→ bool.

In a class-based language, all instances of a class have
the same methods. In order to save space, objects share a
structure with other instances of the class, the method table.
A method table is a record with one field for each method
the object responds to. For example, the Window class has
a method table, named say Window::mt:

〈handleEvent = Window::handleEvent,
contains = Window::contains〉

and ContainerWindow has method table:

〈handleEvent = ContainerWindow::handleEvent,
contains = Window::contains,
addChild = ContainerWindow::addChild〉

Using the suggested typing of Window::handleEvent, the
method table Window::mt has type:

[[Window]]mt(α) = 〈handleEvent:(α, Event)→ bool,
contains:(α, Point)→ bool〉 (1)

However, this type has a free α, and the encoding must
somehow introduce this α. Abadi and Cardelli [AC96] ob-
serve that the methods in these method tables are polymor-
phic in the final object type, and so can be given an F-
bounded polymorphic type [CCH+89]. Using the [[r]]full(α)
type, Window’s method table gets type:

〈handleEvent : ∀α ≤ [[Window]]full(α).(α, Event)→ bool,
contains : ∀α ≤ [[Window]]full(α).(α, Point)→ bool〉

My encoding will use this idea with one twist. Instead of
polymorphic methods, the method table itself is polymor-
phic. Thus Window’s method table has type:

∀α ≤ [[Window]]full(α).〈handleEvent : (α, Event)→ bool,
contains : (α, Point)→ bool〉

This means that a method table can be installed into an
object simply by instantiating it at an appropriate type.
In general [[temp r]]type = ∀α ≤ [[r]]full(α) . [[r]]mt(α) and
[[r]]mt(α) is a record type with one entry for each method
in r, which is a function taking an α to the result of that
method:

[[[mi:α.τi; fj :σj ]i∈I,j∈I ]]mt(α) = 〈mi:α→ [[τi]]type〉i∈I

An object is a record with an entry for its class’s method
table and an entry for each of its fields. For example, in-
stances of Window and ContainerWindow would have the
forms

〈mt=Window::mt, extent=r1〉
〈mt=ContainerWindow::mt, extent=r2, children=a〉

respectively, where r1 and r2 are some rectangles and a is
some array of Windows.

The type of an instance of Window has the form:

[[Window]]full(α) = 〈mt : [[Window]]mt(α),
extent : Rectangle〉

Again the issue is how to introduce α. Naively, this is the
object type itself, so a recursive type should be used:

rec α.〈mt : [[Window]]mt(α), extent : Rectangle〉 (2)



Unfortunately this does not work for the following reason.
Consider a ContainerWindow instance, which also has type
Window, it would have the following target type:

rec α.〈mt : [[ContainerWindow]]mt(α), extent : Rectangle,
children : array(Window)〉

Since ContainerWindow is a subtype of Window, its transla-
tion must be a subtype of Window’s translation. This means
that the above type should be a subtype of (2), but it is
not. Type (2)’s body has a contravariant occurance of α
(see (1)), so has no subtypes other than itself.

The problem is that the recursive type makes α, the type
of self, equal to Window instead of the actual run-time type
of the object. The solution is to somehow make α refer
to this actual run-time type. To achieve this, I introduce
a new2 type constructor, a self quantifier, instead of the
recursive quantifier.

A self quantifier allows a type to refer to the actual run-
time type of the value inhabiting it. The type self α.τ con-
tains values v of type τ where α is the actual type of v.
Using this quantifier, Window’s instances have type:

self α.〈mt : [[Window]]mt(α), extent : Rectangle〉
In general [[obj r]]type = self α.[[r]]full(α) and [[r]]full(α) is a
record type with an entry for the method table and an entry
for each field of r:

[[r]]full(α) = 〈mt:[[r]]mt(α), fj :[[σj ]]type〉j∈J

where r = [mi:τi; fj :σj ]i∈I,j∈I

The only remaining issue is formalising self quantifiers.
Abadi and Cardelli [AC96] provide a formulation of self
quantifiers, but their formulation leads to the need for “re-
coup” fields and the inefficiencies of an extra field and an
extra projection.3 The encoding needs a new formulation of
self quantifiers that avoids the problems of recoup fields.

Abadi and Cardelli’s formulation involves two operations:
one to introduce self quantifiers and one to eliminate them.
The introduction form is pack e, σ as self α.τ (they call it
“wrap”), and it produces an expression e packaged up with
its actual self type σ. The typing rule is:

∆; B; Γ `F e : σ ∆; B `F σ ≤ τ{α := σ}
∆; B; Γ `F pack e, σ as self α.τ : self α.τ

where capture avoiding substitution of x for y in z is written
z{y := x}. For σ to actually be e’s self type, e must have
type σ. In addition e also must have type τ with α replaced
by e’s self type, that is, e must have type τ{α := σ}. The
latter is achieved by requiring that σ ≤ τ{α := σ}. Using
pack, the translation of new Windowt[extent = r1] is:

pack 〈mt = Window :: mt, extend = [[r1]]exp〉,
rec α.[[Window]]full(α) as self α.[[Window]]full(α)

Here, the object’s run-time is rec α.[[Window]]full(α). For this
type to satisfy the requirements for packing into a self type,
the condition ∆;B `F σ ≤ τ{α := σ} above, it must be

2Strictly speaking, self quantifiers were introduced by Abadi
and Cardelli [AC96], but, as explained in this section, their
formulation of self quantifiers is insufficient for the purposes
of this paper, so a new formulation is needed.
3Note that the translation of objects given in this sec-
tion under the interpretation of self quantifiers used by
Abadi and Cardelli leads directly to Abadi, Cardelli, and
Viswanathan’s encoding for an imperative calculus.

the case that rec α.τ ≤ τ{α := rec α.τ}. This is true under
an equirecursive interpretation of recursive types, that is,
where rec α.τ = τ{α := rec α.τ}. The target language has
this interpretation.

The elimination form is unpack α, x = e1 in e2 (they call it
“use as”). Intuitively, the expression e1 is a value packaged
with its self type, and unpack unpacks the value into x and
the self type into α, and executes e2. The typing rule is:

∆; B; Γ `F e1 : self α.τ1

∆, α; B, α ≤ self α.τ1; Γ, x : τ1 `F e2 : τ2

∆ `F τ2

∆; B; Γ `F unpack α, x = e1 in e2 : τ2

Notice that x is assumed to have type τ1, but will be bound
to a value whose actual run-time type could be a strict sub-
type of τ1. For this reason, this unpack typing rule is too
weak to type check method invocation. Consider the method
invocation e.m where e has type obj r and m has signature τ
in r. It is translated into unpack α, x = [[e1]]exp in x.mt.m x.
Under the above rule, x.mt.m has type α → [[τ ]]type, but x
has type [[r]]full(α), which is a strict supertype of α.

The solution is to make a stronger assumption about x—
that it has type α. This is sound because α is bound to the
actual run-time type of the value bound to x. This stronger
assumption leads to the rule:

∆; B; Γ `F e1 : self α.τ1

∆, α; B, α ≤ τ1; Γ, x : α `F e2 : τ2

∆ `F τ2

∆; B; Γ `F unpack α, x = e1 in e2 : τ2

Note, however, that the bound α ≤ τ1 has α on both the
left and the right sides, that is, it is an F bound rather
than an ordinary bound. Since the system must already
deal with F-bounded polymorphism, these F bounds add no
additional complexity. In fact, this use of F bounds brings
a nice symmetry to the system, as F bounds are used in the
typing of methods, and F bounds are used in the typing of
method invocation.

Using this new rule, reconsider the translation of e.m:

unpack α, x = [[e]]exp in x.mt.m x

During type checking of x.mt.m x, x has type α and α has
bound [[r]]full(α). Thus x.mt.m type checks and has type
α→ [[τ ]]type. Since x has type α, the application type checks.

Finally consider method addition/override. The transla-
tion of this operation needs to create a new method table
that is a combination of an old method table and some new
method implementations. There are two approaches: cre-
ate a new record and copy the relevant entries from the old
record, or have record operations for updating a field and for
extending a record with a new field. Either approach would
work, but I have chosen the second approach. Overridden
methods translate into a record update operation that needs
to produce a new record. Field update also translates into a
record update operation. If the source language has applica-
tive field update then this operation needs to produce a new
record. If the source language has imperative field update
then this operation needs to update in place. Even if the
source language has applicative field update, the typing re-
quirements for the translation of field update and the trans-
lation of method override are different and require different
record update operations. Therefore, the target language



has record extension and two record update operations in
addition to projection and record formation.

Most class-based object-oriented language, unlike O, do
not have first-class templates. In these languages, a method
table is completely determined at compile time (link time
in dynamic languages like Java) and the method tables can
be built by the compiler and included in the static-data seg-
ment. In O this amounts to statically reducing template ex-
pressions to template values, which can then be translated
into statically determined records and functions. Since O
has first-class values, the translation presented in this paper
treats the more general case.

3.1 Target Language
The target language, Fself , is a variant of the second-order

typed lambda calculus with records, F-bounded polymor-
phism, self quantifiers, and recursive types. The syntax is:

Types τ, σ ::= α | τ1 → τ2 | 〈`i : τφi
i 〉ϕi∈I |

∀α ≤ τ1.τ2 | self α.τ | rec α.τ
Variances φ ::= + | ◦

ϕ ::= ◦ | →
Expressions e ::= x | λx : τ.e | e1 e2 |

〈`i = ei〉i∈I | e.` | e1.`← e2 |
e1.` := e2 | e1 + ` = e2 |
Λα ≤ τ.e | e[τ ] |
pack e, τ as self α.σ |
unpack α, x = e1 in e2

The unusual features of Fself are its records, F-bounded
polymorphism, self quantifiers, and equirecursive types. Fself

contains an extensive set of record operations including pro-
jection, update, and extension. In order to have all these
operations as well as breadth and depth subtyping, which is
necessary for the encoding, record types must have a num-
ber of variances to keep everything straight. A record type
〈`i:τ

φi
i 〉ϕi∈I contains records with fields `i of type τi. The

variance φi specifies the allowable operations on that field,
+ means projection only and ◦ allows both projection and
update. The record variance ϕ specifies whether the type
lists all of the fields of the value or just some of them. A
record is in the type 〈`i:τ

φi
i 〉◦i∈I only when it has exactly the

fields `i∈I , but is in the type 〈`i:τ
φi
i 〉→i∈I when it has at least

the fields `i∈I and possibly more.
There are two record update operations. The operation

e1.` := e2 can be interpreted imperatively or applicatively
depending upon whether the source language has an imper-
ative or applicative field update. Its typing rule is struc-
tural [AC96] (see also [HP98]), that is, the type of the result
is the same as the type of e1, which is required to be a sub-
type of a record type with a field ` that is mutable and e2

must have the type corresponding to `:

∆; B; Γ `F e1 : σ1

∆; B `F σ1 ≤ 〈`i:τ
φi
i 〉ϕi∈I

∆; B; Γ `F e2 : τk

∆; B; Γ `F e1.`k := e2 : σ1
(k ∈ I ; φk = ◦)

The operation e1.` ← e2, on the other hand, always pro-
duces a new record, which is a copy of e1 with the ` field
replaced by e2. Its typing rule ignores the old type and vari-
ance of ` and the result type is a record type obtained from

e1’s by replacing the field ` with the type of e2:

∆; B; Γ `F e1 : 〈`i:τ
φi
i 〉ϕi∈I ∆; B; Γ `F e2 : σ

∆; B; Γ `F e1.`k ← e2 : 〈`i:τ
′
i
φ′

i〉ϕi∈I

(k ∈ I)

where τ ′i
φ′

i = τφi
i if i 6= k and τ ′k

φ′
k = σ◦. Finally, the

operation e1 + ` = e2 adds a new field ` with initial value e2

to record e1. Record e1 must not contain a field `, and the
typing rule ensures this by using the exact record variance ◦:

∆; B; Γ `F e1 : 〈`i:τ
φi
i 〉◦i∈I ∆; B; Γ `F e2 : σ

∆; B; Γ `F e1 + ` = e2 : 〈`i:τ
φi
i , `:σ◦〉◦i∈I

(` /∈ `i∈I)

Polymorphic types ∀α ≤ τ1.τ2 are F bounded [CCH+89].
This means that α binds in both τ1 and τ2, and that a
type σ satisfies the bound if σ is a subtype of τ1{α := σ}.
Otherwise, they follow the standard rules for polymorphic
types with the kernel-fun subtyping rule:

∆, α `F τ ∆, α; B, α ≤ τ ; Γ `F e : σ

∆; B; Γ `F Λα ≤ τ.e : ∀α ≤ τ.σ

∆; B; Γ `F e : ∀α ≤ τ1.τ2 ∆; B `F σ ≤ τ1{α := σ}
∆; B; Γ `F e[σ] : τ2{α := σ}

Recursive types rec α.τ contain values that have type τ
where α refers to the recursive type rec α.τ . This is for-
malised by making a recursive type equal to its unrolling:

∆ `F rec α.τ = τ{α := rec α.τ}
The most novel aspect of Fself is its self quantifiers. A

self quantified type is written self α.τ , and has a covariant
subtyping rule:

∆, α; B `F τ ≤ σ

∆; B `F self α.τ ≤ self α.σ

Self quantified types are introduced by the pack operation
and eliminated by the unpack operation. These operations
have the semantics and typing rules discussed above.

Appendix B gives an operational semantics and a full set
of typing rules for Fself . The typing rules are sound with re-
spect to the operational semantics [Gle00a]. An alternative
formulation of the target language with explicit coercions
for recursive types is described in my dissertation [Gle00b].

Equirecursive types and F-bounds make decision proce-
dures for subtyping far from obvious. However, there are
algorithms for first and second-order systems with recur-
sive types [AC93, KPS95, CG99]. I believe these results
can be extended to Fself , but am still working out the de-
tails. Alternatively, a variation of Fself where recursive types
and F-bounds are mediated by explicit coercions [Gle00b] is
definitely decidable and practical. Also, the calculus of co-
ercions [Cra99] could also be used to get a decidable version
of Fself . Fself does not have a minimal types property be-
cause of the variances on fields. If the introduction form
for records were 〈`i = ei:τi〉i∈I with a rule that required
ei to have type τi then Fself would have a minimal types
property. The self quantifier developed in this paper could
also be used in lower-level typed languages including typed
target languages such as TAL [MWCG99, MCG+99].

3.2 The Translation
The translation appears in Figure 2. Technically it is a

type-directed translation and is defined by induction over an



[[tempt r]]type = ∀α ≤ [[r]]full(α).[[r]]mt(α, ◦)
[[objt r]]type = self α.[[r]]full(α)
[[r]]mt(τ, ϕ) = 〈mi:[[si]]sig(τ )+〉ϕi∈I

[[r]]full(τ ) = 〈mt:[[r]]mt(τ,→)+, fj :[[σj ]]
◦
type〉→j∈J

[[σ]]sig(τ ) = τ → σ

[[x]]exp = x
[[et]]exp = ∀α ≤ 〈mt:〈〉→+〉→.〈〉
[[e + f :τ ]]exp = ∀α ≤ [[r′]]full(α).[[e]]exp [α]

where e has type tempt[mi:si; fj :σj ]i∈I,j∈J and r′ is [mi:si; fj :σj , f :τ ]i∈I,j∈J

[[e←+[mi = Mi]i∈K ]]exp = ∀α ≤ [[r′]]full(α).([[e]]exp [α].mi ←i∈I∩K [[Mi]]mth(α) +i∈K−I mi = [[Mi]]mth(α))
where e has type tempt[mi:si; fj :σj ]i∈I,j∈J , r′ is [mi:s

′′
i ; fj :σj ]i∈(I,K−I),j∈J ,

s′′i = s′i if i ∈ K, and s′′i = si if i /∈ K
[[new e[fj = ej ]j∈J ]]exp = pack 〈mt = [[e]]exp[rec α.[[r]]full(α)], fj = [[ej ]]exp〉j∈J , rec α.[[r]]full(α) as [[objt r]]type

where e has type tempt r
[[e.m]]exp = unpack α, x = [[e]]exp in x.mt.m x

where α and x are fresh
[[e.f ]]exp = unpack α, x = [[e]]exp in x.f

where α and x are fresh
[[e1.f := e1]]exp = unpack α, x = [[e1]]exp in pack x.f := [[e2]]exp, α as [[objt r]]type

where e1 has type objt r and α and x are fresh
[[x.e:σ]]mth(τ ) = λx′:τ.let x = pack x′, τ as τ ′ in [[e]]exp

where x.e:σ has type τ ′ � σ and x′ is fresh

Figure 2: The Translation

O typing derivation. However, I present it as a function of O
expression syntax and indicate the typing assumptions. The
proof of correctness contains a kind of coherence argument
for the translation [Gle00a].

The translation uses the ideas developed in the introduc-
tion of this section. For a row r there are two important
target types: [[r]]mt(τ, ϕ) for method tables, and [[r]]full(τ ) for
the objects. The record type of a method table is [[r]]mt(τ, ϕ)
where τ is the type of self and ϕ is the desired record vari-
ance. Exact record variance is used for object templates,
because adding methods requires using the record extension
operation, which requires exact record variance. Extensible
record variance is used for objects in order to get depth sub-
typing. The record type of an object is [[r]]full(τ ) where τ is
the type of self. As discussed, a template type is polymor-
phic over self, so is translated to ∀α ≤ [[r]]full(α).[[r]]mt(α, ◦).
An object type uses a self quantifier, so is translated to
self α.[[r]]full(α).

At the term level, notice that field extension translates
into a term with no operational effect. The effect of the
type abstraction and application is to change the type to
reflect the new bound on the self type. Method update and
addition translates into a series of record extensions and ←
updates. Note that these are done sequentially, and the
mutual dependencies in the source language are resolved by
the type application [[e]]exp [α], where the new bound for α
has the necessary type information about the other meth-
ods. Template instantiation is translated into record forma-
tion followed by packing into the appropriate self type. The
method table is installed by instantiating it with a recursive
type for the actual self type. The method invocation, field
selection, and field update operations use unpack to open the
self quantifier and then apply the appropriate record oper-
ations. Note that field update unpacks the object, updates,
and then repacks it back into the appropriate self type.

The translation is both type preserving and operationally
correct [Gle00a].

4. EXTENSIONS
The previous section presented an object and class en-

coding for a very simple object template language. This
allowed the key ideas to be presented without being clut-
tered by extraneous source-language features. However, it
begs the question of whether the ideas generalise to more
advanced object-oriented constructs. In fact, they do and,
except for self types, they generalise without requiring any
new ideas. This section will demonstrate this by sketching
a number of extensions.

It is worth noting that the encoding, as presented, works
for either imperative or functional objects so long as the op-
eration := in Fself is interpreted in the same way. Also note
that any number of nonobject-oriented constructs could be
added to the source and target languages and the transla-
tion extended to deal with them. Since the target language
already has F-bounded polymorphism and recursive types,
these could also be added to the source language and trans-
lation.

Now consider more object-oriented constructs. Method
parameters could be added to O as follows:

s ::= (τ1, . . . , τn)→ τ
e ::= · · · | e.m(e1, . . . , en)
M ::= x(x1 : τ1, . . . , xn : τn).b : τ

To encode these method parameters Fself is extended with
multiargument functions.4 Using (τ1, . . . , τn) → τ for mul-

4Multiargument functions are theoretically equivalent to
curried functions, but the implementations are vastly dif-
ferent, especially if closure conversion is done earlier than
object encoding as I have suggested elsewhere [Gle99a].



tiargument function types, λ(x1 : τ1, . . . , xn : τn).b for mul-
tiargument functions, and e(e1, . . . , en) for multiargument
application the revised encoding is:

[[(τ1, . . . , τn)→ τ ]]sig(σ) =
(σ, [[τ1]]type, . . . , [[τn]]type)→ [[τ ]]type

[[e.m(e1, . . . , en)]]exp =
unpack α, x = [[e]]exp in
x.mt.m(x, [[e1]]exp, . . . , [[en]]exp)

[[x(x1 : τ1, . . . , xn : τn).b : τ ]]mth(σ) =
λ(x′ : σ, x1 : [[τ1]]type, . . . , xn : [[τn]]type).
let x = pack x′, σ as τ ′ in [[b]]exp

Type parameters can also be incorporated by encoding
methods as polymorphic functions:

s ::= [α1 ≤ τ1, . . . , αn ≤ τn]τ
e ::= · · · | e.m[τ1, . . . , τn]
M ::= x[α1 ≤ τ1, . . . , αn ≤ τn].b : τ

[[[α1 ≤ τ1, . . . , αn ≤ τn]τ ]]sig(σ) =
∀α1 ≤ [[τ1]]type. . . .∀αn ≤ [[τn]]type.σ → τ

[[e.m[τ1, . . . , τn]]]exp =
unpack α, x = [[e]]exp in
x.mt.m[[[τ1]]type] · · · [[[τn]]type] x

[[x[α1 ≤ τ1, . . . , αn ≤ τn].b : τ ]]mth(σ) =
Λα1 ≤ [[τ1]]type. . . . Λαn ≤ [[τn]]type.λx′ : σ.
let x = pack x′, σ as τ ′ in [[b]]exp

Covariant self types could be added to O by allowing sig-
natures of the form α.τ where α may occur only positively
in τ . Method bodies would have the form α, x.b : τ where α
is a type variable that binds in b and stands for the type of
self. The rule for method invocation would become:

∆; B `O e : τ

∆; B `O e.mk : τk{αk := τ}

where τ = objt[mi:si; fj :σj ]i∈I,j∈J , k ∈ I , and sk = αk.τk.
To encode this variant of O into Fself , a deeper form of pack
is needed. The deeper form of pack is written pack e, τ ′[α :=
τ ] as self α.σ and coerces an expression of type τ ′{α := τ}
into τ ′{α := self α.σ} when α occurs only positively in τ ′

and τ ≤ σ{α := τ}. The details are messy, but the essence
of the new translation is:

[[α.τ ]]sig(σ) = σ → ([[τ ]]type{α := σ})
[[e.m]]exp = unpack α, x = [[e]]exp in

pack x.mt.m x,
[[σ]]type[α := α] as [[τ ]]type

Where e has type τ and m’s signature in τ is α.σ. The
translation could probably be extended to a structural rule
for method invocation given a structural rule for unpack, de-
tails appear elsewhere [Gle00a]. The above type translation
for self types is compatible with contravariant self types, but
it is unclear what to do at the term level. This is unsurpris-
ing, since formulating object languages with contravariant
self types and subsumption is problematic [Coo89b][AC96,
§2.8 and §3.5].

O allows no depth subtyping in fields. O could use vari-
ances, as in Fself , to lift this restriction. Rows would have

the form [mi : si; fj : σ
φj

j ]i∈I,j∈J and subtyping would now

be:

i ∈ I2 : `O si ≤ s′i
j ∈ J2 : `O σ

φj

j ≤ σ′j
φ′

j

`O [mi = si; fj = σ
φj

j ]i∈I1,j∈J1 ≤
[mi = s′i; fj = σ′j

φ′
j ]i∈I2,j∈J2

where I1 is a prefix of I2 and J1 a prefix of J2. The field ex-
tension operation would now have a variance e+f : σφ, and
a field override operation is now possible: e.f := σφ where
σφ is a subtype/variance of the current type and variance of
f in e. The translation then becomes:

[[r = [mi:si; fj :σ
φj

j ]i∈I,j∈J ]]full(τ ) =

〈mt:[[r]]mt(τ,→)+, fj :[[σj ]]
φj
type〉j∈J

[[e.f := σφ]]exp =
∀α ≤ [[r′]]full(α).[[e]]exp [α]

where e.f := σφ has type tempt r′.
In a similar way, O could have variances on methods

and allow method override on objects. Method override on
objects is incompatible with the method-table technique.
However, a version of the encoding that just uses the self-
application semantics and not the method-table technique
could easily incorporate method override. In fact, any of
Abadi and Cardelli’s pure object languages [AC96] can be
encoded into suitable variants of O and thus be encoded us-
ing ideas in this paper. I believe that method extension on
objects could also be incorporated, but initial investigation
has revealed the need for some unusual structural rules for
record extension. I leave for future work a full investigation
of this possibility.

It is worth remarking that the encoding can be com-
bined with object closure conversion [Gle99a] and an en-
coding of functions as objects to provide a typed translation
of closure-passing-style closure conversion. In particular, a
function of type τ1 → τ2 translates into a closure of type
self α.〈(α, [[τ1]]type)→ [[τ2]]type〉.

The templates in O allow only single inheritance and con-
crete methods. To finish this section, I will sketch a couple
of generalisations that would allow abstract methods and
multiple inheritance. The first generalisation separates the
assumptions a template makes from what it provides. In
this version, template values consist of a row that speci-
fies the assumptions the template makes about the even-
tual object and a list of methods and methods bodies, thus
a form like temp(r; mi = Mi)i∈I . Template types would
mention both the assumptions and list of provided meth-
ods and signatures, as in tempt(r; mi:si)i∈I . There would
be a template operation for strengthening the assumptions
made, say e := r, where e has type tempt(r′; mi = Mi)i∈I

and r is a subtype of r′. The method override and ad-
dition operations would be broken into operations to add
single methods, e + m = M , and override single methods,
e.m := M . The instantiation operation would check that
all assumptions made about methods are provided by the
template being instantiated. The following rule ensures this
where r = [mi:si; fj :σj ]i∈I,j∈J :

Γ `O e : tempt(r; mi:s
′
i)i∈I `O s′i ≤ si Γ `O ej : σj

Γ `O new e[fj = ej ]j∈J : objt r

The translation could probably be revised based on the fol-



lowing type translation:

[[tempt(r; mi : si)i∈I ]]type =
∀α ≤ [[r]]full(α).〈mi : [[si]]sig(α)+〉◦i∈I

I leave it to future work to flesh out these ideas.
The second generalisation is to introduce a template com-

bining operation e1 + e2. There are two possible interpre-
tations for this operation, one could require e1 and e2 to
provide disjoint sets of methods, the other could allow e2 to
override e1. Taking the disjoint approach, a typing rule for
this operation might be, where mi∈I ∩m′

j∈J = ∅:
Γ `O e1 : tempt(r; mi:si)i∈I Γ `O e2 : tempt(r; m′

j :s
′
j)j∈J

Γ `O e1 + e2 : tempt(r;mi:si, m
′
j :s

′
j)i∈I,j∈J

Translating this operation requires a record combining oper-
ation with similar properties. Again, I leave to future work
the exploration of these ideas. Note that right-extension
breadth subtyping limits the usefulness of these combining
operations and should be abandoned in favour of arbitrary
breadth subtyping. The translation, as stated in the previ-
ous section, works for O with arbitrary breadth subtyping
so long as Fself also has arbitrary breadth subtyping.

5. PREVIOUS WORK

5.1 Object Encodings
An object encoding should preserve the meaning of pro-

grams, and for typed translations must preserve both typing
and subtyping. For use as foundations for language imple-
mentation, an encoding should also be efficient, and for use
in certifying compilers, full abstraction is a useful property.
In addition to these requirements, object encodings can be
compared according to the features of the source language
that they can encode. Bruce et al. [BCP99] provide an ex-
cellent comparison of most of the known object encodings.

Cardelli [Car88] proposed the first typed object encoding.
In his encoding, an object is a record that can recursively
refer to itself, often called a recursive record interpretation.
At the type level, an object type is the fixed point of a
record type whose elements are the methods’ types. The
encoding preserves meaning, typing, and subtyping, but it
cannot encode method update, which is used to encode in-
heritance. The recursive records interpretation was pursued
by Reddy [Red98, KR94], Cook [Coo89a, CHC90], the Hop-
kins Object Group [ESTZ95], and others.

Pierce and Turner [PT94] proposed a simple object and
class encoding that requires existential types but not recur-
sive types. At the term level, an object has two parts: a
private state component and a public method suite. The
functions that encode methods are passed the state of self
but not self’s method suite. Calls to other methods of self
must be hardwired at the time the object is created, and the
class encoding arranges this. Furthermore, if a method’s re-
turn type is the self type, then the function returns only
the state component, and the method invocation sites must
repackage the object. This encoding is the only encoding
with a nonuniform translation of method invocation. The
encoding preserves meaning, typing, and subtyping, but it
cannot encode method update. The lack of method update
is not a concern because a separate class encoding deals with
inheritance. Finally, methods can be both private and pub-
lic, but mutable fields can only be private, as public fields

would not be passed to the methods’ functions. Thus, in
a sense, the encoding is for a different object model than
Cardelli considered.

Bruce et al. [Bru94, BSvG95] designed a functional and
an imperative class-based object-oriented language, and the
denotational semantics for these languages can be seen as an
object and class encoding. Like Pierce and Turner’s encod-
ing, the encoding has a complementary class encoding for
dealing with inheritance. The encoding is very similar to
Pierce and Turner’s, but methods whose result type is the
self type return the whole object not just the state compo-
nent. Thus, the translation of an object type is like Pierce
and Turner’s but wrapped with an extra fixed point. Bruce
et al. also argue for the use of matching rather than sub-
typing, which has many advantages, but leads to a different
object and class model than Cardelli or Pierce and Turner’s.

Rémy [Rém94, RV97] uses a variant of Pierce and Turner’s
encoding with row variables. Row variables are used to spec-
ify polymorphism over the type of self, and enable a natural
extension of ML that includes objects and classes without
sacrificing type inference. However, this system does not
include subsumption: an object must be explicitly coerced
from a subtype to a supertype.

In 1996, Abadi, Cardelli, and Viswanathan discovered an
adequate typed object encoding for objects with method in-
vocation and method update [ACV96]. This encoding uses
bounded existential types and recursive types to effectively
encode self’s type. However, the technique requires, purely
for typing purposes, an additional projection and an addi-
tional field.

Abadi et al.’s encoding is also not fully abstract; in par-
ticular, the translation of method update allows the target
language to distinguish objects that were indistinguishable
in the source language. Viswanathan [Vis98] fixed this prob-
lem, but by introducing considerably more computation.

Concurrently with the work of this paper, Hickey, Crary,
and League et al. have proposed typed encodings of the
self-application semantics. Hickey [Hic] shows how to type
the self-application semantics in the Nuprl type theory, us-
ing an intersection type to make methods polymorphic over
the type of self. However, the Nuprl type theory is un-
decidable, so it is not clear how to use this encoding in a
type-directed compiler. Crary [Cra99] shows how to use un-
bounded existential and binary intersection types to type
the self application semantics. League et al. [LST99] show
how to type the self application semantics using existentially
quantified row variables and recursive types. They also show
how to deal with classes, as described below. Both Crary
and League et al.’s ideas can be seen as encodings of the self
quantifier introduced in this paper.

5.2 Class Encodings
Abadi and Cardelli [AC96] show informally how to en-

code classes into their pure object calculi. In the encoding,
a class becomes an object with premethods5 for each of the
instance’s methods and a new method for instantiating the
class. The new method copies the premethods into a newly
created object. Subclasses copy the premethods of the su-
perclass that they inherit and provide their own premethods
for overridden or addition methods. F-bounded polymor-
phism is used to type the premethods. This encoding shows

5A premethod for a method is a function that takes self as
an argument and computes the methods.



that classes add no expressiveness to a pure object calcu-
lus, but does not faithfully encode the efficient method-table
technique.

Fisher and Mitchell with others [Fis96, Mit90, FHM94,
FM95a, FM95b, FM96, BF98, FM98] have pursued a line
of research into encoding classes as extensible objects. The
object calculi they consider have a method extension opera-
tion for adding a new method to an already existing object.
This construct does not appear in the object calculi usually
considered for object encodings. Method extension inter-
acts poorly with breadth subtyping, and so extensible object
calculi need to have complicated type systems for tracking
the absence of methods. Often a distinction is made be-
tween prototype objects, which are extensible but do not
have breadth subtyping, and proper objects, which are not
extensible but do have breadth subtyping. Like Abadi and
Cardelli’s class encoding, these encodings show that classes
do not add expressiveness, and also provide a good basis for
the design and definition of languages. However, also like
Abadi and Cardelli’s encoding, they do not lead directly to
efficient implementations. In particular, class instantiation
involves creating an empty object, and then adding all its
methods to the object.

Pierce and Turner’s class encoding [PT94], unlike the pre-
vious two approaches, encodes classes directly into records
and functions and not into objects. Recall that in their en-
coding, an object consists of a public method suite and a
private state component. A class is encoded as a function
f that returns the public method suite for objects in that
class. The public methods may want to invoke other public
methods of self, so f takes another method suite s as an
argument, and uses s to do method invocations on self. To
instantiate a class, the fixed point of f is used as the public
method suite of the new object along with an appropriate
initial state component. However, subclasses may have more
fields than superclasses, so f is parameterised by functions
that convert between the final representation and the one the
current class defines. Unfortunately, these conversion func-
tions persist beyond class instantiation time and in general
are evaluated every time a method is invoked, making this
encoding particularly inefficient. Later work [HP95] shows
how to avoid some of these problems.

Bruce et al.’s class encoding [Bru94, BSvG95] essentially
encodes a class as a pair containing both the initial values
of the private fields of the class and a function for the public
methods. Additionally the pair is polymorphic in the final
object type and the type of the private fields. The function
for the public methods takes the final object and returns a
record of the results of each method. Similarly to Pierce and
Turner, class instantiation requires taking the fixed point of
the function for the public methods to produce a function
from the private state to the method suite, and then packag-
ing this function with the initial private state. This encoding
also results in inefficiencies.

Concurrently with the work of this paper, League et al.
show how to encode a subset of the Java class model into
a variant of Fω [LST99]. A class is encoded as a method
table (they call it a dictionary), a function to initialise the
class’s private fields, and a function to instantiate the class.
Using a combination of row polymorphism and existential
types, they are able to encode class private fields and their
work can probably be extended to handle most of Java’s
protection modifiers.

Reppy and Reicke [RR96a] show how to encode classes as
modules in the SML module system extended with objects
in the core language [RR96b]. Their encoding is essentially
the same as Abadi and Cardelli’s, but with some twists for
handling protection. Vouillon [Vou98] shows how to combine
the classes and modules of Objective ML [RV97] into a single
construct.

6. CONCLUSION
This paper presented a small language with the key fea-

tures of a class-based object-oriented language and a typed
encoding of this language into a language with records and
functions. The encoding uses the self-application semantics
and method-table techniques, providing a typed formalisa-
tion for both. Section 4 showed how to incorporate a number
of extensions and variants into the template language and
the encoding. This provides evidence that the ideas of this
paper provide a nice framework for the description of class-
based languages and their implementation and that the use
of self quantifiers is the right way to type self application.
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APPENDIX

A. O SEMANTICS
The operational semantics for the template language ap-

pears in Figure 3. Capture avoiding substitution of x for y
in z is written z{y := x}.

A.1 Subtyping rules

`O tempt r ≤ tempt r

i ∈ I2 : `O si ≤ s′i
`O objt[mi:si; fj :σj ]i∈I1,j∈J1 ≤ objt[mi:s

′
i; fj :σj ]i∈I2,j∈J2

where I1 is a prefix of I2 and J1 is a prefix of J2.

A.2 Expression Typing
A typing context Γ is a list of variables and their types,

x1:τ1, . . . , xn:τn, where the variables are distinct.

Γ `O e : τ1 `O τ1 ≤ τ2

Γ `O e : τ2 Γ `O x : τ
(Γ(x) = τ )

Γ `O et : tempt[; ]

Γ `O e : tempt[mi:si; fj :σj ]i∈I,j∈J

Γ `O e + f : σ : tempt[mi:si; fj :σj , f :σ]i∈I,j∈J
(f /∈ fj∈J )

Γ `O e : tempt[mi:si; fj :σj ]i∈I,j∈J

i ∈ K : Γ `M
O Mi : objt r′ � s′i

i ∈ I ∩K : `O s′i ≤ si

Γ `O e←+[mi = Mi]i∈K : tempt r′

where r′ = [mi:s
′′
i ; fj :σj ]i∈(I,K−I),j∈J , s′′i = si if i ∈ I −K,

and s′′i = s′i if i ∈ K.

Γ `O e : tempt r Γ `O ej : σj

Γ `O new e[fj = ej ]j∈J : objt r
(r = [mi:si; fj :σj ]i∈I,j∈J)

Γ `O e : objt[mi:si; fj :σj ]i∈I,j∈J

Γ `O e.mk : sk
(k ∈ I)

Γ `O e : objt[mi:si; fj :σj ]i∈I,j∈J

Γ `O e.fk : σk
(k ∈ J)

Γ `O e1 : τ1 Γ `O e2 : σk

Γ `O e1.fk := e2 : τ1
(k ∈ J)



Additional syntactic constructs:

Values v, w ::= temp[mi = Mi; fj :σj ]i∈I,j∈J | obj[mi = Mi; fj = vj ]i∈I,j∈J

Contexts E ::= {} | E + f : σ | E ←+[mi = Mi]i∈I | new E[fj = ej ]j∈J | new v[
−−−→
f = v, f = E,

−−−→
f ′ = e] |

E.m | E.f | E.f := e | v.f := E

Reduction rules:

E{ι} 7→ E{e}
where:

ι e Side Conditions
et temp[; ]
temp[mi = Mi; fj :σj ]i∈I,j∈J + f : σ temp[mi = Mi; fj :σj , f :σ]i∈I,j∈J f /∈ fj∈J

temp[mi = Mi; fj :σj ]i∈I,j∈J ←+[mk = M ′
k]k∈K temp[ml = M ′′

l ; fj :σj ]l∈(I,K−I),j∈J M ′′
l =

{
Ml l ∈ I −K
M ′

l l ∈ K
new temp[mi = Mi; fj :σj ]i∈I,j∈J [fj = wj ]j∈J obj[mi = Mi; fj = wj ]i∈I,j∈J

obj[mi = Mi; fj = wj ]i∈I,j∈J .mk ek{xk := v2} k ∈ I
obj[mi = Mi; fj = wj ]i∈I,j∈J .fk wk k ∈ J, Mk = xk.ek:τk

obj[mi = Mi; fj = wj ]i∈I,j∈J .fk := v obj[mi = Mi; fj = w′j ]i∈I,j∈J k ∈ J ; w′j =

{
wj j 6= k
v j = k

Figure 3: Object Template Language Operational Semantics

where τ1 = objt[mi:si; fj :σj ]i∈I,j∈J .

Γ, x : σ `O e : τ

Γ `M
O x.e:τ : σ � τ

B. Fself SEMANTICS
The operational semantics for the target language appears

in Figure 4.

B.1 Type well formedness

∆ `F τ
(ftv(τ ) ⊆ ∆)

where ftv(τ ) are the free type variables of τ .

B.2 Equality Rules
Along with the usual reflexivity, transitivity, and congru-

ence rules, Fself has the following equality rules.

∆ `F τ

∆ `F τ = σ{α := τ} (τ = rec α.σ)

∆ `F τ{α := σ1} = σ1 ∆ `F τ{α := σ2} = σ2

∆ `F σ1 = σ2
(τ ↓ α)

Where τ ↓ α means that τ is syntactically contractive in
α, that is, there is a function, record, polymorphic type
constructor, or self quantifier before any occurrences of α.

B.3 Subtyping Rules

∆; B `F τ1 = τ2

∆; B `F τ1 ≤ τ2

∆; B `F τ1 ≤ τ2 ∆; B `F τ2 ≤ τ3

∆; B `F τ1 ≤ τ3

∆; B `F α ≤ τ
(α ∈ ∆; α ≤ τ ∈ B)

∆; B `F σ1 ≤ τ1 ∆; B `F τ2 ≤ σ2

∆; B `F τ1 → τ2 ≤ σ1 → σ2

j ∈ I2 : ∆; B `F τ
φj

j ≤ τ ′j
φ′

j k ∈ I1 − I2 : ∆ `F τk

∆; B `F 〈`i:τ
φi
i 〉ϕ1

i∈I1
≤ 〈`j :τ

′
j
φ′

j 〉ϕ2
j∈I2

where I2 is prefix of I1 if ϕ2 =→, otherwise I1 = I2 and
ϕ1 = ◦.

∆, α `F τ11 = τ21 ∆, α; B, α ≤ τ11 `F τ12 ≤ τ22

∆; B `F ∀α ≤ τ11.τ12 ≤ ∀α ≤ τ21.τ22

∆, α; B `F τ1 ≤ τ2

∆; B `F self α.τ1 ≤ self α.τ2

∆, α1, α2; B, α1 ≤ α2 `F τ1 ≤ τ2

∆; B `F rec α1.τ1 ≤ rec α2.τ2
(α1 6= α2)

∆; B `F τ1 ≤ τ2

∆; B `F τφ
1 ≤ τ+

2

(φ ∈ {+, ◦})

∆ `F τ1 = τ2

∆; B `F τ◦1 ≤ τ◦2

B.4 Expression Typing

∆; B; Γ `F e : τ1 ∆; B `F τ1 ≤ τ2

∆; B; Γ `F e : τ2

∆; B; Γ `F x : τ
(Γ(x) = τ )

∆ `F τ1 ∆; B; Γ, x : τ1 `F e : τ2

∆; B; Γ `F λx : τ1.e : τ1 → τ2

∆; B; Γ `F e1 : τ2 → τ1 ∆; B; Γ `F e2 : τ2

∆; B; Γ `F e1 e2 : τ1



Additional syntactic constructs:

Values v, w ::= λx:τ.e | 〈`i = vi〉i∈I | Λα ≤ τ.v | pack v, τ as self α.σ

Contexts E ::= {} | E e | v E | 〈−−−→` = v, ` = E,
−−−→
`′ = e〉 | E.` | E.`← e | v.`← E | E.` := e | v.` := E |

E + ` = e | v + ` = E | Λα ≤ τ.E | E[τ ] | pack E, τ as self α.σ | unpack α, x = E in e

Reduction rules:

E{ι} 7→ E{e}
Where:

ι e Side Conditions
(λx:τ.e) v e{x := v}
〈`i = vi〉i∈I .`k vk k ∈ I{ 〈`i = vi〉i∈I .`k ← v
〈`i = vi〉i∈I .`k := v

}
〈`i = v′i〉i∈I k ∈ I ; v′i =

{
vi i 6= k
v i = k

〈`i = vi〉i∈I + ` = v 〈`i = vi, ` = v〉i∈I ` /∈ `i∈I

(Λα ≤ τ.v)[σ] v{α := σ}
unpack α, x = pack v, τ as self α.σ in e e{α, x := τ, v}

Figure 4: Target Language Operational Semantics

∆; B; Γ `F ei : τi

∆; B; Γ `F 〈`i = ei〉i∈I : 〈`i:τ
◦
i 〉◦i∈I

∆; B; Γ `F e : 〈`i:τ
φk
i 〉ϕi∈I

∆; B; Γ `F e.`k : τk
(k ∈ I ; φk ∈ {+, ◦})

∆; B; Γ `F e1 : 〈`i:τ
φi
i 〉ϕi∈I ∆; B; Γ `F e2 : σ

∆; B; Γ `F e1.`k ← e2 : 〈`i:τ
′
i
φ′

i〉ϕi∈I

(k ∈ I)

where τ ′i
φ′

i = τφi
i if i 6= k and τ ′k

φ′
k = σ◦.

∆; B; Γ `F e1 : σ1

∆; B `F σ1 ≤ 〈`i:τ
φi
i 〉ϕi∈I

∆; B; Γ `F e2 : τk

∆; B; Γ `F e1.`k := e2 : σ1
(k ∈ I ; φk = ◦)

∆; B; Γ `F e1 : 〈`i:τ
φi
i 〉◦i∈I ∆; B; Γ `F e2 : σ

∆; B; Γ `F e1 + ` = e2 : 〈`i:τ
φi
i , `:σ◦〉◦i∈I

(` /∈ `i∈I)

∆, α `F τ1 ∆, α; B, α ≤ τ1 `F e : τ2

∆; B; Γ `F Λα ≤ τ1.e : ∀α ≤ τ1.τ2

∆; B; Γ `F e : ∀α ≤ τ1.τ2 ∆; B `F σ ≤ τ1{α := σ}
∆; B; Γ `F e[σ] : τ2{α := σ}

∆; B; Γ `F e : τ ∆; B `F τ ≤ σ{α := τ}
∆; B; Γ `F pack e, τ as self α.σ : self α.σ

∆; B; Γ `F e1 : self α.τ1

∆, α; B, α ≤ τ1; Γ, x : α `F e2 : τ2

∆ `F τ2

∆; B; Γ `F unpack α, x = e1 in e2 : τ2


