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Abstract. In previous work, we presented a Typed Assembly Language
(TAL). TAL is sufficiently expressive to serve as a target language for
compilers of high-level languages such as ML. This work assumed such a
compiler would perform a continuation-passing style transform and elim-
inate the control stack by heap-allocating activation records. However,
most compilers are based on stack allocation. This paper presents STAL,
an extension of TAL with stack constructs and stack types to support the
stack allocation style. We show that STAL is sufficiently expressive to
support languages such as Java, Pascal, and ML; constructs such as ex-
ceptions and displays; and optimizations such as tail call elimination and
callee-saves registers. This paper also formalizes the typing connection
between CPS-based compilation and stack-based compilation and illus-
trates how STAL can formally model calling conventions by specifying
them as formal translations of source function types to STAL types.

1 Introduction and Motivation

Statically typed source languages have efficiency and software engineering ad-
vantages over their dynamically typed counterparts. Modern type-directed com-
pilers [19, 25, 7, 32, 20, 28, 12] exploit the properties of typed languages more ex-
tensively than their predecessors by preserving type information computed in the
front end through a series of typed intermediate languages. These compilers use
types to direct sophisticated transformations such as closure conversion [18, 31,
17, 4, 21], region inference [8], subsumption elimination [9, 11], and unboxing [19,
24, 29]. Without types these transformations are, in many cases, less effective or
impossible. Furthermore, the type translation partially specifies the correspond-
ing term translation and often captures the critical concerns in an elegant and
succinct fashion. Strong type systems not only describe but also enforce many
important invariants. Consequently, developers of type-based compilers may in-
voke a type-checker after each code transformation, and if the output fails to
type-check, the developer knows that the compiler contains an internal error.
Although type-checkers for decidable type systems will not catch all compiler
errors, they have proven themselves valuable debugging tools in practice [22].
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Despite the numerous advantages of compiling with types, until recently, no
compiler propagated type information through the final stages of code genera-
tion. The TIL/ML compiler, for instance, preserves types through approximately
80% of compilation but leaves the remaining 20% untyped. Many of the complex
tasks of code generation including register allocation and instruction scheduling
are left unchecked; types are not used to specify or explain these low-level code
transformations.

These observations motivated our exploration of very low-level type systems
and corresponding compiler technology. In Morrisett et al. [23], we presented
a typed assembly language (TAL) and proved that its type system was sound
with respect to an operational semantics. We demonstrated the expressiveness
of this type system by sketching a type-preserving compiler from an ML-like
language to TAL. The compiler ensured that well-typed source programs were
always mapped to well-typed assembly language programs and that they pre-
served source level abstractions such as user-defined abstract data types and
closures. Furthermore, we claimed that the type system of TAL did not interfere
with many traditional compiler optimizations including inlining, loop-unrolling,
register allocation, instruction selection, and instruction scheduling.

However, the compiler we presented was critically based on a continuation-
passing style (CPS) transform, which eliminated the need for a control stack. In
particular, activation records were represented by heap-allocated closures as in
the SML of New Jersey compiler (SML/NJ) [5, 3]. For example, Figure 1 shows
the TAL code our heap-based compiler would produce for the recursive factorial
computation. Each function takes an additional argument which represents the
control stack as a continuation closure. Instead of “returning” to the caller, a
function invokes its continuation closure by jumping directly to the code of the
closure, passing the environment of the closure and the result in registers.

Allocating continuation closures on the heap has many advantages over a
conventional stack-based implementation. First, it is straightforward to imple-
ment control primitives such as exceptions, first-class continuations, or user-level
lightweight coroutine threads [3, 31, 34]. Second, Appel and Shao [2] have shown
that heap allocation of closures can have better space properties, primarily be-
cause it is easier to share environments. Third, there is a unified memory man-
agement mechanism (namely the garbage collector) for allocating and collecting
all kinds of objects, including activation frames. Finally, Appel and Shao [2] have
argued that, at least for SML/NJ, the locality lost by heap-allocating activation
frames is negligible.

Nevertheless, there are also compelling reasons for providing support for
stacks. First, Appel and Shao’s work did not consider imperative languages,
such as Java, where the ability to share environments is greatly reduced, nor did
it consider languages that do not require garbage collection. Second, Tarditi and
Diwan [14, 13] have shown that with some cache architectures, heap allocation
of continuations (as in SML/NJ) can have substantial overhead due to a loss of
locality. Third, stack-based activation records can have a smaller memory foot-
print than heap-based activation records. Finally, many machine architectures



have hardware mechanisms that expect programs to behave in a stack-like fash-
ion. For example, the Pentium Pro processor has an internal stack that it uses to
predict return addresses for procedures so that instruction pre-fetching will not
be stalled [16]. The internal stack is guided by the use of call/return primitives
which use the standard control stack.

Clearly, compiler writers must weigh a complex set of factors before choosing
stack allocation, heap allocation, or both. The target language must not con-
strain these design decisions. In this paper, we explore the addition of a stack to
our typed assembly language in order to give compiler writers the flexibility they
need. Our stack typing discipline is remarkably simple, but powerful enough to
compile languages such as Pascal, Java, or ML without adding high-level primi-
tives to the assembly language. More specifically, the typing discipline supports
stack allocation of temporary variables and values that do not escape, stack allo-
cation of procedure activation frames, exception handlers, and displays, as well
as optimizations such as callee-saves registers. Unlike the JVM architecture [20],
our system does not constrain the stack to have the same size at each control-flow
point, nor does it require new high-level primitives for procedure call/return. In-
stead, our assembly language continues to have low-level RISC-like primitives
such as loads, stores, and jumps. However, source-level stack allocation, general
source-level stack pointers, general pointers into either the stack or heap, and
some advanced optimizations cannot be typed.

A key contribution of the type structure is that it provides a unifying declar-
ative framework for specifying procedure calling conventions regardless of the
allocation strategy. In addition, the framework further elucidates the connection
between a heap-based continuation-passing style compiler, and a conventional
stack-based compiler. In particular, this type structure makes explicit the no-
tion that the only differences between the two styles are that, instead of passing
the continuation as a boxed, heap-allocated tuple, a stack-based compiler passes
the continuation unboxed in registers and the environments for continuations are
allocated on the stack. The general framework makes it easy to transfer transfor-
mations developed for one style to the other. For instance, we can easily explain
the callee-saves registers of SML/NJ [5, 3, 1] and the callee-saves registers of a
stack-based compiler as instances of a more general CPS transformation that is
independent of the continuation representation.

2 Overview of TAL and CPS-Based Compilation

In this section, we briefly review our original proposal for typed assembly lan-
guage (TAL) and sketch how a polymorphic functional language, such as ML,
can be compiled to TAL in a continuation-passing style, where continuations are
heap-allocated.

Figure 2 gives the syntax for TAL. Programs (P ) are triples consisting of a
heap, register file, and instruction sequence. Heaps map labels to heap values
which are either tuples of word-sized values or code sequences. Register files
map registers to word-sized values. Instruction sequences are lists of instructions



(H,{}, I) where
H = l fact:

code[ ]{r1:〈〉,r2:int,r3:τk}.
bneq r2,l nonzero

unpack [α,r3],r3 % zero branch: call k (in r3) with 1
ld r4,r3(0) % project k code
ld r1,r3(1) % project k environment
mov r2,1

jmp r4 % jump to k
l nonzero:

code[ ]{r1:〈〉,r2:int,r3:τk}.
sub r4,r2,1 % n− 1
malloc r5[int, τk] % create environment for cont in r5

st r5(0),r2 % store n into environment
st r5(1),r3 % store k into environment
malloc r3 [∀[ ].{r1:〈int1, τ1

k 〉,r2:int}, 〈int1, τ1
k 〉] % create cont closure

mov r2,l cont

st r3(0),r2 % store cont code
st r3(1),r5 % store environment 〈n, k〉
mov r2,r4 % arg := n− 1
mov r3,pack [〈int1, τ1

k 〉,r3] as τk % abstract environment type
jmp l fact % recursive call

l cont:

code[ ]{r1:〈int1, τ1
k 〉,r2:int}. % r2 contains (n− 1)!

ld r3,r1(0) % retrieve n
ld r4,r1(1) % retrieve k
mul r2,r3,r2 % n× (n− 1)!
unpack [α,r4],r4 % unpack k
ld r3,r4(0) % project k code
ld r1,r4(1) % project k environment
jmp r3 % jump to k

l halt:

code[ ]{r1:〈〉,r2:int}.
mov r1,r2

halt[int] % halt with result in r1

and I = malloc r1[ ] % create empty environment (〈〉)
malloc r2[ ] % create empty environment
malloc r3[∀[ ].{r1:〈〉,r2:int}, 〈〉] % create halt closure in r3

mov r4,l halt

st r3(0),r4 % store cont code
st r3(1),r2 % store environment 〈〉
mov r2,6 % load argument (6)
mov r3,pack [〈〉,r3] as τk % abstract environment type
jmp l fact % begin fact with

% {r1 = 〈〉, r2 = 6, r3 = haltcont}
and τk = ∃α.〈∀[ ].{r1:α,r2:int}1, α1〉

Fig. 1. Typed Assembly Code for Factorial



types τ ::= α | int | ∀[∆].Γ | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ
initialization flags ϕ ::= 0 | 1
label assignments Ψ ::= {`1:τ1, . . . , `n:τn}
type assignments ∆ ::= · | α,∆
register assignments Γ ::= {r1:τ1, . . . , rn:τn}

registers r ::= r1 | · · · | rk
word values w ::= ` | i | ?τ | w[τ ] | pack [τ, w] as τ ′

small values v ::= r | w | v[τ ] | pack [τ, v] as τ ′

heap values h ::= 〈w1, . . . , wn〉 | code[∆]Γ.I
heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {r1 7→ w1, . . . , rn 7→ wn}

instructions ι ::= aop rd, rs, v | bop r, v | ld rd, rs(i) | malloc r[~τ ] |
mov rd, v | st rd(i), rs | unpack [α, rd], v |

arithmetic ops aop ::= add | sub | mul
branch ops bop ::= beq | bneq | bgt | blt | bgte | blte
instruction sequences I ::= ι; I | jmp v | halt [τ ]
programs P ::= (H,R, I)

Fig. 2. Syntax of TAL

terminated by either a jmp or halt instruction. The context ∆ binds the free type
variables of Γ in ∀[∆].Γ , and of both Γ and I in code[∆]Γ.I. The instruction
unpack [α, r], v binds α in the following instructions. We consider syntactic
objects to be equivalent up to alpha-conversion, and consider label assignments,
register assignments, heaps, and register files equivalent up to reordering of labels
and registers. Register names do not alpha-convert. The notation ~X denotes a
sequence of zero or more Xs, and | · | denotes the length of a sequence.

The instruction set consists mostly of conventional RISC-style assembly op-
erations, including arithmetic, branches, loads, and stores. One exception, the
unpack instruction, strips the quantifier from the type of an existentially typed
value and introduces a new type variable into scope. On an untyped machine,
this is implemented by an ordinary move. The other non-standard instruction
is malloc, which is explained below. Evaluation is specified as a deterministic
rewriting system that takes programs to programs (see Morrisett et al. [23] for
details).

The types for TAL consist of type variables, integers, tuple types, existential
types, and polymorphic code types. Tuple types contain initialization flags (ei-
ther 0 or 1) that indicate whether or not components have been initialized. For
example, if register r has type 〈int0, int1〉, then it contains a label bound in the
heap to a pair that can contain integers, where the first component may not have
been initialized, but the second component has. In this context, the type system
allows the second component to be loaded, but not the first. If an integer value
is stored into r(0) then afterwards r has the type 〈int1, int1〉, reflecting the fact



that the first component is now initialized. The instruction malloc r[τ1, . . . , τn]
heap-allocates a new tuple with uninitialized fields and places its label in register
r.

TAL code types (∀[α1, . . . , αn].Γ ) describe code blocks (code[α1, . . . , αn]Γ.I),
which are instruction sequences, that expect a register file of type Γ and in which
the type variables α1, . . . , αn are held abstract. In other words, Γ serves as a
register file pre-condition that must hold before control may be transferred to
the code block. Code blocks have no post-condition because control is either
terminated via a halt instruction or transferred to another code block.

The type variables that are abstracted in a code block provide a means to
write polymorphic code sequences. For example, the polymorphic code block

code[α]{r1:α, r2:∀[].{r1:〈α1, α1〉}}.
malloc r3[α, α]
st r3(0), r1
st r3(1), r1
mov r1, r3
jmp r2

roughly corresponds to a CPS version of the ML function fn (x:α) => (x, x). The
block expects upon entry that register r1 contains a value of the abstract type
α, and r2 contains a return address (or continuation label) of type ∀[].{r1 :
〈α1, α1〉}. In other words, the return address requires register r1 to contain an
initialized pair of values of type α before control can be returned to this address.
The instructions of the code block allocate a tuple, store into the tuple two copies
of the value in r1, move the pointer to the tuple into r1 and then jump to the
return address in order to “return” the tuple to the caller. If the code block is
bound to a label `, then it may be invoked by simultaneously instantiating the
type variable and jumping to the label (e.g., jmp `[int ]).

Source languages like ML have nested higher-order functions that might con-
tain free variables and thus require closures to represent functions. At the TAL
level, we represent closures as a pair consisting of a code block label and a pointer
to an environment data structure. The type of the environment must be held
abstract in order to avoid typing difficulties [21], and thus we pack the type of
the environment and the pair to form an existential type.

All functions, including continuation functions introduced during CPS con-
version, are thus represented as existentials. For example, once CPS converted, a
source function of type int→〈〉 has type (int , (〈〉→void))→void.1 After closures
are introduced, the code will have type:

∃α1.〈(α1, int, ∃α2.〈(α2, 〈〉) → void , α2〉) → void , α1〉
Finally, at the TAL level the function will be represented by a value with the
type:

∃α1.〈∀[].{r1:α1, r2:int , r3:∃α2.〈∀[].{r1:α2, r2:〈〉}1, α1
2〉}1, α1

1〉
1 The void return types are intended to suggest the non-returning aspect of CPS code.



Here, α1 is the abstracted type of the closure’s environment. The code for the
closure requires that the environment be passed in register r1, the integer ar-
gument in r2, and the continuation in r3. The continuation is itself a closure
where α2 is the abstracted type of its environment. The code for the continua-
tion closure requires that the environment be passed in r1 and the unit result
of the computation in r2.

To apply a closure at the TAL level, we first use the unpack operation to open
the existential package. Then the code and the environment of the closure pair
are loaded into appropriate registers, along with the argument to the function.
Finally, we use a jump instruction to transfer control to the closure’s code.

Figure 1 gives the CPS-based TAL code for the following ML expression
which computes six factorial:

let fun fact n = if n = 0 then 1 else n * (fact(n - 1)) in
fact 6

end

3 Adding Stacks to TAL

In this section, we show how to extend TAL to achieve a Stack-based Typed
Assembly Language (STAL). Figure 3 defines the new syntactic constructs for
the language. In what follows, we informally discuss the dynamic and static
semantics for the modified language, leaving formal treatment to Appendix A.

types τ ::= · · · | ns
stack types σ ::= ρ | nil | τ ::σ
type assignments ∆ ::= · · · | ρ,∆
register assignments Γ ::= {r1:τ1, . . . , rn:τn, sp:σ}
word values w ::= · · · | w[σ] | ns
small values v ::= · · · | v[σ]
register files R ::= {r1 7→ w1, . . . , rn 7→ wn, sp 7→ S}
stacks S ::= nil | w::S
instructions ι ::= · · · | salloc n | sfree n | sld rd, sp(i) | sst sp(i), rs

Fig. 3. Additions to TAL for Simple Stacks

Operationally, we model stacks (S) as lists of word-sized values. Uninitialized
stack slots are filled with nonsense (ns). Register files now include a distinguished
register, sp, which represents the current stack. There are four new instructions
that manipulate the stack. The salloc n instruction places n words of nonsense
on the top of the stack. In a conventional machine, assuming stacks grow towards
lower addresses, an salloc instruction would correspond to subtracting n from
the current value of the stack pointer. The sfree n instruction removes the



top n words from the stack, and corresponds to adding n to the current stack
pointer. The sld r, sp(i) instruction loads the ith word of the stack into register r,
whereas the sst sp(i), r stores register r into the ith word. Note, the instructions
ld and st cannot be used with the stack pointer.

A program becomes stuck if it attempts to execute:

– sfree n and the stack does not contain at least n words,
– sld r, sp(i) and the stack does not contain at least i+ 1 words or else the
ith word of the stack is ns, or

– sst sp(i), r and the stack does not contain at least i+ 1 words.

As in the original TAL, the typing rules for the modified language prevent
well-formed programs from becoming stuck.

Stacks are described by stack types (σ), which include nil and τ ::σ. The
latter represents a stack of the form w::S where w has type τ and S has type σ.
Stack slots filled with nonsense have type ns . Stack types also include stack type
variables (ρ) which may be used to abstract the tail of a stack type. The ability
to abstract stacks is critical for supporting procedure calls and is discussed in
detail later.

As before, the register file for the abstract machine is described by a register
file type (Γ ) mapping registers to types. However, Γ also maps the distinguished
register sp to a stack type σ. Finally, code blocks and code types support poly-
morphic abstraction over both types and stack types.

One of the uses of the stack is to save temporary values during a computation.
The general problem is to save on the stack n registers, say r1 through rn, of types
τ1 through τn, perform some computation e, and then restore the temporary
values to their respective registers. This would be accomplished by the following
instruction sequence where the comments (delimited by %) show the stack’s type
at each step of the computation.

% σ
salloc n % ns ::ns :: · · · ::ns ::σ
sst sp(0), r1 % τ1::ns :: · · · ::ns ::σ
...
sst sp(n− 1), rn % τ1::τ2:: · · · ::τn::σ
code for e % τ1::τ2:: · · · ::τn::σ
sld r1, sp(0) % τ1::τ2:: · · · ::τn::σ
...
sld rn, sp(n − 1) % τ1::τ2:: · · · ::τn::σ
sfree n % σ

If, upon entry, ri has type τi and the stack is described by σ, and if the code for
e leaves the state of the stack unchanged, then this code sequence is well-typed.
Furthermore, the typing discipline does not place constraints on the order in
which the stores or loads are performed.

It is straightforward to model higher-level primitives, such as push and pop.
The former can be seen as simply salloc 1 followed by a store to sp(0), whereas



the latter is a load from sp(0) followed by sfree 1. Also, a “jump-and-link” or
“call” instruction which automatically moves the return address into a register or
onto the stack can be synthesized from our primitives. To simplify the presenta-
tion, we did not include these instructions in STAL; a practical implementation,
however, would need a full set of instructions appropriate to the architecture.

The stack is commonly used to save the current return address, and tem-
porary values across procedure calls. Which registers to save and in what order
is usually specified by a compiler-specific calling convention. Here we consider
a simple calling convention where it is assumed there is one integer argument
and one unit result, both of which are passed in register r1, and the return
address is passed in the register ra. When invoked, a procedure may choose to
place temporaries on the stack as shown above, but when it jumps to the return
address, the stack should be in the same state as it was upon entry. Naively, we
might expect the code for a function obeying this calling convention to have the
following STAL type:

∀[].{r1:int , sp:σ, ra:∀[].{r1:〈〉, sp:σ}}

Notice that the type of the return address is constrained so that the stack must
have the same shape upon return as it had upon entry. Hence, if the procedure
pushes any arguments onto the stack, it must pop them off.

However, this typing is unsatisfactory for two reasons. The first problem is
that there is nothing preventing the procedure from popping off values from the
stack and then pushing new values (of the appropriate type) onto the stack. In
other words, the caller’s stack frame is not protected from the function’s code.
The second problem is much worse: such a function can only be invoked from
states where the stack is exactly described by σ. This effectively prevents invo-
cation of the procedure from two different points in the program. For example,
there is no way for the procedure to push its return address on the stack and
jump to itself.

The solution to both problems is to abstract the type of the stack using a
stack type variable:

∀[ρ].{r1:int , sp:ρ, ra:∀[].{r1 : int , sp:ρ}}

To invoke a function with this type, the caller must instantiate the bound stack
type variable ρ with the current type of the stack. As before, the function can
only jump to the return address when the stack is in the same state as it was
upon entry. However, the first problem above is addressed because the type
checker treats ρ as an abstract stack type while checking the body of the code.
Hence, the code cannot perform an sfree, sld, or sst on the stack. It must
first allocate its own space on the stack, only this space may be accessed by
the function, and the space must be freed before returning to the caller.2 The
second problem is solved because the stack type variable may be instantiated

2 Some intuition on this topic may be obtained from Reynolds’ theorem on parametric
polymorphism [27] but a formal proof is difficult.



in different ways. Hence multiple call sites with different stack states, including
recursive calls, may now invoke the function. In fact, a recursive call will usually
instantiate the stack variable with a different type than the original call because,
unless it is a tail call, it will need to store its return address on the stack.

(H,{sp 7→ nil}, I) where

H = l fact:

code[ρ]{r1 : 〈〉, r2 : int , sp : ρ, ra : τρ}.
bneq r2,l nonzero[ρ] % if n = 0 continue
mov r1,1 % result is 1
jmp ra % return

l nonzero:

code[ρ]{r1 : 〈〉, r2 : int , sp : ρ, ra : τρ}.
sub r3,r2,1 % n− 1
salloc 2 % save n and return address to stack
sst sp(0),r2

sst sp(1),ra

mov r2,r3 % recursive call fact(n− 1)
mov ra,l cont[ρ]
jmp l fact[int::τρ::ρ]

l cont:

code[ρ]{r1 : int , sp : int ::τρ::ρ}.
sld r2,sp(0) % restore n and return address
sld ra,sp(1)

sfree 2

mul r1,r2,r1 % result is n× fact(n− 1)
jmp ra % return

l halt:

code[]{r1 : int , sp : nil}.
halt [int]

and I = malloc r1[] % environment
mov r2,6 % argument
mov ra,l halt % return address for initial call
jmp l fact[nil]

and τρ = ∀[].{r1 : int , sp : ρ}

Fig. 4. STAL Factorial Example

Figure 4 gives stack-based code for the factorial example of the previous
section. The function is invoked by moving its environment (an empty tuple)
into r1, the argument into r2, and the return address label into ra and jumping
to the label l fact. Notice that the nonzero branch must save the argument
and current return address on the stack before jumping to the fact label in a



recursive call. It is interesting to note that the stack-based code is quite similar
to the heap-based code of Figure 1. Indeed, the code remains in a continuation-
passing style, but instead of passing the continuation as a heap-allocated tuple,
the environment of the continuation is passed in the stack pointer and the code
of the continuation is passed in the return address register.

To more fully appreciate the correspondence, consider the type of the TAL
version of l fact from Figure 1:

∀[].{r1:〈〉, r2:int, r3:∃α.〈∀[].{r1:α, r2:int}1, α1〉}
We could have used an alternative approach where we pass the components
of the continuation closure unboxed in separate registers. To do so, the caller
must unpack the continuation and the function must abstract the type of the
continuation’s environment resulting in a quantifier rotation:

∀[α].{r1:〈〉, r2:int, r3:∀[].{r1:α, r2:int}, r4:α}
Now, it is clear that the STAL code, which has type

∀[ρ].{r1:〈〉, r2:int, ra:∀[].{sp:ρ, r1:int}, sp:ρ}
is essentially the same! Indeed, the only difference between a CPS-based com-
piler, such as SML/NJ, and a conventional stack-based compiler, is that for
the latter, continuation environments are allocated on a stack. Our type system
describes this well-known connection elegantly.

Our techniques can be applied to other calling conventions and do not appear
to inhibit most optimizations. For instance, tail calls can be eliminated in CPS
simply by forwarding a continuation closure to the next function. If continuations
are allocated on the stack, we have the mechanisms to pop the current activation
frame off the stack and to push any arguments before performing the tail call.
Furthermore, the type system is expressive enough to type this resetting and
adjusting for any kind of tail call, not just a self tail call. As another example,
some CISC-style conventions push the arguments, the environment, and then
the return address on the stack, and return the result on the stack. With this
convention, the factorial code would have type:

∀[ρ].{sp:∀[]{sp:int::ρ}::〈〉::int::ρ}
Callee-saves registers (registers whose values must be preserved across func-

tion calls) can be handled in the same fashion as the stack pointer. In particular,
the function holds abstract the type of the callee-saves register and requires that
the register have the same type upon return. For instance, if we wish to preserve
register r3 across a call to factorial, we would use the type:

∀[ρ, α].{r1:〈〉, r2:int, r3:α, ra:∀[]{sp:ρ, r1:int , r3:α}, sp:ρ}
Translating this type back in to a boxed, heap allocated closure, we obtain:

∀[α].{r1:〈〉, r2 : int , r3:α, ra:∃β.〈∀[]{r1:β, r2:int, r3:α}1, β1〉}



This is the type of the callee-saves approach of Appel and Shao [1]. Thus we
see how our correspondence enables transformations developed for heap-based
compilers to be used in traditional stack-based compilers and vice versa. The
generalization to multiple callee-saves registers and other calling conventions
should be clear. Indeed, we have found that the type system of STAL provides
a concise way to declaratively specify a variety of calling conventions.

4 Exceptions

We now consider how to implement exceptions in STAL. We will find that a
calling convention for function calls in the presence of exceptions may be de-
rived from the heap-based CPS calling convention, just as was the case without
exceptions. However, implementing this calling convention will require that the
type system be made more expressive by adding compound stack types. This
additional expressiveness will turn out to have uses beyond exceptions, allowing
most compiler-introduced uses of pointers into the midst of the stack.

4.1 Exception Calling Conventions

In a heap-based CPS framework, exceptions are implemented by passing two
continuations: the usual continuation and an exception continuation. Code raises
an exception by jumping to the latter. For an integer to unit function, this calling
convention is expressed as the following TAL type (ignoring the outer closure
and environment):

∀[ ].{r1:int, ra:∃α1.〈∀[ ].{r1:α1, r2:〈〉}1, α1
1〉, re:∃α2.〈∀[ ].{r1:α2, r2:exn}1, α1

2〉}

Again, the caller might unpack the continuations:

∀[α1, α2].{r1:int, ra:∀[ ].{r1:α1, r2:〈〉}, ra′:α1, re:∀[ ].{r1:α2, r2:exn}, re′:α2}

Then the caller might (erroneously) attempt to place the continuation environ-
ments on stacks, as before:

∀[ρ1, ρ2].{r1:int, ra:∀[ ].{sp:ρ1, r1:〈〉}, sp:ρ1, re:∀[ ].{sp:ρ2, r1:exn}, sp′:ρ2}

Unfortunately, this calling convention uses two stack pointers, and STAL has
only one stack.3 Observe, though, that the exception continuation’s stack is
necessarily a tail of the ordinary continuation’s stack. This observation leads to
the following calling convention for exceptions with stacks:

∀[ρ1, ρ2].{sp:ρ1 ◦ ρ2, r1:int , ra:∀[ ].{sp:ρ1 ◦ ρ2, r1:〈〉},
re′:ptr(ρ2), re:∀[ ].{sp:ρ2, r1:exn}}

3 Some language implementations use a separate exception stack; with some minor
modifications, this calling convention would be satisfactory for such implementations.



This type uses two new constructs we now add to STAL (see Figure 5). When
σ1 and σ2 are stack types, the stack type σ1 ◦ σ2 is the result of appending the
two types. Thus, in the above type, the function is presented with a stack with
type ρ1 ◦ ρ2, all of which is expected by the regular continuation, but only a
tail of which (ρ2) is expected by the exception continuation. Since ρ1 and ρ2 are
quantified, the function may still be used for any stack so long as the exception
continuation accepts some tail of that stack.

To raise an exception, the exception is placed in r1 and the control is trans-
fered to the exception continuation. This requires cutting the actual stack down
to just that expected by the exception continuation. Since the length of ρ1 is
unknown, this can not be done by sfree. Instead, a pointer to the desired posi-
tion in the stack is supplied in re′, and is moved into sp. The type ptr(σ) is the
type of pointers into the stack at a position where the stack has type σ. Such
pointers are obtained simply by moving sp into a register.

4.2 Compound Stacks

The additional syntax to support exceptions is summarized in Figure 5. The new
type constructors were discussed above. The word value ptr(i) is used by the
operational semantics to represent pointers into the stack; the element pointed to
is i words from the bottom of the stack. (See Figure 7 for details.) Of course, on
a real machine, these would be implemented by actual pointers. The instructions
mov rd, sp and mov sp, rs save and restore the stack pointer, and the instructions
sld rd, rs(i) and sst rd(i), rs allow for loading from and storing to pointers.

types τ ::= · · · | ptr(σ)
stack types σ ::= · · · | σ1 ◦ σ2

word values w ::= · · · | ptr(i)
instructions ι ::= · · · | mov rd, sp | mov sp, rs | sld rd, rs(i) | sst rd(i), rs

Fig. 5. Additions to TAL for Compound Stacks

The introduction of pointers into the stack raises a delicate issue for the
typing system. When the stack pointer is copied into a register, changes to the
stack are not reflected in the type of the copy, and can invalidate a pointer.
Consider the following incorrect code:

% begin with sp : τ ::σ, sp 7→ w::S (τ 6= ns)
mov r1, sp % r1 : ptr(τ ::σ)
sfree 1 % sp : σ, sp 7→ S
salloc 1 % sp : ns ::σ, sp 7→ ns ::S
sld r2, r1(0) % r2 : τ but r2 7→ ns



When execution reaches the final line, r1 still has type ptr(τ ::σ), but this type
is no longer consistent with the state of the stack; the pointer in r1 points to ns .

To prohibit erroneous loads of this sort, the type system requires that the
pointer rs be valid in the instructions sld rd, rs(i), sst rd(i), rs, and mov sp, rs.
An invariant of our system is that the type of sp always describes the current
stack, so using a pointer into the stack will be sound if that pointer’s type is
consistent with sp’s type. Suppose sp has type σ1 and r has type ptr(σ2), then r
is valid if σ2 is a tail of σ1 (formally, if there exists some σ′ such that σ1 = σ′◦σ2).
If a pointer is invalid, it may be neither loaded from nor moved into the stack
pointer. In the above example the load will be rejected because r1’s type τ ::σ is
not a tail of sp′s type, ns ::σ.

4.3 Using Compound Stacks

Recall the type for a function in the presence of exceptions:

∀[ρ1, ρ2].{sp:ρ1 ◦ ρ2, r1:int , ra:∀[ ].{sp:ρ1 ◦ ρ2, r1:〈〉},
re′:ptr(ρ2), re:∀[ ].{sp:ρ2, r1:exn}}

An exception may be raised within the body of such a function by restoring the
handler’s stack from re′ and jumping to the handler. A new exception handler
may be installed by copying the stack pointer to re′ and making forthcoming
function calls with the stack type variables instantiated to nil and ρ1 ◦ ρ2. Calls
that do not install new exception handlers would attach their frames to ρ1 and
pass on ρ2 unchanged.

Since exceptions are probably raised infrequently, an implementation could
save a register by storing the exception continuation’s code pointer on the stack,
instead of in its own register. If this convention were used, functions would
expect stacks with the type ρ1 ◦ (τhandler::ρ2) and exception pointers with the
type ptr(τhandler::ρ2) where τhandler = ∀[ ].{sp:ρ2, r1:exn}.

This last convention illustrates a use for compound stacks that goes beyond
implementing exceptions. We have a general tool for locating data of type τ
amidst the stack by using the calling convention:

∀[ρ1, ρ2].{sp:ρ1 ◦ (τ ::ρ2), r1:ptr(τ ::ρ2), . . .}
One application of this tool would be for implementing Pascal with displays. The
primary limitation of this tool is that if more than one piece of data is stored
amidst the stack, although quantification may be used to avoid specifying the
precise locations of that data, function calling conventions would have to specify
in what order data appears on the stack. It appears that this limitation could
be removed by introducing a limited form of intersection type, but we have not
yet explored the ramifications of this enhancement.

5 Related and Future Work

Our work is partially inspired by Reynolds [26], which uses functor categories to
“replace continuations by instruction sequences and store shapes by descriptions



of the structure of the run-time stack.” However, Reynolds was primarily con-
cerned with using functors to express an intermediate language of a semantics-
based compiler for Algol, whereas we are primarily concerned with type structure
for general-purpose target languages.

Stata and Abadi [30] formalize the Java bytecode verifier’s treatment of sub-
routines by giving a type system for a subset of the Java Virtual Machine lan-
guage. In particular, their type system ensures that for any program control
point, the Java stack is of the same size each time that control point is reached
during execution. Consequently, procedure call must be a primitive construct
(which it is in JVML). In contrast, our treatment supports polymorphic stack
recursion, and hence procedure calls can be encoded with existing assembly-
language primitives.

Tofte and others [8, 33] have developed an allocation strategy involving re-
gions. Regions are lexically scoped containers that have a LIFO ordering on
their lifetimes, much like the values on a stack. As in our approach, polymorphic
recursion on abstracted region variables plays a critical role. However, unlike
the objects in our stacks, regions are variable-sized, and objects need not be
allocated into the region which was most recently created. Furthermore, there is
only one allocation mechanism in Tofte’s system (the stack of regions) and no
need for a garbage collector. In contrast, STAL only allows allocation at the top
of the stack and assumes a garbage collector for heap-allocated values. However,
the type system for STAL is considerably simpler than the type system of Tofte
et al., as it requires no effect information in types.

Bailey and Davidson [6] also describe a specification language for modeling
procedure calling conventions and checking that implementations respect these
conventions. They are able to specify features such as a variable number of ar-
guments that our formalism does not address. However, their model is explicitly
tied to a stack-based calling convention and does not address features such as
exception handlers. Furthermore, their approach does not integrate the specifi-
cation of calling conventions with a general-purpose type system.

Although our type system is sufficiently expressive for compilation of a num-
ber of source languages, it falls short in several areas. First, it cannot support
general pointers into the stack because of the ordering requirements; nor can
stack and heap pointers be unified so that a function taking a tuple argument
can be passed either a heap-allocated or a stack-allocated tuple. Second, threads
and advanced mechanisms for implementing first-class continuations such as the
work by Hieb et al. [15] cannot be modeled in this system without adding new
primitives.

However, we claim that the framework presented here is a practical approach
to compilation. To substantiate this claim, we are constructing a compiler called
TALC that maps the KML language [10] to a variant of STAL described here,
suitably adapted for the Intel IA32 architecture. We have found it straightfor-
ward to enrich the target language type system to include support for other type
constructors, such as references, higher-order constructors, and recursive types.
The compiler uses an unboxed stack allocation style of continuation passing.



Although we have discussed mechanisms for typing stacks at the assembly
language level, our techniques generalize to other languages. The same mecha-
nisms, including the use of polymorphic recursion to abstract the tail of a stack,
can be used to introduce explicit stacks in higher level calculi. An intermedi-
ate language with explicit stacks would allow control over allocation at a point
where more information is available to guide allocation decisions.

6 Summary

We have given a type system for a typed assembly language with both a heap
and a stack. Our language is flexible enough to support the following compilation
techniques: CPS using both heap allocation and stack allocation, a variety of
procedure calling conventions, displays, exceptions, tail call elimination, and
callee-saves registers.

A key contribution of the type system is that it makes procedure calling
conventions explicit and provides a means of specifying and checking calling
conventions that is grounded in language theory. The type system also makes
clear the relationship between heap allocation and stack allocation of continua-
tion closures, capturing both allocation strategies in one calculus.
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A Formal STAL Semantics

This appendix contains a complete technical description of our calculus, STAL.
The STAL abstract machine is very similar to the TAL abstract machine (de-
scribed in detail in Morrisett et al. [23]). The syntax appears in Figure 6. The
operational semantics is given as a deterministic rewriting system in Figure 7.
The notation a[b/c] denotes capture avoiding substitution of b for c in a. The
notation a{b 7→ c} represents map update:

{b1 7→ c1, b2 7→ c2, . . . , bn 7→ cn}{b 7→ c} =




{b 7→ c, b1 7→ c1, . . . , bn 7→ cn},
if b /∈ {b1, . . . , bn}

{b1 7→ c, b2 7→ c2, . . . , bn 7→ cn},
if b = b1

To make the presentation simpler for the branching rules, some extra nota-
tion is used for expressing sequences of type and stack type instantiations. We
introduce a new syntactic class (ψ) for type sequences:

ψ ::= · | τ, ψ | σ, ψ
The notation w[ψ] stands for the obvious iteration of instantiations; the substi-
tution notation I[ψ/∆] is defined by:

I[·/·] = I

I[τ, ψ/α,∆] = I[τ/α][ψ/∆]
I[σ, ψ/ρ,∆] = I[σ/ρ][ψ/∆]



The static semantics is similar to TAL’s but requires extra judgments for
definitional equality of types, stack types, and register file types and uses a more
compositional style for instructions. Definitional equality is needed because two
stack types (such as (int ::nil) ◦ (int::nil) and int ::int ::nil) may be syntactically
different but represent the same type. The judgments are summarized in Fig-
ure 8, the rules for type judgments appear in Figure 9, and the rules for term
judgments appear in Figures 10 and 11. The notation ∆′, ∆ denotes appending
∆′ to the front of ∆, that is:

·, ∆ = ∆

(α,∆′), ∆ = α, (∆′, ∆)
(ρ,∆′), ∆ = ρ, (∆′, ∆)

As with TAL, STAL is type sound:

Proposition A1 (Type Soundness) If ` P and P 7−→∗ P ′ then P ′ is not
stuck.

This proposition is proved using the following two lemmas.

Lemma 1 (Subject Reduction). If ` P and P 7−→ P ′ then ` P ′.

A well-formed terminal state has the form (H,R{r1 7→ w}, halt [τ ]) where there
exists a Ψ such that ` H : Ψ and Ψ ; · ` w : τ wval.

Lemma 2 (Progress). If ` P then either P is a well-formed terminal state or
there exists P ′ such that P 7−→ P ′.



types τ ::= α | int | ns | ∀[∆].Γ | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ | ptr(σ)
stack types σ ::= ρ | nil | τ ::σ | σ1 ◦ σ2

initialization flags ϕ ::= 0 | 1
label assignments Ψ ::= {`1:τ1, . . . , `n:τn}
type assignments ∆ ::= · | α,∆ | ρ,∆
register assignments Γ ::= {r1:τ1, . . . , rn:τn, sp:σ}

registers r ::= r1 | · · · | rk
word values w ::= ` | i | ns | ?τ | w[τ ] | w[σ] | pack [τ, w] as τ ′ | ptr(i)
small values v ::= r | w | v[τ ] | v[σ] | pack [τ, v] as τ ′

heap values h ::= 〈w1, . . . , wn〉 | code[∆]Γ.I
heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {r1 7→ w1, . . . , rn 7→ wn, sp 7→ S}
stacks S ::= nil | w::S

instructions ι ::= aop rd, rs, v | bop r, v | ld rd, rs(i) | malloc r[~τ ] |
mov rd, v | mov sp, rs | mov rd, sp | salloc n |
sfree n | sld rd, sp(i) | sld rd, rs(i) |
sst sp(i), rs | sst rd(i), rs | st rd(i), rs |
unpack [α, rd], v

arithmetic ops aop ::= add | sub | mul
branch ops bop ::= beq | bneq | bgt | blt | bgte | blte
instruction sequences I ::= ι; I | jmp v | halt [τ ]
programs P ::= (H,R, I)

Fig. 6. Syntax of STAL



(H,R, I) 7−→ P where

if I = then P =

add rd, rs, v; I
′ (H,R{rd 7→ R(rs) + R̂(v)}, I ′)

and similarly for mul and sub

beq r, v; I ′ (H,R, I ′)
when R(r) 6= 0 and similarly for bneq, blt, etc.

beq r, v; I ′ (H,R, I ′′[ψ/∆])

when R(r) = 0 where R̂(v) = `[ψ] and H(`) = code[∆]Γ.I ′′

and similarly for bneq, blt, etc.

jmp v (H,R, I ′[ψ/∆])

where R̂(v) = `[ψ] and H(`) = code[∆]Γ.I ′

ld rd, rs(i); I
′ (H,R{rd 7→ wi}, I ′)

where R(rs) = ` and H(`) = 〈w0, . . . , wn−1〉 and 0 ≤ i < n

malloc rd[τ1, . . . , τn]; I ′ (H{` 7→ 〈?τ1, . . . , ?τn〉}, R{rd 7→ `}, I ′)
where ` 6∈ H

mov rd, v; I
′ (H,R{rd 7→ R̂(v)}, I ′)

mov rd, sp; I
′ (H,R{rd 7→ ptr(|S|)}, I ′)

mov sp, rs; I
′ (H,R{sp 7→ wj :: · · · ::w1::nil}, I ′)

where R(sp) = wn:: · · · ::w1::nil
and R(rs) = ptr(j) with 0 ≤ j ≤ n

salloc n; I ′ (H,R{sp 7→ ns:: · · · ::ns︸ ︷︷ ︸
n

::R(sp)}, I ′)

sfree n; I ′ (H,R{sp 7→ S}, I ′)
where R(sp) = w1:: · · · ::wn::S

sld rd, sp(i); I
′ (H,R{rd 7→ wi}, I ′)

where R(sp) = w0:: · · · ::wn−1::nil and 0 ≤ i < n

sld rd, rs(i); I
′ (H,R{rd 7→ wj−i}, I ′)

where R(rs) = ptr(j) and R(sp) = wn:: · · · ::w1::nil
and 0 ≤ i < j ≤ n

sst sp(i), rs; I
′ (H,R{sp 7→ w0:: · · · ::wi−1::R(rs)::S}, I ′)

where R(sp) = w0:: · · · ::wi::S and 0 ≤ i

sst rd(i), rs; I
′ (H,R{sp 7→ wn:: · · · ::wj−i+1::R(rs)::wj−i−1:: · · · ::w1::nil}, I ′)

where R(rd) = ptr(j) and R(sp) = wn:: · · · ::w1::nil
and 0 ≤ i < j ≤ n

st rd(i), rs; I
′ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, I ′)

where R(rd) = ` and H(`) = 〈w0, . . . , wn−1〉 and 0 ≤ i < n

unpack [α, rd], v; I ′ (H,R{rd 7→ w}, I ′[τ/α])

where R̂(v) = pack [τ,w] as τ ′

Where R̂(v) =




R(r) when v = r
w when v = w

R̂(v′)[τ ] when v = v′[τ ]
pack [τ, R̂(v′)] as τ ′ when v = pack [τ, v′] as τ ′

Fig. 7. Operational Semantics of STAL



Judgement Meaning

∆ ` τ τ is a valid type
∆ ` σ σ is a valid stack type
` Ψ Ψ is a valid heap type

(no context is used because heap types must be closed)
∆ ` Γ Γ is a valid register file type
∆ ` τ1 = τ2 τ1 and τ2 are equal types
∆ ` σ1 = σ2 σ1 and σ2 are equal stack types
∆ ` Γ1 = Γ2 Γ1 and Γ2 are equal register file types
∆ ` τ1 ≤ τ2 τ1 is a subtype of τ2
∆ ` Γ1 ≤ Γ2 Γ1 is a register file subtype of Γ2

` H : Ψ the heap H has type Ψ
Ψ ` S : σ the stack S has type σ
Ψ ` R : Γ the register file R has type Γ
Ψ ` h : τ hval the heap value h has type τ
Ψ ;∆ ` w : τ wval the word value w has type τ
Ψ ;∆ ` w : τϕ fwval the word value w has flagged type τϕ

(i .e., w has type τ or w is ?τ and ϕ is 0)
Ψ ;∆;Γ ` v : τ the small value v has type τ
Ψ ;∆;Γ ` ι ⇒ ∆′;Γ ′ given a context of type Ψ ;∆;Γ , ι is a well formed

instruction and produces a context of type Ψ ;∆′;Γ ′

Ψ ;∆;Γ ` I I is a valid sequence of instructions
` P P is a valid program

Fig. 8. Static Semantics of STAL (judgments)



∆ ` τ ∆ ` σ ` Ψ ∆ ` Γ

∆ ` τ = τ
∆ ` τ

∆ ` σ = σ
∆ ` σ

· ` τi

` {`1 7→ τ1, . . . , `n 7→ τn}
∆ ` Γ = Γ
∆ ` Γ

∆ ` τ1 = τ2 ∆ ` σ1 = σ2 ∆ ` Γ1 = Γ2

∆ ` τ2 = τ1
∆ ` τ1 = τ2

∆ ` τ1 = τ2 ∆ ` τ2 = τ3
∆ ` τ1 = τ3

∆ ` σ2 = σ1

∆ ` σ1 = σ2

∆ ` σ1 = σ2 ∆ ` σ2 = σ3

∆ ` σ1 = σ3

∆ ` α = α
(α ∈ ∆)

∆ ` int = int

∆′,∆ ` Γ1 = Γ2

∆ ` ∀[∆′].Γ1 = ∀[∆′].Γ2

∆ ` τi = τ ′i
∆ ` 〈τϕ1

1 , . . . , τϕn
n 〉 = 〈τ ′1ϕ1 , . . . , τ ′n

ϕn〉
α,∆ ` τ1 = τ2

∆ ` ∃α.τ1 = ∃α.τ2 ∆ ` ns = ns

∆ ` σ1 = σ2

∆ ` ptr(σ1) = ptr(σ2)

∆ ` ρ = ρ
(ρ ∈ ∆)

∆ ` nil = nil

∆ ` τ1 = τ2 ∆ ` σ1 = σ2

∆ ` τ1::σ1 = τ2::σ2

∆ ` σ1 = σ′
1 ∆ ` σ2 = σ′

2

∆ ` σ1 ◦ σ2 = σ′
1 ◦ σ′

2

∆ ` σ
∆ ` nil ◦ σ = σ

∆ ` σ
∆ ` σ ◦ nil = σ

∆ ` τ ∆ ` σ1 ∆ ` σ2

∆ ` (τ ::σ1) ◦ σ2 = τ ::(σ1 ◦ σ2)

∆ ` σ1 ∆ ` σ2 ∆ ` σ3

∆ ` (σ1 ◦ σ2) ◦ σ3 = σ1 ◦ (σ2 ◦ σ3)

∆ ` σ = σ′ ∆ ` τi = τ ′i
∆ ` {sp:σ, r1 7→ τ1, . . . , rn 7→ τn} = {sp:σ′, r1:τ ′1, . . . , rn:τ ′n}

∆ ` τ1 ≤ τ2 ∆ ` Γ1 ≤ Γ2

∆ ` τ1 = τ2
∆ ` τ1 ≤ τ2

∆ ` τ1 ≤ τ2 ∆ ` τ2 ≤ τ3
∆ ` τ1 ≤ τ3

∆ ` τi

∆ ` 〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉 ≤ 〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉
∆ ` σ = σ′ ∆ ` τi = τ ′i (for 1 ≤ i ≤ n) ∆ ` τi (for n < i ≤ m)

∆ ` {sp:σ, r1:τ1, . . . , rm:τm} ≤ {sp:σ′, r1:τ ′1, . . . , rn:τ ′n}
(m ≥ n)

Fig. 9. Static Semantics of STAL, Judgments for Types



` P ` H : Ψ Ψ ` S : σ Ψ ` R : Γ

` H : Ψ Ψ ` R : Γ Ψ ; ·;Γ ` I
` (H,R, I)

` Ψ Ψ ` hi : τi hval

` {`1 7→ h1, . . . , `n 7→ hn} : Ψ
(Ψ = {`1:τ1, . . . , `n:τn})

Ψ ` nil : nil

Ψ ; · ` w : τ wval Ψ ` S : σ

Ψ ` w::S : τ ::σ

Ψ ` S : σ Ψ ; · ` wi : τi wval (for 1 ≤ i ≤ n)

Ψ ` {sp 7→ S, r1 7→ w1, . . . , rm 7→ wm} : {sp:σ, r1:τ1, . . . , rn:τn} (m ≥ n)

Ψ ` h : τ hval Ψ ;∆ ` w : τ wval Ψ ;∆ ` w : τϕ fwval Ψ ;∆;Γ ` v : τ

Ψ ; · ` wi : τϕi
i fwval

Ψ ` 〈w1, . . . , wn〉 : 〈τϕ1
1 , . . . , τϕn

n 〉 hval

∆ ` Γ Ψ ;∆;Γ ` I
Ψ ` code[∆]Γ.I : ∀[∆].Γ hval

∆ ` τ1 ≤ τ2
Ψ ;∆ ` ` : τ2 wval

(Ψ(`) = τ1)
Ψ ;∆ ` i : int wval

∆ ` τ Ψ ;∆ ` w : ∀[α,∆′].Γ wval

Ψ ;∆ ` w[τ ] : ∀[∆′].Γ [τ/α] wval

∆ ` σ Ψ ;∆ ` w : ∀[ρ,∆′].Γ wval

Ψ ;∆ ` w[σ] : ∀[∆′].Γ [σ/ρ] wval

∆ ` τ Ψ ;∆ ` w : τ ′[τ/α] wval

Ψ ;∆ ` pack [τ,w] as ∃α.τ ′ : ∃α.τ ′ wval Ψ ;∆ ` ns : ns wval

∆ ` σ
Ψ ;∆ ` ptr(i) : ptr(σ) wval

(|σ| = i)
∆ ` τ

Ψ ;∆ ` ?τ : τ0 fwval

Ψ ;∆ ` w : τ wval

Ψ ;∆ ` w : τϕ fwval Ψ ;∆;Γ ` r : τ
(Γ (r) = τ)

Ψ ;∆ ` w : τ wval

Ψ ;∆; Γ ` w : τ

∆ ` τ Ψ ;∆;Γ ` v : ∀[α,∆′].Γ ′

Ψ ;∆;Γ ` v[τ ] : ∀[∆′].Γ ′[τ/α]

∆ ` σ Ψ ;∆;Γ ` v : ∀[ρ,∆′].Γ ′

Ψ ;∆;Γ ` v[σ] : ∀[∆′].Γ ′[σ/ρ]

∆ ` τ Ψ ;∆;Γ ` v : τ ′[τ/α]

Ψ ;∆;Γ ` pack [τ, v] as ∃α.τ ′ : ∃α.τ ′
· ` τ1 = τ2 Ψ ` h : τ2 hval

Ψ ` h : τ1 hval

∆ ` τ1 = τ2 Ψ ;∆ ` w : τ2 wval

Ψ ;∆ ` w : τ1 wval

∆ ` τ1 = τ2 Ψ ;∆;Γ ` v : τ2

Ψ ;∆;Γ ` v : τ1

Ψ ;∆;Γ ` I

Ψ ;∆;Γ ` ι⇒ ∆′;Γ ′ Ψ ;∆′;Γ ′ ` I
Ψ ;∆;Γ ` ι; I

∆ ` Γ1 ≤ Γ2 Ψ ;∆; Γ1 ` v : ∀[ ].Γ2

Ψ ;∆;Γ1 ` jmp v

∆ ` τ Ψ ;∆;Γ ` r1 : τ

Ψ ;∆;Γ ` halt [τ ]

Fig. 10. STAL Static Semantics, Term Constructs except Instructions



Ψ ;∆;Γ ` ι⇒ ∆′;Γ ′

Ψ ;∆;Γ ` rs : int Ψ ;∆;Γ ` v : int

Ψ ;∆;Γ ` aop rd, rs, v ⇒ ∆; Γ{rd:int}
Ψ ;∆;Γ1 ` r : int Ψ ;∆;Γ1 ` v : ∀[ ].Γ2 ∆ ` Γ1 ≤ Γ2

Ψ ;∆;Γ1 ` bop r, v ⇒ ∆; Γ1

Ψ ;∆;Γ ` rs : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

Ψ ;∆;Γ ` ld rd, rs(i) ⇒ ∆;Γ{rd :τi} (ϕi = 1 ∧ 0 ≤ i < n)

∆ ` τi

Ψ ;∆;Γ ` malloc r[τ1, . . . , τn] ⇒ ∆;Γ{r:〈τ0
1 , . . . , τ

0
n〉}

Ψ ;∆; Γ ` v : τ

Ψ ;∆;Γ ` mov rd, v ⇒ ∆;Γ{rd:τ}

Ψ ;∆;Γ ` mov rd, sp ⇒ ∆;Γ{rd:ptr(σ)} (Γ (sp) = σ)

Ψ ;∆;Γ ` rs : ptr(σ2) ∆ ` σ1 = σ3 ◦ σ2

Ψ ;∆;Γ ` mov sp, rs ⇒ ∆; Γ{sp:σ2} (Γ (sp) = σ1)

Ψ ;∆;Γ ` salloc n⇒ ∆;Γ{sp:ns:: · · · ::ns︸ ︷︷ ︸
n

::σ} (Γ (sp) = σ)

∆ ` σ1 = τ0:: · · · ::τn−1::σ2

Ψ ;∆;Γ ` sfree n⇒ ∆;Γ{sp:σ2} (Γ (sp) = σ1)

∆ ` σ1 = τ0:: · · · ::τi::σ2

Ψ ;∆;Γ ` sld rd, sp(i) ⇒ ∆;Γ{rd :τi} (Γ (sp) = σ1 ∧ 0 ≤ i)

Ψ ;∆;Γ ` rs : ptr(σ3) ∆ ` σ1 = σ2 ◦ σ3

∆ ` σ3 = τ0:: · · · ::τi::σ4

Ψ ;∆;Γ ` sld rd, rs(i) ⇒ ∆; Γ{rd:τi} (Γ (sp) = σ1 ∧ 0 ≤ i)

∆ ` σ1 = τ0:: · · · ::τi::σ2 Ψ ;∆;Γ ` rs : τ

Ψ ;∆;Γ ` sst sp(i), rs ⇒ ∆;Γ{sp:τ0:: · · · ::τi−1::τ ::σ2} (Γ (sp) = σ1 ∧ 0 ≤ i)

Ψ ;∆;Γ ` rd : ptr(σ3) Ψ ;∆;Γ ` rs : τ
∆ ` σ1 = σ2 ◦ σ3 ∆ ` σ3 = τ0:: · · · ::τi::σ4

∆ ` σ5 = τ0:: · · · ::τi−1::τ ::σ4

Ψ ;∆;Γ ` sst rd(i), rs ⇒ ∆;Γ{sp:σ2 ◦ σ5, rd:ptr(σ5)} (Γ (sp) = σ1 ∧ 0 ≤ i)

Ψ ;∆;Γ ` rd : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 Ψ ;∆;Γ ` rs : τi

Ψ ;∆;Γ ` st rd(i), rs ⇒ ∆;Γ{rd:〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉} (0 ≤ i < n)

Ψ ;∆;Γ ` v : ∃α.τ
Ψ ;∆;Γ ` unpack [α, rd], v ⇒ α,∆;Γ{rd:τ} (α 6∈ ∆)

Fig. 11. STAL Static Semantics, Instructions


