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Abstract

An object encoding translates a language with object primitives to one without. Sim-
ilarly, a class encoding translates classes into other primitives. Both are important theo-
retically for comparing the expressive power of languages and for transferring results from
traditional languages to those with objects and classes. Both are also important foundations
for the implementation of object-oriented languages as compilers typically include a phase
that performs these translations.

This paper describes a language with a primitive notion of classes and objects and
presents an encoding of this language into one with records and functions. The encoding
uses two techniques often used in compilers for single-inheritance class-based object-oriented
languages: the self-application semantics and the method-table technique. To type the
output of the encoding, the encoding uses a new formulation of self quantifiers that is more
powerful than previous approaches.

1 Introduction

An object encoding is a translation from a language with a primitive notion of objects to one
without, typically one that has functions and records instead. Object encodings are important
theoretically for comparing the expressive power of object-oriented languages versus functional
languages and for transferring results proven about functional languages to object-oriented
languages. Object encodings are also important for building solid foundations for the imple-
mentation of object-oriented languages as known implementation techniques typically involve
a phase that turns objects into records and functions.

A typical implementation of an object-oriented language uses a translation that corresponds
to the self-application semantics [Kam88] (this paper uses the term self-application semantics
to refer to both the implementation technique and the semantics). In the self-application
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semantics, an object becomes a record with entries for the object’s fields and methods. Methods
become functions which take an extra argument, and the object itself is always passed as this
extra argument—because part of the object is applied to the object itself, the terminology “self
application” is used.

Similarly, a class encoding is a translation from a language with a primitive notion of classes
into one without. A class encoding might target a pure object language or might be combined
with an object encoding to produce records and functions. Class encodings are important for
the same reason as object encodings: they illuminate the additional expressiveness of classes
and provide foundations for the implementation of class-based languages.

A typical implementation of a class-based language uses the method-table technique in addition
to the self-application semantics. In this refinement, objects become records with entries for
the object’s fields and an entry for a method table, which is another record with entries for the
object’s methods. Only one method table is constructed per class and is shared amongst all
the class’s instances.

It is important to distinguish between typed and untyped encodings. An untyped encoding
translates into a language without a static typing discipline. A typed encoding translates a
statically typed language into a statically typed language and must, if given type-correct input,
produce type-correct output. Typed encodings provide foundations for type-directed compilers,
which in addition to translating code also maintain and translate type information. There are
several benefits to type-directed compilers: They can be debugged by turning on intermediate
language type checkers (e.g., [MTC+96]). They can use type information to guide or enable
optimisation or better run-time systems (e.g., [TMC+96]). They can produce certificates of
safety for target code [NL98, MCG+99]. Typed object and class encodings describe how to
produce the necessary type information for an intermediate language based on records and
functions.

The search for object and class encodings is also an attempt to tease apart the various aspects
of objects: packaging of code and data, self reference, information hiding, et cetera. Teasing
these aspects apart breaks the object construct into a number of separate concepts. Many of
these concepts match well with traditional records, functions, and type systems. Indeed, the
self-application semantics and method-tables are easily expressed as untyped object encodings.
But one concept does not: the type of self, and this mismatch makes it difficult to extend
these encodings to produce type correct output in some typed language. Typed encodings must
somehow capture the type of self using existing type constructors or by inventing new ones.

The extensive previous work on typed object and class encodings, is discussed in detail with
references in Section 5. These encodings have used a combination of recursive types and some
flavour of existential types to capture the type of self. Recursive types are used because
objects can refer to themselves. Existential types are used to try to capture the information
hiding aspect of objects. Unfortunately, these combinations of recursive and existential types
do not quite capture self’s type, forcing these encodings to include work arounds: extra
data structures, extra indirections, and extra operations. For theoretical purposes, these work
arounds are no problem, and these encodings answer important theoretical questions such as the
comparative expressiveness of object-oriented languages versus functional languages and how
to transfer results about functional languages to object-oriented languages. But for practical
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purposes, implementations based directly on these encodings are not efficient, and so these
encodings cannot be considered foundations for language implementation.

This paper tackles the type of self directly by introducing a new type constructor, the self
quantifier, to capture it. To explain what a self quantifier does, consider some object and the
static types assigned to it at various program points. In general the static types will not be the
actual run-time type of the object, but rather a supertype of the run-time type. Self quantifiers
allow the supertype to refer to the actual, but unknown, run-time type of the object. This
paper uses self quantifiers to devise a new typed object and class encoding that is faithful to
the self-application semantics and method-table techniques. In particular, methods become
functions which require an argument of the actual run-time type, and self quantifiers are used
to capture this requirement.

The main contribution of this paper is a new typed object and class encoding based on a new
formulation of self quantifiers. The key to understanding object encodings is the typing of
self, and self quantifiers naturally capture this type. The new formulation of self quantifiers
avoids certain problems with previous typed encodings and allows the self-application semantics
and method-table techniques to be used as the term translation. Since these techniques are
used in real compilers, the new encoding provides a formal foundation for implementations. A
minor contribution of this paper is a new object language with primitive notions of classes and
objects.

This paper is a longer version of a paper that appears in OOPSLA 2000 [Gle00a]. It contains
proofs, more formal language details, and elaboration of covariant self types and closure conver-
sion. Roles of Classes In typical class-based object-oriented languages, classes play a number of
roles. Primarily, a class provides a template for the creation of objects, specifying which fields
the objects will have and how they will respond to methods. But classes play other roles as well.
For example, in Java [GJS96] a class provides a template, a named type, an explicit subtyping
relationship between this named type and the named type of the superclass, constructors that
allow for the controlled creation and initialisation of objects, and the ability to downcast ob-
jects based on the class from which they were created. This paper just concentrates on the role
of classes as templates for objects. The role of classes in downcasting is addressed in another
paper [Gle99c]. The other roles, while important, are beyond the scope of this paper and are
left to future work.

2 Object Template Language

To begin, this section defines a language with primitive notions of objects and object templates.
Object templates capture the role of classes as templates for objects. Consider the example
class hierarchy shown in Figure 1 that includes classes from a hypothetical GUI toolkit. The
class Window represents windows on the user’s screen and the class ContainerWindow repre-
sents windows that are the composition of a number of child windows. Class Window has a field
containing the current position and size of the window and methods for handling user events
and for determining if a pixel is within the window. Class ContainerWindow has a field con-
taining the current children and a new method for adding children. Additionally, it overrides
handleEvent perhaps to distribute the event to one of children according to screen location.
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class Window {
Rectangle extent;
boolean handleEvent(Event) {· · ·};
boolean contains(Point) {· · ·};

}
class ContainerWindow extends Window {
Window[] children;
boolean handleEvent(Event) {· · ·};
void addChild(Window) {· · ·};

}

Figure 1: Example Class Hierarchy

Class Window provides a template for objects with a field extent and methods handleEvent and
contains. Similarly, ContainerWindow provides a template for objects with fields extent and
children and methods handleEvent, contains, and addChild. One way to construct these
templates is to start with the superclass’s template and then apply operations that add fields,
add methods, and override methods. Since adding a field is not dependent upon the other fields
or methods, adding a single field could be a basic operation. Adding or overriding methods,
however, is not independent, because the new methods may refer to other methods being added.
Therefore, the addition and overriding of several methods is the most basic operation. Using et
to denote the empty template, + to denote field addition, and ←+ to denote method addition
and overriding, templates for Window and ContainerWindow are constructed as follows:

let Windowt = et + extent : Rectangle←+[handleEvent = · · · , contains = · · ·] in
let ContainerWindowt =
Windowt + children : array(Window) ←+[handleEvent = · · · , addChild = · · ·] in

Objects are created by instantiating classes, or more precisely, their templates. The new object
will have all the fields and methods in the template and will respond to the methods according
to the code given in the template. The instantiation operation must provide initial values for
the fields as the template only lists the fields and their types. (Most object-oriented languages
provide more sophisticated creation and initialisation mechanisms; these mechanisms are be-
yond the scope of this paper.) Writing instantiation as new template [field = initial value],
objects from Window and ContainerWindow are created as follows:

let w1 = new Windowt[extent = r1] in
let w2 = new ContainerWindowt[extent = r2, children = array()] in

where r1 and r2 are rectangles.

Objects are manipulated using the operations of method invocation, field selection, and field
update. For example, the operation w2.addChild(w1) adds w1 as a child of w2.

The language informally described so far captures the key features of a single-inheritance class-
based language such as Java. The rest of this section formalises an object template language
called O, and the next section shows how to encode it into a language with records and functions.
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The term language of O is:

Expressions e ::= x | et | e + f : σ | e←+[mi = Mi]i∈I | new e[fj = ej ]j∈J |
e.m | e.f | e1.f := e2

Methods M ::= x.e:τ

Metavariable x ranges over term variables, m over method names, and f over field names.

In O, templates are values distinct from the objects that are created from them, and are built
from the empty template by the operations of field addition and method addition/override.
The empty template is written et; its instances have no fields and no methods. The operation
e+f : σ adds field f with type σ to template e producing a new template. The template e must
not have field f , and the new template has all the methods, method implementations, and fields
of e, as well as field f with type σ. The operation e ←+[mi = Mi]i∈I adds or overrides methods
mi of template e with implementations Mi, producing a new template. The new template will
have methods mi with implementation Mi plus all the methods in e not in {mi|i ∈ I}, as well
as all fields of e. A method implementation M has the form x.e:τ . Unlike Java, O does not
have an explicit keyword for self, but instead the programmer chooses a variable x and uses
this variable to refer to self in the method body. In x.e:τ , x is the variable chosen to stand for
self, e is the method body, and τ is the return type. If object o has x.e:τ as its implementation
of method m then the method invocation o.m will result in the execution of e with x replaced
by o. Note that methods are parameterless, Section 4 describes extensions of O with method
parameters.

Objects are created by instantiating templates and can be manipulated by method invocation,
field selection, and field update. Instantiation is written new e[fj = ej ]j∈J , where e is the
template to be instantiated and ej is the initial value of field fj. The new object will respond
to methods as dictated by template e. Method invocation is written e.m, field selection e.f ,
and field update e1.f := e2.

The type language of O is:

Types τ, σ ::= tempt r | objt r
Rows r ::= [mi : si; fj : σj ]i∈I,j∈J

Signatures s ::= τ

As templates are distinct from objects, they have their own types, which are different from
the types for objects. Templates are given the type tempt r where r, called a row, describes
the objects that result from instantiating the template. The row [mi:si; fj:σj ]i∈I,j∈J describes
objects with methods mi of signature si and fields fj of type σj . The order of the methods
and fields matters,1 so I and J can be thought of as ordered index sets. Methods in O are
parameterless and just compute a result, so a signature is a type, the type of the result. Section 4
describes extensions of O with more complicated signatures. There is no interesting subtyping
for template types as the operations on templates have conflicting subtyping requirements.

Objects have type objt r where r is a row as above. Object types have right-extension breadth
subtyping: an object type with more methods on the right end and more fields on the right end
is a subtype of an object type with less. Objects types also have depth subtyping for methods:

1The encoding is also correct if the order of methods and fields is unimportant, so long as the order of record
fields in the target language is unimportant.
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methods of the subtype may have subsignatures of the methods of the supertype. Because fields
are mutable, they have no depth subtyping. The following rule captures these properties:

k ∈ I2 : �O sk ≤ s′k
�O objt[mi:si; fj:σj]i∈I1,j∈J1 ≤ objt[mi:s′i; fj:σj ]i∈I2,j∈J2

where I2 is a prefix of I1 and J2 is a prefix of J1.

Type checking terms is separated into two judgements: one for expressions and one for methods.
(This separation along with the distinct syntactic classes for signatures and methods will facili-
tate later extensions of O with method arguments, type arguments, and self types.) Judgement
Γ �M

O M : τ ✄ s asserts that method implementation M has signature s when self has type τ
or one of its subtypes.

Type checking the template operations is fairly straightforward. The empty template has the
empty template type tempt[; ]. The operation e + f :σ requires e to have a template type
without field f , and the result type is the same template type but with f added. Method
addition/override is more complicated. This operation is type checked by first computing the
row for the new template, then checking that the method implementations are correct assuming
self has the new row, and finally checking that any overridden methods have compatible sig-
natures, that is, the overriding method has a subsignature of the overridden method. Formally,
the typing rule is:

Γ �O e : tempt[mi:si; fj :σj ]i∈I,j∈J

k ∈ K : Γ �M
O Mk : objt r′ ✄ s′k

k ∈ I ∩K : �O s′k ≤ sk

Γ �O e ←+[mi = Mi]i∈K : tempt r′

where r′ = [mi:s′′i ; fj :σj ]i∈(I,K−I),j∈J , s′′i = si if i ∈ I −K, and s′′i = s′i if i ∈ K.

Instantiation new e[fj = ej ]j∈J requires e to have a template type, {fj|j ∈ J} to be exactly the
fields in e’s type, and ej to have the type of field fj:

Γ �O e : tempt r Γ �O ej : σj

Γ �O new e[fj = ej ]j∈J : objt r
(r = [mi:si; fj :σj ]i∈I,j∈J)

Method invocation e.m requires e to have an object type with method m and the result type is
m’s signature. Field selection e.f requires e to have an object type with field f and the result
type is f ’s type. Field update e1.f := e2 requires e1 to have an object type with field f , e2 to
have f ’s type, and the result type is e1’s type.

2.1 Formal Details

The operational semantics of O appears in Figure 2. The capture avoiding substitution of x
for y in z is written z{y := x}; the substitution of an expression e for the unique hole ({}) in
an evaluation context E is written E{e}. The sematnics is a left to right, call by value, context
based, reduction semantics. Expressions of a template type evaluate to template values of the
form temp[mi = Mi; fj :σj]i∈I,j∈J , which list the methods and their implementations and list
the fields and their types. Expressions of an object type evaluate to object values of the form

6



Additional syntactic constructs:

Values v,w ::= temp[mi = Mi; fj:σj]i∈I,j∈J | obj[mi = Mi; fj = vj ]i∈I,j∈J

Contexts E ::= {} | E + f : σ | E ←+[mi = Mi]i∈I | new E[fj = ej ]j∈J |
new v[−−−→f = v, f = E,

−−−→
f ′ = e] | E.m | E.f | E.f := e | v.f := E

Reduction rules:

E{ι} �→ E{e}
where: v1 = temp[mi = Mi; fj:σj]i∈I,j∈J

v2 = obj[mi = Mi; fj = wj ]i∈I,j∈J

Mi = xi.ei:τi

ι e Side Conditions
et temp[; ]
v1 + f : σ temp[mi = Mi; fj :σj , f :σ]i∈I,j∈J f /∈ fj∈J

v1 ←+[mk = M ′
k]k∈K temp[ml = M ′′

l ; fj :σj ]l∈(I,K−I),j∈J M ′′
l =

{
Ml l ∈ I −K
M ′

l l ∈ K

new v1[fj = wj ]j∈J v2
v2.mk ek{xk := v2} k ∈ I
v2.fk wk k ∈ J

v2.fk := v obj[mi = Mi; fj = w′
j ]i∈I,j∈J k ∈ J ;w′

j =

{
wj j �= k
v j = k

Figure 2: Object Template Language Operational Semantics
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�O τ1 ≤ τ2

(subtemp) �O tempt r ≤ tempt r

(subobj)
i ∈ I2 : �O si ≤ s′i

�O objt[mi:si; fj:σj]i∈I1,j∈J1 ≤ objt[mi:s′i; fj:σj]i∈I2,j∈J2

where I1 is a prefix of I2 and J1 is a prefix of J2.

Γ �O e : τ Γ �M
O M : τ ✄ s

(subsume)
Γ �O e : τ1 �O τ1 ≤ τ2

Γ �O e : τ2
(var)

Γ �O x : τ
(Γ(x) = τ)

(et)
Γ �O et : tempt[; ]

(addfield)
Γ �O e : tempt[mi:si; fj:σj ]i∈I,j∈J

Γ �O e + f : σ : tempt[mi:si; fj :σj, f :σ]i∈I,j∈J
(f /∈ fj∈J)

(aometh)

Γ �O e : tempt[mi:si; fj:σj ]i∈I,j∈J

i ∈ K : Γ �M
O Mi : objt r′ ✄ s′i

i ∈ I ∩K : �O s′i ≤ si

Γ �O e ←+[mi = Mi]i∈K : tempt r′

where r′ = [mi:s′′i ; fj :σj ]i∈(I,K−I),j∈J , s′′i = si if i ∈ I −K, and s′′i = s′i if i ∈ K.

(inst)
Γ �O e : tempt r Γ �O ej : σj

Γ �O new e[fj = ej]j∈J : objt r
(r = [mi:si; fj:σj]i∈I,j∈J)

(invoke)
Γ �O e : objt[mi:si; fj :σj]i∈I,j∈J

Γ �O e.mk : sk
(k ∈ I)

(select)
Γ �O e : objt[mi:si; fj:σj]i∈I,j∈J

Γ �O e.fk : σk
(k ∈ J)

(update)
Γ �O e1 : τ1 Γ �O e2 : σk

Γ �O e1.fk := e2 : τ1
(k ∈ J)

where τ1 = objt[mi:si; fj:σj]i∈I,j∈J .

(method)
Γ, x : σ �O e : τ

Γ �M
O x.e:τ : σ ✄ τ

(meth-sub)
Γ �M

O M : σ2 ✄ s �O σ1 ≤ σ2

Γ �M
O M : σ1 ✄ s

(temp)
Γ �M

O Mi : objt r ✄ si

Γ �O temp[mi = Mi; fj:σj ]i∈I,j∈J : tempt r

(obj)
Γ �M

O Mi : objt r ✄ si Γ �O vj : σj

Γ �O obj[mi = Mi; fj = vj]i∈I,j∈J : objt r

where, for the last two rules, r = [mi:si; fj:σj]i∈I,j∈J .

Figure 3: O Typing Rules
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obj[mi = Mi; fj = vj ]i∈I,j∈J , which list the methods and their implementations and list the
fields and their values.

The typing rules axiomatise three judgements: The judgement �O τ1 ≤ τ2 asserts that τ1 is
a subtype of τ2. The judgement Γ �O e : τ asserts that e has type τ in context Γ. The
judgements Γ �M

O M : τ ✄ s asserts that M has signature s if self has type τ . A context is a
list of variables and their types, x1:τ1, . . . , xn:τn, where the variables are distinct. The typing
rules appear in Figure 3. They are sound with respect to the operational semantics, as proven
in Appendix A.

3 Encoding the Template Language

This section presents a typed encoding of O into a language with records and functions, using the
self-application semantics and the method-table technique. Before getting into formal details,
this part of the section informally spells out the self-application semantics and method-table
technique in more detail and discusses the issues that arise in trying to type them. These typing
issues motivate a new type constructor, the self quantifier, as well as other features needed in
the target language. Section 3.1 formalises the target language and Section 3.3 formalises the
encoding.

This section informally describes the encoding, and sometimes uses the the formal translation
syntax to refer to other parts of the encoding. Unfortunately, it is necessary to refer to some
parts of encoding before they are defined. To ease the burden, here is a summary of the parts
of the encoding, the formal translation syntax, and their intended meanings.

[[τ ]]type The translation of type τ
[[r]]mt(τ) The record type of the method table

of a translated object where τ is
the type of self

[[r]]full(τ) The record type of the translation of
an object where τ is the type of self

[[s]]sig(τ) The translation of signature s
[[e]]exp The translation of expression e
[[M ]]mth(τ) The translation of method body M where

τ is the type of self

Two of these deserve a little elaboration. Objects are translated into records, one of whose fields
is the method table, also a record. The types [[r]]full(τ) and [[r]]mt(τ) are the respective record
types for these records where τ is the type of self. The translation of object and template
types use these types, but also have quantifiers to introduce self’s type as described later.

Under the self-application semantics, a method is compiled into a function taking an extra ar-
gument, and during method invocation the object itself is always passed as the extra argument.
Thus, the method handleEvent in the class Window is compiled to a function of the following
form, named say Window::handleEvent:

λ(x:α, y:Event).b
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where x is the extra self parameter, b is the body of the method, and α is, for now, a type
variable that stands for the type of self. This function has type (α, Event) → bool.

In a class-based language, all instances of a class have the same methods. In order to save space,
objects share a structure with other instances of the class, the method table. A method table
is a record with one field for each method the object responds to. For example, the Window
class has a method table, named say Window::mt:

〈handleEvent = Window::handleEvent, contains = Window::contains〉

and ContainerWindow has method table:

〈handleEvent = ContainerWindow::handleEvent,
contains = Window::contains,
addChild = ContainerWindow::addChild〉

Using the suggested typing of Window::handleEvent, the method table Window::mt has type:

[[Window]]mt(α) = 〈handleEvent:(α, Event) → bool, contains:(α, Point) → bool〉 (1)

However, this type has a free α, and the encoding must somehow introduce this α. Abadi
and Cardelli [AC96] observe that the methods in these method tables are polymorphic in the
final object type, and so can be given an F-bounded polymorphic type [CCH+89]. Using the
[[r]]full(α) type, Window’s method table gets type:

〈handleEvent : ∀α ≤ [[Window]]full(α).(α, Event) → bool,
contains : ∀α ≤ [[Window]]full(α).(α, Point) → bool〉

My encoding will use this idea with one twist. Instead of polymorphic methods, the method
table itself is polymorphic. Thus Window’s method table has type:

∀α ≤ [[Window]]full(α).〈handleEvent : (α, Event) → bool, contains : (α, Point) → bool〉

This means that a method table can be installed into an object simply by instantiating it at an
appropriate type. In general [[temp r]]type = ∀α ≤ [[r]]full(α) . [[r]]mt(α) and [[r]]mt(α) is a record
type with one entry for each method in r, which is a function taking an α to the result of that
method:

[[[mi:α.τi; fj :σj]i∈I,j∈I ]]mt(α) = 〈mi:α → [[τi]]type〉i∈I

An object is a record with an entry for its class’s method table and an entry for each of its
fields. For example, instances of Window and ContainerWindow would have the forms

〈mt=Window::mt, extent=r1〉
〈mt=ContainerWindow::mt, extent=r2, children=a〉

respectively, where r1 and r2 are some rectangles and a is some array of Windows.

The type of an instance of Window has the form:

[[Window]]full(α) = 〈mt : [[Window]]mt(α), extent : Rectangle〉
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Again the issue is how to introduce α. Naively, this is the object type itself, so a recursive type
should be used:

rec α.〈mt : [[Window]]mt(α), extent : Rectangle〉 (2)

Unfortunately this does not work for the following reason. Consider a ContainerWindow in-
stance, which also has type Window, it would have the following target type:

rec α.〈mt : [[ContainerWindow]]mt(α), extent : Rectangle, children : array(Window)〉

Since ContainerWindow is a subtype of Window, its translation must be a subtype of Window’s
translation. This means that the above type should be a subtype of (2), but it is not. Type
(2)’s body has a contravariant occurance of α (see (1)), so has no subtypes other than itself.

The problem is that the recursive type makes α, the type of self, equal to Window instead of
the actual run-time type of the object. The solution is to somehow make α refer to this actual
run-time type. To achieve this, I introduce a new2 type constructor, a self quantifier, instead
of the recursive quantifier.

A self quantifier allows a type to refer to the actual run-time type of the value inhabiting it. The
type self α.τ contains values v of type τ where α is the actual type of v. Using this quantifier,
Window’s instances have type:

self α.〈mt : [[Window]]mt(α), extent : Rectangle〉

In general [[obj r]]type = self α.[[r]]full(α) and [[r]]full(α) is a record type with an entry for the
method table and an entry for each field of r:

[[r]]full(α) = 〈mt:[[r]]mt(α), fj :[[σj ]]type〉j∈J

where r = [mi:τi; fj:σj]i∈I,j∈I

The only remaining issue is formalising self quantifiers. Abadi and Cardelli [AC96] provide a
formulation of self quantifiers, but their formulation leads to the need for “recoup” fields and the
inefficiencies of an extra field and an extra projection.3 The encoding needs a new formulation
of self quantifiers that avoids the problems of recoup fields.

Abadi and Cardelli’s formulation involves two operations: one to introduce self quantifiers and
one to eliminate them. The introduction form is pack e, σ as self α.τ (they call it “wrap”), and
it produces an expression e packaged up with its actual self type σ. The typing rule is:

∆;B; Γ �F e : σ ∆;B �F σ ≤ τ{α := σ}
∆;B; Γ �F pack e, σ as self α.τ : self α.τ

where capture avoiding substitution of x for y in z is written z{y := x}. For σ to actually
be e’s self type, e must have type σ. In addition e also must have type τ with α replaced by

2Strictly speaking, self quantifiers were introduced by Abadi and Cardelli [AC96], but, as explained in this
section, their formulation of self quantifiers is insufficient for the purposes of this paper, so a new formulation is
needed.

3Note that the translation of objects given in this section under the interpretation of self quantifiers used by
Abadi and Cardelli leads directly to Abadi, Cardelli, and Viswanathan’s encoding for an imperative calculus.
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e’s self type, that is, e must have type τ{α := σ}. The latter is achieved by requiring that
σ ≤ τ{α := σ}. Using pack, the translation of new Windowt[extent = r1] is:

pack 〈mt = Window :: mt, extend = [[r1]]exp〉, rec α.[[Window]]full(α) as self α.[[Window]]full(α)

Here, the object’s run-time is rec α.[[Window]]full(α). For this type to satisfy the requirements
for packing into a self type, the condition ∆;B �F σ ≤ τ{α := σ} above, it must be the case
that rec α.τ ≤ τ{α := rec α.τ}. This is true under an equirecursive interpretation of recursive
types, that is, where rec α.τ = τ{α := rec α.τ}. The target language has this interpretation.

The elimination form is unpack α, x = e1 in e2 (they call it “use as”). Intuitively, the expression
e1 is a value packaged with its self type, and unpack unpacks the value into x and the self type
into α, and executes e2. The typing rule is:

∆;B; Γ �F e1 : self α.τ1 ∆, α;B,α ≤ self α.τ1; Γ, x : τ1 �F e2 : τ2 ∆ �F τ2

∆;B; Γ �F unpack α, x = e1 in e2 : τ2

Notice that x is assumed to have type τ1, but will be bound to a value whose actual run-time
type could be a strict subtype of τ1. For this reason, this unpack typing rule is too weak to type
check method invocation. Consider the method invocation e.m where e has type obj r and m
has signature τ in r. It is translated into unpack α, x = [[e1]]exp in x.mt.m x. Under the above
rule, x.mt.m has type α → [[τ ]]type, but x has type [[r]]full(α), which is a strict supertype of α.

The solution is to make a stronger assumption about x—that it has type α. This is sound be-
cause α is bound to the actual run-time type of the value bound to x. This stronger assumption
leads to the rule:

∆;B; Γ �F e1 : self α.τ1 ∆, α;B,α ≤ τ1; Γ, x : α �F e2 : τ2 ∆ �F τ2

∆;B; Γ �F unpack α, x = e1 in e2 : τ2

Note, however, that the bound α ≤ τ1 has α on both the left and the right sides, that is, it is an
F bound rather than an ordinary bound. Since the system must already deal with F-bounded
polymorphism, these F bounds add no additional complexity. In fact, this use of F bounds
brings a nice symmetry to the system, as F bounds are used in the typing of methods, and F
bounds are used in the typing of method invocation.

Using this new rule, reconsider the translation of e.m:

unpack α, x = [[e]]exp in x.mt.m x

During type checking of x.mt.m x, x has type α and α has bound [[r]]full(α). Thus x.mt.m type
checks and has type α → [[τ ]]type. Since x has type α, the application type checks.

Finally consider method addition/override. The translation of this operation needs to create a
new method table that is a combination of an old method table and some new method imple-
mentations. There are two approaches: create a new record and copy the relevant entries from
the old record, or have record operations for updating a field and for extending a record with
a new field. Either approach would work, but I have chosen the second approach. Overridden
methods translate into a record update operation that needs to produce a new record. Field
update also translates into a record update operation. If the source language has applicative
field update then this operation needs to produce a new record. If the source language has
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imperative field update then this operation needs to update in place. Even if the source lan-
guage has applicative field update, the typing requirements for the translation of field update
and the translation of method override are different and require different record update oper-
ations. Therefore, the target language has record extension and two record update operations
in addition to projection and record formation.

Most class-based object-oriented language, unlike O, do not have first-class templates. In these
languages, a method table is completely determined at compile time (link time in dynamic
languages like Java) and the method tables can be built by the compiler and included in the
static-data segment. In O this amounts to statically reducing template expressions to template
values, which can then be translated into statically determined records and functions. Since O
has first-class values, the translation presented in this paper treats the more general case.

3.1 Target Language

The target language, Fself , is a variant of the second-order typed lambda calculus with records,
F-bounded polymorphism, self quantifiers, and recursive types. The syntax is:

Types τ, σ ::= α | τ1 → τ2 | 〈 i : τφi
i 〉ϕi∈I | ∀α ≤ τ1.τ2 | self α.τ | rec α.τ

Variances φ ::= + | ◦
Record Variances ϕ ::= ◦ | →
Expressions e ::= x | λx : τ.e | e1 e2 |

〈 i = ei〉i∈I | e. | e1. ← e2 | e1. := e2 | e1 +  = e2 |
Λα ≤ τ.e | e[τ ] | pack e, τ as self α.σ | unpack α, x = e1 in e2

The unusual features of Fself are its records, F-bounded polymorphism, self quantifiers, and
equirecursive types. Fself contains an extensive set of record operations including projection,
update, and extension. In order to have all these operations as well as breadth and depth
subtyping, which is necessary for the encoding, record types must have a number of variances
to keep everything straight. A record type 〈 i:τ

φi
i 〉ϕi∈I contains records with fields  i of type τi.

The variance φi specifies the allowable operations on that field, + means projection only and
◦ allows both projection and update. The record variance ϕ specifies whether the type lists all
of the fields of the value or just some of them. A record is in the type 〈 i:τ

φi
i 〉◦i∈I only when it

has exactly the fields  i∈I , but is in the type 〈 i:τ
φi
i 〉→i∈I when it has at least the fields  i∈I and

possibly more.

There are two record update operations. The operation e1. := e2 can be interpreted im-
peratively or applicatively depending upon whether the source language has an imperative or
applicative field update. Its typing rule is structural [AC96] (see also [HP98]), that is, the type
of the result is the same as the type of e1, which is required to be a subtype of a record type
with a field  that is mutable and e2 must have the type corresponding to  :

∆;B; Γ �F e1 : σ1 ∆;B �F σ1 ≤ 〈 i:τ
φi
i 〉ϕi∈I ∆;B; Γ �F e2 : τk

∆;B; Γ �F e1. k := e2 : σ1
(k ∈ I;φk = ◦)

The operation e1. ← e2, on the other hand, always produces a new record, which is a copy of
e1 with the  field replaced by e2. Its typing rule ignores the old type and variance of  and the
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result type is a record type obtained from e1’s by replacing the field  with the type of e2:

∆;B; Γ �F e1 : 〈 i:τ
φi
i 〉ϕi∈I ∆;B; Γ �F e2 : σ

∆;B; Γ �F e1. k ← e2 : 〈 i:τ ′i
φ′

i〉ϕi∈I

(k ∈ I)

where τ ′i
φ′

i = τφi
i if i �= k and τ ′k

φ′
k = σ◦. Finally, the operation e1 +  = e2 adds a new field

 with initial value e2 to record e1. Record e1 must not contain a field  , and the typing rule
ensures this by using the exact record variance ◦:

∆;B; Γ �F e1 : 〈 i:τ
φi
i 〉◦i∈I ∆;B; Γ �F e2 : σ

∆;B; Γ �F e1 +  = e2 : 〈 i:τ
φi
i ,  :σ◦〉◦i∈I

( /∈  i∈I)

Polymorphic types ∀α ≤ τ1.τ2 are F bounded [CCH+89]. This means that α binds in both τ1

and τ2, and that a type σ satisfies the bound if σ is a subtype of τ1{α := σ}. Otherwise, they
follow the standard rules for polymorphic types with the kernel-fun subtyping rule:

∆, α �F τ ∆, α;B,α ≤ τ ; Γ �F e : σ
∆;B; Γ �F Λα ≤ τ.e : ∀α ≤ τ.σ

∆;B; Γ �F e : ∀α ≤ τ1.τ2 ∆;B �F σ ≤ τ1{α := σ}
∆;B; Γ �F e[σ] : τ2{α := σ}

Recursive types rec α.τ contain values that have type τ where α refers to the recursive type
rec α.τ . This is formalised by making a recursive type equal to its unrolling:

∆ �F rec α.τ = τ{α := rec α.τ}

The most novel aspect of Fself is its self quantifiers. A self quantified type is written self α.τ ,
and has a covariant subtyping rule:

∆, α;B �F τ ≤ σ

∆;B �F self α.τ ≤ self α.σ

Self quantified types are introduced by the pack operation and eliminated by the unpack oper-
ation. These operations have the semantics and typing rules discussed above.

3.2 Formal Details

The operational semantics for Fself appears in Figure 4. It is a left to right, call by value,
context based, reduction semantics.

The typing rules for Fself axiomatise five judgements: The judgement ∆ �F τ asserts that τ is
a well formed type in type context ∆. The judgement ∆ �F τ1 = τ2 asserts that τ1 and τ2 are
equal types in type context ∆. The judgement ∆;B �F τ1 ≤ τ2 asserts that τ1 is a subtype
of τ2 in type context ∆ and with bounds B. The judgement ∆;B �F τφ1

1 ≤ τφ2
2 asserts that

τ1 and φ1 are a subtype and subvariance of τ2 and φ2 in type context ∆ and bounds B. The
judgement ∆;B; Γ �F e : τ asserts that e has type τ in type context ∆, bounds B, and value
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Additional syntactic constructs:

Values v,w ::= λx:τ.e | 〈 i = vi〉i∈I | Λα ≤ τ.v | pack v, τ as self α.σ

Contexts E ::= {} | E e | v E | 〈−−−→ = v,  = E,
−−−→
 ′ = e〉 | E. | E. ← e | v. ← E |

E. := e | v. := E | E +  = e | v +  = E | Λα ≤ τ.E | E[τ ] |
pack E, τ as self α.σ | unpack α, x = E in e

Reduction rules:
E{ι} �→ E{e}

Where:

ι e Side Conditions
(λx:τ.e) v e{x := v}
〈 i = vi〉i∈I . k vk k ∈ I{
〈 i = vi〉i∈I . k ← v
〈 i = vi〉i∈I . k := v

}
〈 i = v′i〉i∈I k ∈ I; v′i =

{
vi i �= k
v i = k

〈 i = vi〉i∈I +  = v 〈 i = vi,  = v〉i∈I  /∈  i∈I

(Λα ≤ τ.v)[σ] v{α := σ}
unpack α, x = pack v, τ as self α.σ in e e{α, x := τ, v}

Figure 4: Target Language Operational Semantics

context Γ. A type context ∆ is a sequence of distinct type variables, α1, . . . , αn. A bounds set
B is a sequence α1 ≤ τ1, . . . , αn ≤ τn where the αi are distinct; it is well formed, ∆ �F B,
when αi ∈ ∆ and ∆ �F τi. A value context Γ is a sequence of variables and their types,
x1:τ1, . . . , xn:τn; it is well formed, ∆ �F Γ, when ∆ �F τi. The typing rules appear in Figures 5
and 6. One of the equality rules uses a predicate τ ↓ α, read τ is contractive in α. It is defined
inductively as follows:

β ↓ α ⇐ α �= β
τ1 → τ2 ↓ α

〈 i:τ
φi
i 〉ϕi∈I ↓ α

self β.τ ↓ α
rec β.τ ↓ α ⇐ α = β ∨ τ ↓ α

The typing rules are sound with respect to the operational semantics, see Appendix B. An
alternative formulation of the target language with explicit coercions for recursive types is
described in my dissertation [Gle00b].

Equirecursive types and F-bounds make decision procedures for subtyping far from obvious.
However, there are algorithms for first and second-order systems with recursive types [AC93,
KPS95, CG99]. I believe these results can be extended to Fself , but am still working out the
details. Alternatively, a variation of Fself where recursive types and F-bounds are mediated
by explicit coercions [Gle00b] is definitely decidable and practical. Also, the calculus of co-
ercions [Cra99] could also be used to get a decidable version of Fself . Fself does not have a
minimal types property because of the variances on fields. If the introduction form for records
were 〈 i = ei:τi〉i∈I with a rule that required ei to have type τi then Fself would have a minimal
types property. The self quantifier developed in this paper could also be used in lower-level
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∆ �F τ ∆ �F τ1 = τ2

(wft)
∆ �F τ = τ

∆ �F τ
(eqs)

∆ �F τ2 = τ1

∆ �F τ1 = τ2
(eqt)

∆ �F τ1 = τ2 ∆ �F τ2 = τ3

∆ �F τ1 = τ3

(eqtv)
∆ �F α = α

(α ∈ ∆)

(eqfun)
∆ �F τ11 = τ21 ∆ �F τ12 = τ22

∆ �F τ11 → τ12 = τ21 → τ22

(eqtup)
∆ �F τi = σi

∆ �F 〈 i:τ
φi
i 〉ϕi∈I = 〈 i:σ

φi
i 〉ϕi∈I

(eqall)
∆, α �F τ11 = τ21 ∆, α �F τ12 = τ22

∆ �F ∀α ≤ τ11.τ12 = ∀α ≤ τ21.τ22
(eqself)

∆, α �F τ1 = τ2

∆ �F self α.τ1 = self α.τ2

(eqrec)
∆, α �F τ1 = τ2

∆ �F rec α.τ1 = rec α.τ2
(eq1)

∆ �F τ

∆ �F τ = σ{α := τ} (τ = rec α.σ)

(eq2)
∆ �F τ{α := σ1} = σ1 ∆ �F τ{α := σ2} = σ2

∆ �F σ1 = σ2
(τ ↓ α)

∆;B �F τ1 ≤ τ2 ∆;B �F τφ1
1 ≤ τφ2

2

(subr)
∆;B �F τ1 = τ2

∆;B �F τ1 ≤ τ2
(subt)

∆;B �F τ1 ≤ τ2 ∆;B �F τ2 ≤ τ3

∆;B �F τ1 ≤ τ3

(subtv)
∆;B �F α ≤ τ

(α ∈ ∆;α ≤ τ ∈ B)

(subfun)
∆;B �F σ1 ≤ τ1 ∆;B �F τ2 ≤ σ2

∆;B �F τ1 → τ2 ≤ σ1 → σ2

(subtup)
j ∈ I2 : ∆;B �F τ

φj

j ≤ τ ′j
φ′

j k ∈ I1 − I2 : ∆ �F τk

∆;B �F 〈 i:τ
φi
i 〉ϕ1

i∈I1
≤ 〈 j :τ ′j

φ′
j〉ϕ2

j∈I2

where I2 is prefix of I1 if ϕ2 =→, otherwise I1 = I2 and ϕ1 = ◦.

(suball)
∆, α �F τ11 = τ21 ∆, α;B,α ≤ τ11 �F τ12 ≤ τ22

∆;B �F ∀α ≤ τ11.τ12 ≤ ∀α ≤ τ21.τ22

(subself)
∆, α;B �F τ1 ≤ τ2

∆;B �F self α.τ1 ≤ self α.τ2

(subrec)
∆, α1, α2;B,α1 ≤ α2 �F τ1 ≤ τ2

∆;B �F rec α1.τ1 ≤ rec α2.τ2

(
α1 /∈ ftv(τ2)
α2 /∈ ftv(τ1)

)

(subcov)
∆;B �F τ1 ≤ τ2

∆;B �F τφ
1 ≤ τ+

2

(φ ∈ {+, ◦}) (subinv)
∆ �F τ1 = τ2

∆;B �F τ◦1 ≤ τ◦2

Figure 5: Fself Typing Rules, Typing Level
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∆;B; Γ �F e : τ

(subsume)
∆;B; Γ �F e : τ1 ∆;B �F τ1 ≤ τ2

∆;B; Γ �F e : τ2
(var)

∆;B; Γ �F x : τ
(Γ(x) = τ)

(fun)
∆ �F τ1 ∆;B; Γ, x : τ1 �F e : τ2

∆;B; Γ �F λx : τ1.e : τ1 → τ2
(app)

∆;B; Γ �F e1 : τ2 → τ1 ∆;B; Γ �F e2 : τ2

∆;B; Γ �F e1 e2 : τ1

(tuple)
∆;B; Γ �F ei : τi

∆;B; Γ �F 〈 i = ei〉i∈I : 〈 i:τ◦i 〉◦i∈I

(prj)
∆;B; Γ �F e : 〈 i:τ

φk
i 〉ϕi∈I

∆;B; Γ �F e. k : τk
(k ∈ I;φk ∈ {+, ◦})

(appupd)
∆;B; Γ �F e1 : 〈 i:τ

φi
i 〉ϕi∈I ∆;B; Γ �F e2 : σ

∆;B; Γ �F e1. k ← e2 : 〈 i:τ ′i
φ′

i〉ϕi∈I

(k ∈ I)

where τ ′i
φ′

i = τφi
i if i �= k and τ ′k

φ′
k = σ◦.

(impupd)

∆;B; Γ �F e1 : σ1

∆;B �F σ1 ≤ 〈 i:τ
φi
i 〉ϕi∈I

∆;B; Γ �F e2 : τk

∆;B; Γ �F e1. k := e2 : σ1
(k ∈ I;φk = ◦)

(extend)
∆;B; Γ �F e1 : 〈 i:τ

φi
i 〉◦i∈I ∆;B; Γ �F e2 : σ

∆;B; Γ �F e1 +  = e2 : 〈 i:τ
φi
i ,  :σ◦〉◦i∈I

( /∈  i∈I)

(abs)
∆, α �F τ1 ∆, α;B,α ≤ τ1 �F e : τ2

∆;B; Γ �F Λα ≤ τ1.e : ∀α ≤ τ1.τ2

(tapp)
∆;B; Γ �F e : ∀α ≤ τ1.τ2 ∆;B �F σ ≤ τ1{α := σ}

∆;B; Γ �F e[σ] : τ2{α := σ}

(pack)
∆;B; Γ �F e : τ ∆;B �F τ ≤ σ{α := τ}
∆;B; Γ �F pack e, τ as self α.σ : self α.σ

(unpack)

∆;B; Γ �F e1 : self α.τ1

∆, α;B,α ≤ τ1; Γ, x : α �F e2 : τ2

∆ �F τ2

∆;B; Γ �F unpack α, x = e1 in e2 : τ2

Figure 6: Fself Typing Rules, Expression Level
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typed languages including typed target languages such as TAL [MWCG99, MCG+99].

3.3 The Translation

The translation appears in Figure 7. It consists of six translation functions. At the type
level [[·]]type, [[·]]mt(·), and [[·]]sig(·) translate types, rows, and signatures. At the term level
[[·]]exp and [[·]]mth(·) translate expressions and methods. The term level translations are type
directed, that is, they translate an O typing derivation into an Fself term. The equations in
Figure 7 should be interpreted as specifying the translations of the corresponding typing rules
of O. On the right-hand side are the translations of subterms, these should be interpreted as
the translations of the corresponding subderivations. There are conditions on the equations
that describe the typing assumptions made about various terms, these correspond exactly to
typing information in the typing rules. There are no equations for the rules (subsume) and
(meth-sub), their translations are the translation of their first hypothesis. However, to deal
with a subtlety in the operational correctness, the rule (subsume) can also be translated as
follows: if Γ �O e : objt r1 and �O objt r1 ≤ objt r2 are the two hypotheses and the translation
of the first subderivation is pack e′, τ as [[objt r1]]type, then the translation of the derivation is
pack e′, τ as [[objt r2]]type. In this way, Figure 7 looks like a syntax-directed translation and is
not cluttered by the derivations, but actually specifies a type-directed translation. As with all
type-directed translations, a source term of type τ could have many derivations and thus many
translations. However, as the proven in Appendices C and D, any of these translations will
have type [[τ ]]type and will simulate the source term. Furthermore, inspection of the translation
shows that the erasure4 of these translations is the same untyped term.

The translation uses the ideas developed in the introduction of this section. For a row r there
are two important target types: [[r]]mt(τ, ϕ) for method tables, and [[r]]full(τ) for the objects.
The record type of a method table is [[r]]mt(τ, ϕ) where τ is the type of self and ϕ is the desired
record variance. Exact record variance is used for object templates, because adding methods
requires using the record extension operation, which requires exact record variance. Extensible
record variance is used for objects in order to get depth subtyping. The record type of an
object is [[r]]full(τ) where τ is the type of self. As discussed, a template type is polymorphic
over self, so is translated to ∀α ≤ [[r]]full(α).[[r]]mt(α, ◦). An object type uses a self quantifier, so
is translated to self α.[[r]]full(α).

At the term level, the translation of et uses a function stutter(·). This function simplifies the
proof of operation correctness, it can be any function that has the following two properties:
If ∆;B; Γ �F e : τ then ∆;B; Γ �F stutter(e) : τ , and stutter(v) �→ v. Notice that field
extension translates into a term with no operational effect. The effect of the type abstraction
and application is to change the type to reflect the new bound on the self type. Method update
and addition translates into a series of record extensions and ← updates. Note that these are
done sequentially, and the mutual dependencies in the source language are resolved by the type
application [[e]]exp[α], where the new bound for α has the necessary type information about the
other methods. Template instantiation is translated into record formation followed by packing
into the appropriate self type. The method table is installed by instantiating it with a recursive
type for the actual self type. The method invocation, field selection, and field update operations

4The erasure of a term is obtained by removing all type annotations.
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[[tempt r]]type = ∀α ≤ [[r]]full(α).[[r]]mt(α, ◦)
[[objt r]]type = self α.[[r]]full(α)
[[[mi:si; fj:σj ]i∈I,j∈J ]]mt(τ, ϕ) = 〈mi:[[si]]sig(τ)+〉ϕi∈I

[[r]]full(τ) = 〈mt:[[r]]mt(τ,→)+, fj:[[σj ]]◦type〉→j∈J

where r = [mi:si; fj :σj]i∈I,j∈J

[[σ]]sig(τ) = τ → σ

[[x]]exp = x
[[et]]exp = stutter(Λα ≤ 〈mt:〈〉→+〉→.〈〉)
[[e + f :τ ]]exp = Λα ≤ [[r′]]full(α).[[e]]exp[α]

where e has type tempt[mi:si; fj:σj]i∈I,j∈J and
r′ is [mi:si; fj:σj, f :τ ]i∈I,j∈J

[[e ←+[mi = Mi]i∈K ]]exp = Λα ≤ [[r′]]full(α).([[e]]exp [α].mi ←i∈I∩K [[Mi]]mth(α)
+i∈K−I mi = [[Mi]]mth(α))

where e has type tempt[mi:si; fj:σj]i∈I,j∈J ,
r′ is [mi:s′′i ; fj :σj]i∈(I,K−I),j∈J ,
s′′i = s′i if i ∈ K, and s′′i = si if i /∈ K

[[new e[fj = ej ]j∈J ]]exp = let x = [[e]]exp and xj =j∈J [[ej ]]exp in
pack 〈mt = x[τ ], fj = xj〉j∈J , τ as [[objt r]]type

where τ = rec α.[[r]]full(α)
e has type tempt r
x and xj are fresh

[[e.m]]exp = unpack α, x = [[e]]exp in x.mt.m x
where α and x are fresh

[[e.f ]]exp = unpack α, x = [[e]]exp in x.f
where α and x are fresh

[[e1.f := e1]]exp = let x1 = [[e]]exp and x2 = [[e2]]exp in
unpack α, x = x1 in pack x.f := x2, α as [[objt r]]type

where e1 has type objt r and α and x are fresh
[[x.e:σ]]mth(τ) = λx′:τ.let x = pack x′, τ as [[τ ′]]type in [[e]]exp

where x.e:σ has type τ ′ ✄ σ and x′ is fresh
[[temp[mi = Mi; fj:σj ]i∈I,j∈J ]]exp = Λα ≤ [[r]]full(α).〈mi = [[Mi]]mth(α)〉i∈I

where temp[mi = Mi; fj :σj ]i∈I,j∈J has type tempt r
[[obj[mi = Mi; fj = vj]i∈I,j∈J ]]exp = pack 〈mt = 〈mi = [[Mi]]mth(τ)〉i∈I , fj = [[v]]exp〉j∈J , τ

as [[objt r]]type

where obj[mi = Mi; fj = vj ]i∈I,j∈J has type objt r and
τ = rec α.[[r]]full(α)

Figure 7: The Translation
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use unpack to open the self quantifier and then apply the appropriate record operations. Note
that field update unpacks the object, updates, and then repacks it back into the appropriate
self type.

The translation is both type preserving and operationally correct, as proven in Appendices C
and D.

4 Extensions

The previous section presented an object and class encoding for a very simple object template
language. This allowed the key ideas to be presented without being cluttered by extraneous
source-language features. However, it begs the question of whether the ideas generalise to more
advanced object-oriented constructs. In fact, they do and, except for self types, they generalise
without requiring any new ideas. This section will demonstrate this by sketching a number of
extensions.

It is worth noting that the encoding, as presented, works for either imperative or functional
objects so long as the operation := in Fself is interpreted in the same way. Also note that any
number of nonobject-oriented constructs could be added to the source and target languages
and the translation extended to deal with them. Since the target language already has F-
bounded polymorphism and recursive types, these could also be added to the source language
and translation.

Now consider more object-oriented constructs. Method parameters could be added to O as
follows:

s ::= (τ1, . . . , τn) → τ
e ::= · · · | e.m(e1, . . . , en)
M ::= x(x1 : τ1, . . . , xn : τn).e : τ

To encode these method parameters Fself is extended with multiargument functions.5 Using
(τ1, . . . , τn) → τ for multiargument function types, λ(x1 : τ1, . . . , xn : τn).b for multiargument
functions, and e(e1, . . . , en) for multiargument application the revised encoding is:

[[(τ1, . . . , τn) → τ ]]sig(σ) = (σ, [[τ1]]type, . . . , [[τn]]type) → [[τ ]]type

[[e.m(e1, . . . , en)]]exp = unpack α, x = [[e]]exp in
x.mt.m(x, [[e1]]exp, . . . , [[en]]exp)

[[x(x1 : τ1, . . . , xn : τn).e : τ ]]mth(σ) = λ(x′ : σ, x1 : [[τ1]]type, . . . , xn : [[τn]]type).
let x = pack x′, σ as [[τ ′]]type in [[e]]exp

where x(x1 : τ1, . . . , xn : τn).e : τ has type τ ′ ✄ τ
5Multiargument functions are theoretically equivalent to curried functions, but the implementations are

vastly different, especially if closure conversion is done earlier than object encoding as I have suggested else-
where [Gle99a].
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Type parameters can also be incorporated by encoding methods as polymorphic functions:

τ ::= · · · | α
s ::= [α1 ≤ τ1, . . . , αn ≤ τn]τ
e ::= · · · | e.m[τ1, . . . , τn]
M ::= x[α1 ≤ τ1, . . . , αn ≤ τn].e : τ

[[[α1 ≤ τ1, . . . , αn ≤ τn]τ ]]sig(σ) = ∀α1 ≤ [[τ1]]type. . . . ∀αn ≤ [[τn]]type.σ → τ
[[e.m[τ1, . . . , τn]]]exp = unpack α, x = [[e]]exp in

x.mt.m[[[τ1]]type] · · · [[[τn]]type] x
[[x[α1 ≤ τ1, . . . , αn ≤ τn].e : τ ]]mth(σ) = Λα1 ≤ [[τ1]]type. . . . Λαn ≤ [[τn]]type.λx

′ : σ.
let x = pack x′, σ as [[τ ′]]type in [[e]]exp

where the method body has type τ ′ ✄ τ

Covariant self types can be incorporated into the source language and translation. The details
are quite messy and not as clean as the basic translation or other extensions considered in
this section, Appendix E contains them. The type translation for self types is compatible
with contravariant self types, but it is unclear what to do at the term level. This is unsur-
prising, since formulating object languages with contravariant self types and subsumption is
problematic [Coo89b][AC96, §2.8 and §3.5].

O allows no depth subtyping in fields. O could use variances, as in Fself , to lift this restriction.
Rows would have the form [mi : si; fj : σφj

j ]i∈I,j∈J and subtyping would now be:

i ∈ I2 : �O si ≤ s′i j ∈ J2 : �O σ
φj

j ≤ σ′
j
φ′

j

�O [mi = si; fj = σ
φj

j ]i∈I1,j∈J1 ≤ [mi = s′i; fj = σ′
j
φ′

j ]i∈I2,j∈J2

where I1 is a prefix of I2 and J1 a prefix of J2. The field extension operation would now have
a variance e + f : σφ, and a field override operation is now possible: e.f := σφ where σφ is a
subtype/variance of the current type and variance of f in e. The translation then becomes:

[[r = [mi:si; fj :σ
φj

j ]i∈I,j∈J ]]full(τ) = 〈mt:[[r]]mt(τ,→)+, fj :[[σj ]]
φj

type〉j∈J

[[e + f :σφ]]exp = ∀α ≤ [[r′]]full(α).[[e]]exp[α]
[[e.f := σφ]]exp = ∀α ≤ [[r′]]full(α).[[e]]exp[α]

where e + f :σφ and e.f := σφ have type tempt r′.

In a similar way, O could have variances on methods and allow method override on objects.
Method override on objects is incompatible with the method-table technique. However, a
version of the encoding that just uses the self-application semantics and not the method-table
technique could easily incorporate method override. In fact, any of Abadi and Cardelli’s pure
object languages [AC96] can be encoded into suitable variants of O and thus be encoded using
ideas in this paper. I believe that method extension on objects could also be incorporated, but
initial investigation has revealed the need for some unusual structural rules for record extension.
I leave for future work a full investigation of this possibility.

The proof of correctness of the translation can easily be extended to all of the extensions men-
tioned so far. The proof of soundness of the target language is easily extended to multiargument
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functions. It is worth remarking that the encoding can be combined with object closure con-
version [Gle99a] and an encoding of functions as objects to provide a typed translation of
closure-passing-style closure conversion. Details appear in Appendix F.

The templates in O allow only single inheritance and concrete methods. Next, I will sketch
a couple of generalisations that would allow abstract methods and multiple inheritance. The
first generalisation separates the assumptions a template makes from what it provides. In
this version, template values consist of a row that specifies the assumptions the template
makes about the eventual object and a list of methods and methods bodies, thus a form like
temp(r;mi = Mi)i∈I . Template types would mention both the assumptions and list of pro-
vided methods and signatures, as in tempt(r;mi:si)i∈I . There would be a template operation
for strengthening the assumptions made, say e := r, where e has type tempt(r′;mi = Mi)i∈I

and r is a subtype of r′. The method override and addition operations would be broken into
operations to add single methods, e + m = M , and override single methods, e.m := M ; both
operations are typed checked with self being the object type corresponding to the assumption
row in the template. The instantiation operation would check that all assumptions made about
methods are provided by the template being instantiated. The following rule ensures this where
r = [mi:si; fj:σj]i∈I,j∈J :

Γ �O e : tempt(r;mi:s′i)i∈I �O s′i ≤ si Γ �O ej : σj

Γ �O new e[fj = ej ]j∈J : objt r

The translation could probably be revised based on the following type translation:

[[tempt(r;mi : si)i∈I ]]type = ∀α ≤ [[r]]full(α).〈mi : [[si]]sig(α)+〉◦i∈I

Here are the relevant parts of the term translation. The rest of the term translation is the same.

[[e := r]]exp = ∀α ≤ [[r]]full(α).[[e]]exp [α]
[[e + m = M ]]exp = ∀α ≤ [[r]]full(α).[[e]]exp [α] + m = [[M ]]mth(α)

where e has type tempt(r;mi:si)i∈I

[[e.m := M ]]exp = ∀α ≤ [[r]]full(α).[[e]]exp [α].m ← [[M ]]mth(α)
where e has type tempt(r;mi:si)i∈I

I leave it to future work to flesh out these ideas.

The second generalisation is to introduce a template combining operation e1 + e2. There are
two possible interpretations for this operation, one could require e1 and e2 to provide disjoint
sets of methods, the other could allow e2 to override e1. Taking the disjoint approach, a typing
rule for this operation might be, where mi∈I ∩m′

j∈J = ∅:

Γ �O e1 : tempt(r;mi:si)i∈I Γ �O e2 : tempt(r;m′
j :s

′
j)j∈J

Γ �O e1 + e2 : tempt(r;mi:si,m
′
j :s

′
j)i∈I,j∈J

Translating this operation requires a record combining operation with similar properties. Again,
I leave to future work the exploration of these ideas. Note that right-extension breadth sub-
typing limits the usefulness of these combining operations and should be abandoned in favour
of arbitrary breadth subtyping. The translation, as stated in the previous section, works for O
with arbitrary breadth subtyping so long as Fself also has arbitrary breadth subtyping.

22



Finally, I remark on some other future work. Object-oriented languages often have other
modularity features like final methods, final classes, and protection modifiers (private, public,
protected). Finality of methods could be ignored by the translation, but then the translation
would not be fully abstract. A finality preserving translation might be possible by using single-
ton types for the final methods. League et al. [LST99] describe techniques for translating Java’s
class private and public modifiers using combinations of recursive and existential types. Their
ideas or similar ones might be applicable to the translation described in this paper. Instance
private or protected fields might be translated using junk types to hide the fields in an object’s
public type.

As well as correctness, another desirable property of translations is full abstractness [Aba98].
For example, if the types of the target language were used for security purposes as types are
used in the Java Virtual Machine, then full abstractness would mean that a security monitor
writer could reason in terms of object abstractions rather than in terms of target language
abstractions. I conjecture that the basic encoding and all the extensions in this section except
method update are fully abstract. Future work should attempt to prove this property.

To use this encoding in a type-directed compiler it is desirable that it not impede optimisations
on the target language. An important optimisation for object-oriented languages is turning
dynamic dispatch into static dispatch. Examples of such optimisations are Class Hierarchy
Analysis [DGC95] and Rapid Type Analysis [Bac97]. I believe that an optimisation based on
a monovariant analysis of this sort would not be impeded by the type system of Fself . Future
work should attempt to verify this and investigate whether other optimisations are affected by
Fself ’s type system.

5 Previous Work

5.1 Object Encodings

An object encoding should preserve the meaning of programs, and for typed translations must
preserve both typing and subtyping. For use as foundations for language implementation, an
encoding should also be efficient, and for use in certifying compilers, full abstraction is a useful
property. In addition to these requirements, object encodings can be compared according to
the features of the source language that they can encode. Bruce et al. [BCP99] provide an
excellent comparison of most of the known object encodings.

Cardelli [Car88] proposed the first typed object encoding. In his encoding, an object is a
record that can recursively refer to itself, often called a recursive record interpretation. At the
type level, an object type is the fixed point of a record type whose elements are the methods’
types. The encoding preserves meaning, typing, and subtyping, but it cannot encode method
update, which is used to encode inheritance. The recursive records interpretation was pursued
by Reddy [Red98, KR94], Cook [Coo89a, CHC90], the Hopkins Object Group [ESTZ95], and
others.

Pierce and Turner [PT94] proposed a simple object and class encoding that requires existential
types but not recursive types. At the term level, an object has two parts: a private state
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component and a public method suite. The functions that encode methods are passed the
state of self but not self’s method suite. Calls to other methods of self must be hardwired
at the time the object is created, and the class encoding arranges this. Furthermore, if a
method’s return type is the self type, then the function returns only the state component, and
the method invocation sites must repackage the object. This encoding is the only encoding with
a nonuniform translation of method invocation. The encoding preserves meaning, typing, and
subtyping, but it cannot encode method update. The lack of method update is not a concern
because a separate class encoding deals with inheritance. Finally, methods can be both private
and public, but mutable fields can only be private, as public fields would not be passed to the
methods’ functions. Thus, in a sense, the encoding is for a different object model than Cardelli
considered.

Bruce et al. [Bru94, BSvG95] designed a functional and an imperative class-based object-
oriented language, and the denotational semantics for these languages can be seen as an object
and class encoding. Like Pierce and Turner’s encoding, the encoding has a complementary class
encoding for dealing with inheritance. The encoding is very similar to Pierce and Turner’s, but
methods whose result type is the self type return the whole object not just the state component.
Thus, the translation of an object type is like Pierce and Turner’s but wrapped with an extra
fixed point. Bruce et al. also argue for the use of matching rather than subtyping, which has
many advantages, but leads to a different object and class model than Cardelli or Pierce and
Turner’s.

Rémy [Rém94, RV97] uses a variant of Pierce and Turner’s encoding with row variables. Row
variables are used to specify polymorphism over the type of self, and enable a natural exten-
sion of ML that includes objects and classes without sacrificing type inference. However, this
system does not include subsumption: an object must be explicitly coerced from a subtype to
a supertype.

In 1996, Abadi, Cardelli, and Viswanathan discovered an adequate typed object encoding for
objects with method invocation and method update [ACV96]. This encoding uses bounded
existential types and recursive types to effectively encode self’s type. However, the technique
requires, purely for typing purposes, an additional projection and an additional field.

Abadi et al.’s encoding is also not fully abstract; in particular, the translation of method
update allows the target language to distinguish objects that were indistinguishable in the
source language. Viswanathan [Vis98] fixed this problem, but by introducing considerably
more computation.

Concurrently with the work of this paper, Hickey, Crary, and League et al. have proposed typed
encodings of the self-application semantics. Hickey [Hic] shows how to type the self-application
semantics in the Nuprl type theory, using an intersection type to make methods polymorphic
over the type of self. However, the Nuprl type theory is undecidable, so it is not clear how
to use this encoding in a type-directed compiler. Crary [Cra99] shows how to use unbounded
existential and binary intersection types to type the self application semantics. League et
al. [LST99] show how to type the self application semantics using existentially quantified row
variables and recursive types. They also show how to deal with classes, as described below.
Both Crary and League et al.’s ideas can be seen as encodings of the self quantifier introduced
in this paper.
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5.2 Class Encodings

Abadi and Cardelli [AC96] show informally how to encode classes into their pure object calculi.
In the encoding, a class becomes an object with premethods6 for each of the instance’s methods
and a new method for instantiating the class. The new method copies the premethods into a
newly created object. Subclasses copy the premethods of the superclass that they inherit and
provide their own premethods for overridden or addition methods. F-bounded polymorphism
is used to type the premethods. This encoding shows that classes add no expressiveness to a
pure object calculus, but does not faithfully encode the efficient method-table technique.

Fisher and Mitchell with others [Fis96, Mit90, FHM94, FM95a, FM95b, FM96, BF98, FM98]
have pursued a line of research into encoding classes as extensible objects. The object calculi
they consider have a method extension operation for adding a new method to an already exist-
ing object. This construct does not appear in the object calculi usually considered for object
encodings. Method extension interacts poorly with breadth subtyping, and so extensible object
calculi need to have complicated type systems for tracking the absence of methods. Often a
distinction is made between prototype objects, which are extensible but do not have breadth
subtyping, and proper objects, which are not extensible but do have breadth subtyping. Like
Abadi and Cardelli’s class encoding, these encodings show that classes do not add expressive-
ness, and also provide a good basis for the design and definition of languages. However, also like
Abadi and Cardelli’s encoding, they do not lead directly to efficient implementations. In par-
ticular, class instantiation involves creating an empty object, and then adding all its methods
to the object.

Pierce and Turner’s class encoding [PT94], unlike the previous two approaches, encodes classes
directly into records and functions and not into objects. Recall that in their encoding, an
object consists of a public method suite and a private state component. A class is encoded as a
function f that returns the public method suite for objects in that class. The public methods
may want to invoke other public methods of self, so f takes another method suite s as an
argument, and uses s to do method invocations on self. To instantiate a class, the fixed point
of f is used as the public method suite of the new object along with an appropriate initial state
component. However, subclasses may have more fields than superclasses, so f is parameterised
by functions that convert between the final representation and the one the current class defines.
Unfortunately, these conversion functions persist beyond class instantiation time and in general
are evaluated every time a method is invoked, making this encoding particularly inefficient.
Later work [HP95] shows how to avoid some of these problems.

Bruce et al.’s class encoding [Bru94, BSvG95] essentially encodes a class as a pair containing
both the initial values of the private fields of the class and a function for the public methods.
Additionally the pair is polymorphic in the final object type and the type of the private fields.
The function for the public methods takes the final object and returns a record of the results
of each method. Similarly to Pierce and Turner, class instantiation requires taking the fixed
point of the function for the public methods to produce a function from the private state to the
method suite, and then packaging this function with the initial private state. This encoding
also results in inefficiencies.

Concurrently with the work of this paper, League et al. show how to encode a subset of the
6A premethod for a method is a function that takes self as an argument and computes the methods.
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Java class model into a variant of Fω [LST99]. A class is encoded as a method table (they call
it a dictionary), a function to initialise the class’s private fields, and a function to instantiate
the class. Using a combination of row polymorphism and existential types, they are able to
encode class private fields and their work can probably be extended to handle most of Java’s
protection modifiers.

Reppy and Reicke [RR96a] show how to encode classes as modules in the SML module system
extended with objects in the core language [RR96b]. Their encoding is essentially the same
as Abadi and Cardelli’s, but with some twists for handling protection. Vouillon [Vou98] shows
how to combine the classes and modules of Objective ML [RV97] into a single construct.

6 Conclusion

This paper presented a small language with the key features of a class-based object-oriented
language and a typed encoding of this language into a language with records and functions.
The encoding uses the self-application semantics and method-table techniques, providing a
typed formalisation for both. Section 4 showed how to incorporate a number of extensions and
variants into the template language and the encoding. This provides evidence that the ideas
of this paper provide a nice framework for the description of class-based languages and their
implementation and that the use of self quantifiers is the right way to type self application.
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A Type Soundness of Template Language

A context Γ1 is stronger than Γ2 if dom(Γ1) ⊇ dom(Γ2) and ∀x ∈ dom(Γ2) : �O Γ1(x) ≤ Γ2(x).

Lemma A.1 (Context Strengthening) If Γ1 is stronger than Γ2 and Γ1 �O e : τ then
Γ2 �O e : τ . If Γ1 is stronger than Γ2, Γ1 �M

O M : τ ✄ s, and �O τ ′ ≤ τ then Γ2 �M
O M : τ ′ ✄ s

without using the rule (meth-sub).

Proof: By induction on the derivation and inspection of the rules. ✷

A corollary of this lemma is that (meth-sub) is derivable. I included this rule to make proving
operational correctness easier. Throughout the rest of this appendix, all derivations will not
use the rule (meth-sub).

Lemma A.2 (Value Substitution) If ∆;B; Γ, x:τ1 �O e2 : τ2 and ∆;B; Γ �O e1 : τ1 then
∆;B; Γ �O e2{x := e1} : τ2.

Proof: By induction on the derivation and inspection of the rules. ✷

Lemma A.3 If ∅ �O E{e} : τ1 then there exists τ2 such that ∅ �O e : τ2, where the last rule
used is not (subsume), and for all e′ such that ∅ �O e′ : τ2, ∅ �O E{e′} : τ1.

Proof: By induction on E and inspection of the typing rules. ✷
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Lemma A.4 (Decomposition) An expresison e is either a value or of the form E{ι} for:
ι ::= x | et | v + f :σ | v ←+[mi = MI ]i∈I | new v[vj = vj]j∈J | v.m | v.f | v1.f := v2

Proof: By induction of the structure of e and inspection of the forms for e, E, and values.
✷

Lemma A.5 (Canonical Forms) If ∅ �O v : τ then:

v τ

temp[mi = Mi; fj :σ
φj

j ]i∈I,j∈J temp[mi:si; fj :σ
φj

j ]i∈I,j∈J

obj[mi = Mi; fj = vj ]i∈I1,j∈J1 obj[mi:si; fj:σ
φj

j ]i∈I2,j∈J2

where in the last case I2 is a prefix of I1 and J2 is a prefix of J1.

Proof: By induction on the derivation of ∅ �O v : τ . There are only three rules that
can deduce ∅ �O v : τ : (temp), (obj), and (subsume). The first two rules clearly satisfy the
conditions, and inspection of the subtyping rules reveals that (subsume) satisfies the conditions
also. ✷

Theorem A.6 (Type Preservation) If ∅ �O e1 : τ and e1 �→ e2 then ∅ �O e2 : τ .

Proof: By the operational semantics there is an E, ι, and e such that e1 = E{ι} and
e2 = E{e}. By Lemma A.3 there is a σ such that ∅ �O ι : σ (where the last rule used is not
(subsume)) and the result follows if ∅ �O e : σ. Throughout this proof, I will use the following
abbreviations:

v1 = temp[mi = Mi; fj:σj]i∈I,j∈J

v2 = obj[mi = Mi; fj = wj]i∈I,j∈J

Mi = xi.bi:τi

r = [mi:si; fj:σj]i∈I,j∈J

Consider the cases for ι and e as given in Figure 2:

ι = et: In this case e = temp[; ]. The derivation of ∅ �O ι : σ must be the rule (et) so σ =
tempt[; ]. The result follows by (temp).

ι = v1 + f = σ: In this case e = temp[mi = Mi; fj :σj, f :σ]i∈I,j∈J . The derivation of ∅ �O ι : σ
must have the form:

∅ �M
O Mi : objt r ✄ si

∅ �O v1 : tempt r �O tempt r ≤ tempt r

∅ �O v1 : tempt r

∅ �O ι : tempt r′

where r′ = [mi:si; fj :σj, f :σ]i∈I,j∈J . Clearly �O objt r′ ≤ objt r so by Context Strength-
ening ∅ �M

O Mi : objt r′ ✄ si and ∅ �O e : tempt r′ by (temp) as required.
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ι = v1 ←+[mk = Mk]k∈K: In this case e = temp[ml = Ml; fj:σj ]i∈(I,K−I),j∈J . The derivation of
∅ �O ι : σ must have the form:

∅ �M
O Mi : objt r ✄ si

∅ �O v1 : tempt r �O tempt r ≤ tempt r

∅ �O v1 : tempt r ∅ �M
O Mi : objt r′ ✄ s′i �O s′i ≤ si

∅ �O ι : tempt r′

where r′ = [mi:s′′i ; fj :σj ]i∈(I,K−I),j∈J , s′′i = s′i if i ∈ K, and s′′i = si if i ∈ I −K. Clearly
�O objt r′ ≤ objt r so by Context Strengthening ∅ �M

O Mi : objt r′ ✄ si for i ∈ I −K. By
(temp), ∅ �O e : tempt r′ as required.

ι = new v1[fj = wj]j∈J : In this case e = v2. The derivation of ∅ �O ι : σ must have the form:

∅ �M
O Mi : objt r ✄ si

∅ �O v1 : tempt r �O tempt r ≤ tempt r

∅ �O v1 : tempt r ∅ �O wj : σj

∅ �O ι : objt r

The result follows by (obj).

ι = v2.mk: In this case e = bk{xk := v2} and k ∈ I. The derivation of ∅ �O ι : σ must have the
form:

∅ �M
O Mi : objt r ✄ si · · ·
∅ �O v1 : objt r �O objt r ≤ objt r′

∅ �O v1 : objt r′

∅ �O ι : s′k
where r′ = [mi:s′i; fj :σj]i∈I′,j∈J ′, I a prefix of I ′, and �O si ≤ s′i for i ∈ I ′. The derivation
of ∅ �M

O Mk : objt r ✄ si must include xk:objt r �O bk : τk and note that �O τk ≤ s′k. By
Value Substitution �O bk{xk := v2} : τk and the result follows by subsumption.

ι = v2.fk: In this case e = wj and k ∈ J . The derivation of ∅ �O ι : σ must have the form:

· · · ∅ �O wj : σj

∅ �O v1 : objt r �O objt r ≤ objt r′

∅ �O v1 : objt r′

∅ �O ι : σk

where r′ = [mi:s′i; fj :σj]i∈I′,j∈J ′ and J a prefix of J ′. The result is immediate from
∅ �O wj : σj and k ∈ J .

ι = v2.fk := w: In this case e = obj[mi = Mi; fj = w′
j ]i∈I,j∈J , k ∈ J , w′

i = wi if i �= k, and
w′

k = w. The derivation of ∅ �O ι : σ must have the form:

∅ �M
O Mi : objt r ✄ si ∅ �O wj : σj

∅ �O v1 : objt r �O objt r ≤ objt r′

∅ �O v1 : objt r′ ∅ �O w : σk

∅ �O ι : σk

where r′ = [mi:s′i; fj :σj ]i∈I′,j∈J ′ and J a prefix of J ′. The result follows by (obj).

32



✷

Theorem A.7 (Progress) If ∅ �O e : τ then either e is a value or there exists e′ such that
e �→ e′.

Proof: By Decomposition there exists E and ι of the form in that lemma such that e = E{ι}.
By Lemma A.3 there is σ such that ∅ �O ι : σ. Consider the various cases for ι:

ι = x: Variables are untypable in the empty context.

ι = et: Then ι �→ temp[; ].

ι = v + f = σ: The last rule used to type ι must be (addfield), so v has a template type and f
is not one of its fields. By Canonical Forms, v is a template value and f is not one of its
fields. Thus ι satisfies the second case in the operational semantics.

ι = v ←+[mk = Mk]k∈K: The last rule used to type ι must be (aometh), so v has a template
type. By Canonical Forms, v is a template value. Thus ι satisfies the third case in the
operational semantics.

ι = new v[fj = vj ]j∈J : The last rule used to type ι must be (inst), so v has a template type
with fields fj∈J . By Canonical Forms, v is a template value with fields fj∈J . Thus ι
satisfies the fourth case in the operational semantics.

ι = v.mk: The last rule used to type ι must be (invoke), so v has an object type with mk one
of its methods. By Canonical Forms, v is an object value with an mk method. Thus ι
satisfies the fifth case in the operational semantics.

ι = v.fj: The last rule used to type ι must be (select), so v has an object type with fk one of
its fields. By Canonical Forms, v is an object value with an fk field. Thus ι satisfies the
sixth case in the operational semantics.

ι = v.fj := w: The last rule used to type ι must be (update), so v has an object type with fk

one of its fields. By Canonical Forms, v is an object value with an fk field. Thus ι satisfies
the seventh case in the operational semantics.

✷

Theorem A.8 (Type Soundness) If ∅ �O e : τ and e �→∗ e′ then e′ is not stuck.

Proof: By induction on the length of e �→∗ e′, Type Preservation, and Progress. ✷
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B Type Soundness of Target Language

Lemma B.1 (Derived Judgements)

• ∆ �F τ if and only if ftv(τ) ⊆ ∆.

• ∆ �F τ1 = τ2 implies ftv(τ1) ∪ ftv(τ2) ⊆ ∆.

• ∆ �F τ implies ∆ �F τ = τ by only the rules (eqtv), (eqfun), (eqtup), (eqall), (eqself),
and (eqrec).

• ∆ �F B if and only if ftv(ran(B)) ⊆ ∆ and dom(B) ⊆ ∆.

• ∆ �F Γ if and only if ftv(ran(Γ)) ⊆ ∆.

• If ∆ �F τ1 = τ2 then ∆ �F τi.

• If ∆ �F B and ∆;B �F τ1 ≤ τ2 then ∆ �F τi.

• If ∆ �F B and ∆;B �F τφ1
1 ≤ τφ2

2 then ∆ �F τi.

• If ∆ �F B, ∆ �F Γ, and ∆;B; Γ �F e : τ then ∆ �F τ .

Proof: By induction on the structure of the derivation and inspection of the typing rules, or
by induction on the structure of τ . ✷

Definition B.1 A context ∆1;B1; Γ1 is stronger than a context ∆2;B2; Γ2 exactly when ∆1 ⊇
∆2, dom(B1) ⊇ dom(B2), ∆1;B1 �F B1(α) ≤ B2(α) for all α ∈ dom(B2), dom(Γ1) ⊇
dom(Γ2), and ∆1;B1 �F Γ1(x) ≤ Γ2(x) for all x ∈ dom(Γ2).

Lemma B.2 (Context Strengthening) If J is derivable then J with a stronger context is
derivable.

Proof: By induction of the structure of the derivation and inspection of the typing rules.
Note that this lemma uses the fact that α-variants of binding forms can always be chosen so as
not to clash with the strengthened context. ✷

Lemma B.3 (Type Substitution)

• If ∆, α �F σ and ∆ �F τ then ∆ �F σ{α := τ}.
• If ∆, α �F σ1 = σ2 and ∆ �F τ then ∆ �F σ1{α := τ} = σ2{α := τ}.
• If α /∈ dom(B), ∆, α;B �F σ1 ≤ σ2, and ∆ �F τ then ∆;B{α := τ} �F σ1{α := τ} ≤

σ2{α := τ}.
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• If α /∈ dom(B), ∆, α;B; Γ �F e : σ, and ∆ �F τ then ∆;B{α := τ}; Γ{α := τ} �F e{α :=
τ} : σ{α := τ}.

• If ∆, α;B,α ≤ τ2 �F σ1 ≤ σ2 and ∆;B{α := τ1} �F τ1 ≤ τ2{α := τ1} then:
∆;B{α := τ1} �F σ1{α := τ1} ≤ σ2{α := τ1}

• If ∆, α;B,α ≤ τ2; Γ �F e : τ and ∆;B{α := τ1} �F τ1 ≤ τ2{α := τ1} then:
∆;B{α := τ1}; Γ{α := τ1} �F e{α := τ1} : τ{α := τ1}

Proof: The first result follows from Derived Judgements and properties of ftv(·). The other
results are by induction of the structure of the derivations of ∆, α �F τ1 = τ2, ∆, α;B �F σ1 ≤
σ2, ∆, α;B,α ≤ τ2 �F σ1 ≤ σ2, ∆, α;B; Γ �F e : σ, and ∆, α;B,α ≤ τ2; Γ �F e : τ , inspection
of the typing rules, and Context Strengthening. ✷

Lemma B.4 If ∆ �F τ1 = τ2 and ∆, α �F σ1 = σ2 then ∆ �F σ1{α := τ1} = σ2{α := τ2}.

Proof: By induction of the structure of the derivation of ∆, α �F σ1 = σ2. In the case of
(eqtv) the derivation of ∆ �F τ1 = τ2 is used. In the other cases the result follows from the
induction hypothesis. ✷

Definition B.2 The normal form of a type τ , written nf(τ), is given by:

τ nf(τ) Side Conditions
rec α.τ ′ nf(τ ′{α := rec α.τ ′}) τ ′ ↓ α
rec α.τ ′ rec α.α not τ ′ ↓ α
τ otherwise

The normal form outermost constructor of τ , written nfoc(τ), is defined by:

nf(τ) nfoc(τ)
α α
τ1 → τ2 →
〈 :τφi

i 〉ϕi∈I 〈〉
∀α ≤ τ1.τ2 ∀
self α.τ ′ self
rec α.α ⊥

Lemma B.5 If τ ↓ α then τ has the form rec β1. . . . rec βn.τ
′ for τ ′ not a recursive type nor

one of the type variables β1, . . . , βn, or α. If not τ ↓ α then τ has the form rec β1. . . . rec βn.α
for some βi �= α.

Proof: By induction on the structure of τ and inspection of the definition of contractiveness.
✷

Thus every type has a unique normal form and normal form outermost constructor.
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Lemma B.6 If σ ↓ α then nf(σ{α := τ}) = nf(σ){α := τ} and nfoc(σ{α := τ}) = nfoc(σ).

Proof: By Lemma B.5 σ has the form rec β1. . . . rec βn.σ
′ for σ′ not a recursive type nor one

of the type variables α or β1, . . . , βn. By induction on n:

nf(σ{α := τ}) = σ′{α := τ}{βn := rec βn.σ{α := τ}} · · · {β1 := σ{α := τ}}
nf(σ) = σ′{βn := rec βn.σ} · · · {β1 := σ}

In the right hand side of the first equation, the substitution α := τ can be pulled out to the
end, giving nf(σ){α := τ} as required for the first conclusion. The second conclusion follows
since the outermost form of σ is independent of α. ✷

Lemma B.7 If ∆ �F τ then ∆ �F τ = nf(τ), ∆ �F nf(τ) = τ , ∆ �F τ ≤ nf(τ), and
∆ �F nf(τ) ≤ τ .

Proof: For the first item, if τ is not a recursive type the result is immediate. Otherwise τ has
the form rec β1. . . . rec βn.τ

′ for τ ′ not a recursive type. Case 1, τ ′ = βi: By induction on 1 ≤ j ≤
i, nf(rec βj . . . . rec βn.τ

′) = nf(rec βi. . . . rec βn.τ
′). By Lemma B.5, not rec βi+1. . . . rec βn.τ

′ ↓
βi, so nf(rec βi. . . . rec βn.τ

′) = rec βi.βi. By induction on i < j ≤ n, Derived Judgements,
and rules (eqtv), (eq1), and (eqt), ∆, βi �F rec βj . . . . rec βn.τ

′ = βi. By (eqrec), ∆ �F
rec βi. . . . rec βn.τ

′ = rec βi.βi. By induction on n, Derived Judgements, and rules (eq1) and
(eqt), ∆ �F τ = rec βi.βi as required. Case 2, τ ′ /∈ {β1, . . . , βn}: By induction on n, Derived
Judgements, and rules (eq1) and (eqt), ∆ �F τ = τ ′{βn := rec βn.τ

′} · · · {β1 := τ}. By
induction on n, nf(τ) = τ ′{βn := rec βn.τ

′} · · · {β1 := τ}, and the result is immediate. The
other items follow from the first by rules (eqs) and (subr). ✷

Lemma B.8 If ∆ �F τ1 = τ2 then ftv(τ1) = ftv(τ2).

Proof: Define the depth of a type variable α in a type τ to be the least number of →, 〈〉,
∀, and selfs between an occurance of α and the root of τ . I will prove the stronger result that
τ1 and τ2 have the same free variables at the same depth by induction on the derivation of
∆ �F τ1 = τ2. The only interesting case is rule (eq4). In this case there is a σ and α such
that σ ↓ α, ∆ �F σ{α := τ1} = τ1, and ∆ �F σ{α := τ2} = τ2. By the induction hypothesis
σ{α := τ1} and τ1 have the same free variables at the same depths, and similarly for τ2. If
β ∈ ftv(τ1) − (ftv(σ) − {α}) then β must be at a depth in σ{α := τ1} equal to its depth in τ1

plus the depth of α is σ. By Lemma B.5, it must be that the depth of α in σ is at least 1.
Therefore, the depth of β in σ{α := τ1} exceeds the depth of β in τ1. But this is impossible so
ftv(τ1) = ftv(σ)−{α} and at the same depths. Similarly for τ2. By transitivity τ1 and τ2 have
the same free variables at the same depths as required. ✷

Lemma B.9 (Equality) If ∆ �F τ1 = τ2 then nfoc(τ1) = nfoc(τ2) and ∆ �F nf(τ1) = nf(τ2)
by the (eqtv), (eqfun), (eqtup), (eqall), and (eqself) rule if nfoc(τ1) is α, →, 〈〉, ∀, and self
respectively. If nfoc(τ1) = ⊥ = nfoc(τ2) then ∆ �F nf(τ1) = nf(τ2) by the rules (eqrec) and
(eqtv).
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Proof: The last part follows by inspection. The rest is proven by induction on the derivation
of ∆ �F τ1 = τ2. If the last rule used was (eqs), (eqt), (eqtv), (eqfun), (eqtup), (eqall), or
(eqself) the result follows easily. Consider the other cases:

case (eqrec): In this case τ1 = rec α.τ ′1, τ2 = rec α.τ ′2, and ∆, α �F τ ′1 = τ ′2. Case 1:
τ ′1 ↓ α. By the induction hypothesis ∆, α �F nf(τ ′1) = nf(τ ′2). By Lemma B.5 and
inspection of the definition of normal forms, nf(τ ′1) �= α thus nf(τ ′2) �= α. Again by
Lemma B.5 and inspection of the definition of normal forms, τ ′2 ↓ α. By Lemma B.4
∆ �F nf(τ ′1){α := τ1} = nf(τ ′2){α := τ2}. By definition nf(τ1) = nf(τ ′1{α := τ1}). By
Lemma B.6 nf(τ ′1{α := τ1}) = nf(τ){α := τ1}. Similarly for τ2. Case 2: not τ ′1 ↓ α. By
Lemma B.5 and inspection of the definition of normal forms, nf(τ ′1) = α. By the induction
hypothesis nf(τ ′2) = α, and again by Lemma B.5 and inspection of the definition of normal
forms, not τ ′2 ↓ α. Thus nfoc(τ1) = ⊥ = nfoc(τ2) as required.

case (eq1): In this case τ1 = rec α.σ and τ2 = σ{α := τ1}. Clearly nf(τ1) = nf(τ2) and the
result is immediate.

case (eq2): In this case there is σ and α such that σ ↓ α, ∆ �F σ{α := τ1} = τ1, and
∆ �F σ{α := τ2} = τ2. By the induction hypothesis nfoc(σ{α := τi}) = nfoc(τi). By
Lemma B.6, nf(σ{α := τ}) = nf(σ){α := τ} and nfoc(σ{α := τ}) = nfoc(σ). Thus
nfoc(τ1) = nfoc(τ2). Case 1: nfoc(τ1) = β then nf(τ1) = β = nf(τ2) and the result follows
by (eqtv).

Case 2: nfoc(τ1) = →, then nf(τ1) = τ11 → τ12 and nf(τ2) = τ21 → τ22. By the
induction hypothesis ∆ �F nf(σ{α := τi}) = τi1 → τi2 by (eqfun). By Lemma B.6 and
inspection of (eqfun), there must be σ1 and σ2 such that nf(σ{α := τi}) = σ1{α :=
τi} → σ2{α := τi} and ∆ �F σj{α := τi} = τij. By Lemma B.7, Lemma B.4, and (eqt)
∆ �F σj{α := τi1 → τi2} = τij . By using rules (eq1), (eqs), and (eq2) ∆ �F τi1 =
rec α1.σ1{α := α1 → τi2} and ∆ �F τi2 = rec α2.σ2{α := τi1 → α2} for fresh α1 and α2.
By Lemma B.4 and (eqt) ∆ �F τi1 = rec α1.σ1{α := α1 → rec α2.σ2{α := τi1 → α2}}
and ∆ �F τi2 = rec α2.σ2{α := rec α1.σ1{α := α1 → τi2} → α2}. By rules (eq1),
(eqs), and (eq2) ∆ �F τi1 = rec β.rec α1.σ1{α := α1 → rec α2.σ2{α := β → α2}} and
∆ �F τi2 = rec β.rec α2.σ2{α := rec α1.σ1{α := α1 → β} → α2} for fresh β. By rules
(eqs) and (eqt) ∆ �F τ1j = τ2j. So ∆ �F τ11 → τ12 = τ21 → τ22 by (eqfun) as required.
The cases for nfoc(τ1) ∈ {〈〉,∀, self} are similar.

✷

Define reachability in B as the least relation satisfying: If α ∈ ftv(τ) then α is reachable from
τ in B. If α is reachable from B(β) in B then α is reachable from β in B.

Lemma B.10 If α is not reachable from τ1 in B and ∆;B �F τ1 ≤ τ2 then α /∈ ftv(τ2).

Proof: By induction on the derivation of ∆;B �F τ1 ≤ τ2. ✷

Lemma B.11 If ∆;B �F τ1 ≤ τ2 then:
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• nfoc(τ1) = α or nfoc(τ1) = nfoc(τ2).

• If nf(τ1) = α then either ∆ �F α = τ2 or ∆;B �F B(α) ≤ τ2 by a derivation whose height
of subtyping rules is at most that of ∆;B �F τ1 ≤ τ2.

• If nfoc(τ1) = nfoc(τ2) ∈ {→, 〈〉,∀, self} then ∆;B �F nf(τ1) ≤ nf(τ2) by the (subfun),
(subtup), (suball), and (subself) rule respectively.

Proof: By induction on the height (of subtyping rules) of the derivation of ∆;B �F τ1 ≤ τ2.
If the last rule used was (subtv), (subfun), (subtup), (suball), or (subself), the result follows
easily. Consider the other cases:

case (subr): By Equality nfoc(τ1) = nfoc(τ1). If nf(τ1) = α then nf(τ2) = α. The result
follows by Lemma B.7. If nfoc(τ1) = nfoc(τ2) = → then by Equality ∆ �F nf(τ1) = nf(τ2)
by rule (eqfun). By inspection of the definition, nf(τ1) = τ11 → τ12 and nf(τ2) = τ21 → τ22.
By inspection of rule (eqfun), ∆ �F τ11 = τ21 and ∆ �F τ12 = τ22. By rule (eqs)
∆ �F τ21 = τ11. By rule (subr) ∆;B �F τ21 ≤ τ11 and ∆;B �F τ12 ≤ τ22. Thus
∆;B �F nf(τ1) ≤ nf(τ2) by rule (subfun) as required. The cases for nfoc(τ1) equal to 〈〉,
∀, and self are similar.

case (subt): In this case ∆;B �F τ1 ≤ σ and ∆;B �F σ ≤ τ2. If nfoc(τ1) = α then by the
induction hypothesis on the first hypothesis either ∆ �F α = σ or ∆;B �F B(α) ≤ σ. If
the former then by Equality nfoc(σ) = α and the result follows by the induction hypothesis
on the second hypothesis. If the latter then by (eqt) ∆;B �F B(α) ≤ τ2 as required.

If nfoc(τ1) �= α then by the induction hypothesis nfoc(τ1) = nfoc(σ) = nfoc(τ2). If
nfoc(τ1) = ⊥ then nothing further needs to be proven. If nfoc(τ1) = → then by the
induction hypothesis ∆;B �F nf(τ1) ≤ nf(σ) and ∆;B �F nf(σ) ≤ nf(τ2), both by
the (subfun) rule. Thus nf(τ1) = τ11 → τ12, nf(σ) = σ1 → σ2, nf(τ2) = τ21 → τ22,
∆;B �F σ1 ≤ τ11, ∆;B �F τ12 ≤ σ2, ∆;B �F τ21 ≤ σ1, and ∆;B �F σ2 ≤ τ22. By rule
(subt) ∆;B �F τ21 ≤ τ11 and ∆;B �F τ12 ≤ τ22. Thus ∆;B �F nf(τ1) ≤ nf(τ2) by rule
(subfun) as required. The cases for nfoc(τ1) equal to 〈〉, ∀, and self are similar.

case (subrec): In this case τi = rec αi.τ
′
i and ∆, α1, α2;B,α1 ≤ α2 �F τ ′1 ≤ τ ′2. By the

inductive hypothesis there are two cases.

Case 1, nfoc(τ ′1) is a type variable. If nfoc(τ ′1) �= α1 then let nfoc(τ ′1) = β. By definition
τ ′1 ↓ α1 and nf(τ1) = nf(τ ′1), so nfoc(τ1) is a type variable. By the induction hypothesis
either ∆, α1, α2 �F β = τ ′2 or ∆, α1, α2;B,α1 ≤ α2 �F B(β) ≤ τ ′2. If the former then by
Equality nf(τ ′2) = β, so nf(τ2) = β. The result follows by Lemma B.7. If the latter then
α2 is not reachable from β in B,α1 ≤ α2. By Lemma B.10 α2 /∈ ftv(τ ′2). By (eq1) and
(eqs) ∆, α1, α2 �F τ ′2 = τ2. By (subr) and (subt) ∆, α1, α2;B,α1 ≤ α2 �F B(β) ≤ τ2. By
induction on this derivation, it is easy to see that ∆;B �F B(β) ≤ τ2 by a derivation of
exactly the same height of subtyping rules as required.

If nfoc(τ ′1) = α1 then nfoc(τ1) = ⊥. By the induction hypothesis either ∆, α1, α2 �F α1 =
τ ′2 or ∆, α1, α2;B,α1 ≤ α2 �F α2 ≤ τ ′2. The former is impossible since α1 /∈ ftv(τ ′2). Since
the height of ∆, α1, α2;B,α1 ≤ α2 �F α2 ≤ τ ′2 is at most the height of ∆, α1, α2;B,α1 ≤
α2 �F τ ′1 ≤ τ ′2, which is shorter than ∆;B �F τ1 ≤ τ2, by the induction hypothesis either
∆, α1, α2 �F α2 = τ ′2, note that α2 has no bound in B,α1 ≤ α2. By Equality nf(τ ′2) = α2

so nfoc(τ ′2) = ⊥ as required.
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Case 2, nfoc(τ ′1) = nfoc(τ ′2) is not a type variable: By Lemma B.5, τ ′i ↓ α. By Lemma B.6
and the definition of normal forms, nf(τi) = nf(τ ′i){αi := τi} and nfoc(τi) = nfoc(τ ′i).
Thus nfoc(τ1) = nfoc(τ2). If nfoc(τ1) = ⊥ nothing further needs to be proven. If
nfoc(τ1) = → then by the induction hypothesis there must be τ11, τ12, τ21, and τ22

such that ∆, α1, α2;B,α1 ≤ α2 �F τ21 ≤ τ12, ∆, α1, α2;B,α1 ≤ α2 �F τ12 ≤ τ22, and
nf(τi) = τi1{αi := τi} → τi2{αi := τi}. By type substitution twice ∆;B �F τ21{α2 :=
τ2} ≤ τ11{α1 := τ1} and ∆;B �F τ12{α1 := τ1} ≤ τ22{α2 := τ2}. So by (subfun)
∆;B �F nf(τ1) ≤ nf(τ2) as required. The cases for nfoc(τ1) ∈ {〈〉,∀, self} are similar.

✷

Note that Lemma B.11 implies that there is an algorithm that given τ and B will compute the
least τ ′ that is a supertype of τ and has an arrow, tuple, forall, or self quantified form. The
algorithm normalises τ and if the result is a type variable repeats with its bound in B until
either it finds either a normal form that is not a type variable or detects a cycle in the type
variables. If a normal form of the right form is found the algorithm succeeds with that type,
otherwise it fails.

Lemma B.12 (Subtyping)

• If ∆;B �F τ1 → τ2 ≤ σ1 → σ2 then ∆;B �F σ1 ≤ τ1 and ∆;B �F τ2 ≤ σ2.

• If ∆;B �F 〈 i:τ
φi
i 〉ϕi∈I ≤ 〈 i:τ ′i

φ′
i〉ϕ′

i∈I′ then I ≤ I ′, for i ∈ I ′: ∆;B �F τφi
i ≤ τ ′i

φ′
i, and

ϕ′ = ◦ implies I = I ′.

• If ∆;B �F τφ1
1 ≤ τφ2

2 and φ2 ∈ {+, ◦} then ∆;B �F τ1 ≤ τ2.

• If ∆;B �F τφ1
1 ≤ τφ2

2 and φ2 ∈ {−, ◦} then ∆;B �F τ2 ≤ τ1.

• If ∆;B �F ∀α ≤ τ1.τ2 ≤ ∀α ≤ σ1.σ2 then ∆, α �F τ1 = σ1 and ∆, α;B,α1 ≤ τ1 �F τ2 ≤
σ2.

• If ∆;B �F self α.τ1 ≤ self α.τ2 then ∆, α;B �F τ1 ≤ τ2.

Proof: The first, second, fifth, and sixth items follow immediately from Lemma B.11. The
third and fourth items are by inspection of the rules for variance subtyping. ✷

Lemma B.13 (Value Substitution) If ∆;B; Γ, x:τ1 �F e2 : τ2 and ∆;B; Γ �F e1 : τ1 then
∆;B; Γ �F e2{x := e1} : τ2.

Proof: By induction of the structure of the derivation of ∆;B; Γ, x:τ1 �F e2 : τ2, inspection
of the typing rules, and Context Strengthening. ✷

Lemma B.14 If ∅; ∅; ∅ �F E{e} : τ1 then there exists τ2 such that ∆E;BE ; ∅ �F e : τ2 where the
last rule used is not (subsume) and for all e′ such that ∆E ;BE ; ∅ �F e′ : τ2, ∅; ∅; ∅ �F E{e′} : τ1.
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Proof: By induction on the structure of E and inspection of the typing rules. ✷

Lemma B.15 (Decomposition) An expresison e is either a value or of the form E{ι} for:

ι ::= x | v1 v2 | v. | v1. ← v2 | v1. := v2 | v1 +  = v2 | v[τ ] |
unpack α, x = v in b | let −−−→x = v in b

Proof: By induction of the structure of E and inspection of the various cases. ✷

Lemma B.16 (Canonical Forms) If ∆;B; ∅ �F v : τ and τ has one of the forms listed in
the following table then v has the corresponding form and the side conditions are true.

v τ Side Conditions
λx:τ ′1.b τ1 → τ2

〈 i = vi〉i∈I′ 〈 i:τ
φi
i 〉ϕi∈I I prefix of I ′;ϕ = ◦ implies I = I ′

Λα ≤ τ ′1.v ∀α ≤ τ1.τ2

pack v, τ as self α.σ self α.σ′

Proof: The only applicable rules for ∆;B; ∅ �F v : τ are the rule for λ-abstractions, the rule
for tuples, the rule for Λ-abstractions, the rule for pack, and the subsumption rule. Inspection
of the first three shows them to satisfy the forms and side conditions in the table. Next note
that these rules give a type only of the form shown in the table. By Subtyping, if one of these
types is a subtype of another then they must have the same form, as each form has a different
normal form outermost constructor. The result follows by Subtyping and inspection. ✷

Theorem B.17 (Type Preservation) If ∅; ∅; ∅ �F e1 : τ and e1 �→ e2 then ∅; ∅; ∅ �F e2 : τ .

Proof: Let e1 = E{ι} and e2 = E{e} where ι and e have one of the forms shown in Figure 4.
By Lemma B.14 ∆E ;BE ; ∅ �F ι : σ, and ∅; ∅; ∅ �F e2 : τ follows from ∆E ;BE ; ∅ �F e : σ. Let
TD be the derivation of ∆E;BE ; ∅ �F ι : σ, and consider the cases for ι:

case ι = (λx:σ1.b) v: In this case e = b{x := v}. TD must have the form:

∆E;BE ;x:σ1 �F b : σ2

∆E;BE ; ∅ �F λx:σ1.b : σ1 → σ2 ∆E;BE �F σ1 → σ2 ≤ σ′ → σ

∆E;BE ; ∅ �F λx:σ1.b : σ′ → σ ∆E;BE ; ∅ �F v : σ′

∆E ;BE ; ∅ �F ι : σ

By Subtyping ∆E;BE �F σ′ ≤ σ1 (1) and ∆E;BE �F σ2 ≤ σ. By (1), the judgement
for v, and subsumption ∆E ;BE ; ∅ �F v : σ1. By Value Substitution ∆E;BE ; ∅ �F v : σ2.
The result follows by (2) and subsumption.
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case ι = 〈 i = vi〉i∈I . k: In this case e = vk and k ∈ I. TD must have the form:

∆E ;BE ; ∅ �F vi : τi

∆E;BE ; ∅ �F 〈 i = vi〉i∈I . k : 〈 i:τ◦i 〉◦i∈I ∆E ;BE �F 〈 i:τ◦i 〉◦i∈I ≤ 〈 i:σ
φi
i 〉ϕi∈I′

∆E;BE ; ∅ �F 〈 i = vi〉i∈I . k : 〈 i:σ
φi
i 〉ϕi∈I′

∆E ;BE ; ∅ �F ι : σ

Where σ = σk, k ∈ I ′, and φk ∈ {+, ◦}. By Subtyping ∆E;BE �F τk ≤ σk, and the result
follows by the judgement on vk and subsumption.

case ι = 〈 i = vi〉i∈I . k ← v: In this case k ∈ I and e = 〈 i = v′i〉i∈I where v′i = vi when i �= k
and v′k = v. TD must have the form:

A ∆E;BE ; ∅ �F v : σ′

∆E ;BE ; ∅ �F ι : σ

Where k ∈ I ′, σ = 〈 i:σ′
i
φ′

i〉ϕi∈I′ , for i �= k: σ′
i = σi and φ′

i = φi, σ′
k = σ′, φ′

k = ◦, and A is:

∆E ;BE ; ∅ �F vi : τi

∆E;BE ; ∅ �F 〈 i = vi〉i∈I . k : 〈 i:τ◦i 〉◦i∈I ∆E ;BE �F 〈 i:τ◦i 〉◦i∈I ≤ 〈 i:σ
φi
i 〉ϕi∈I′

∆E;BE ; ∅ �F 〈 i = vi〉i∈I : 〈 i:σ
φi
i 〉ϕi∈I′

By Subtyping for i ∈ I ′: ∆E ;BE �F τ◦i ≤ σφi
i , so ∆E;BE �F 〈 i:τ ′i

◦〉◦i∈I ≤ 〈 i:σ′
i
φ′

i〉ϕI′ ,
where for i �= k: τ ′i = τi and τ ′k = σ′. Also ∆E;BE ; ∅ �F v′i : τ ′i , so ∆E ;BE ; ∅ �F e :
〈 i:τ ′i

◦〉◦i∈I . The result follows by subsumption.

case ι = 〈 i = vi〉i∈I . k := v: In this case k ∈ I and e = 〈 i = v′i〉i∈I where v′i = vi when i �= k
and v′k = v. TD must have the form:

∆E;BE ; ∅ �F vi : τi

∆E;BE ; ∅ �F 〈 i = vi〉i∈I : σ ∆E ;BE �F σ ≤ 〈 i:σ
φi
i 〉ϕi∈I′ ∆E ;BE ; ∅ �F v : σk

∆E ;BE ; ∅ �F ι : σ

Where σ = 〈 i:τ◦i 〉◦i∈I , k ∈ I ′, φk ∈ {−, ◦}, and note that subsumption on the left hy-
pothesis can be moved into the middle hypothesis and the typing of E. By Subtyping
∆E ;BE �F σk ≤ τk. By the judgement on v and subsumption ∆E ;BE ; ∅ �F v : τk, so
∆E ;BE ; ∅ �F v′i : τi. By the tuple rule ∆E;BE ; ∅ �F e : σ as required.

case ι = 〈 i = vi〉i∈I +  = v: In this case e = 〈 i = vi,  = v〉i∈I and  /∈  i∈I . TD must have
the form:

A ∆E;BE ; ∅ �F v : σ′

∆E ;BE ; ∅ �F ι : σ

Where σ = 〈 i:σ
φi
i ,  :σ′◦〉◦i∈I′ and A is:

∆E ;BE ; ∅ �F vi : τi

∆E;BE ; ∅ �F 〈 i = vi〉i∈I : 〈 i:τ◦i 〉◦i∈I ∆E ;BE �F 〈 i:τ◦i 〉◦i∈I ≤ 〈 i:σ
φi
i 〉◦i∈I′

∆E;BE ; ∅ �F 〈 i = vi〉i∈I : 〈 i:σ
φi
i 〉ϕi∈I′

By Subtyping I = I ′ and ∆E ;BE �F τ◦i ≤ σφi
i . So ∆E ;BE �F 〈 i:τ◦i ,  :σ′◦〉◦i∈It ≤

〈 i:σ
φi
i ,  :σ′◦〉◦i∈I′ . Clearly ∆E;BE �F e : 〈 i:τ◦i ,  :σ′◦〉◦i∈I , so the result follows by sub-

sumption.
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case ι = (Λα ≤ τ1.v)[σ′]: In this case e = v{α := σ′}. TD must have the form:

A ∆E;BE �F σ′ ≤ τ ′1{α := σ′}
∆E ;BE ; ∅ �F ι : σ

Where σ = τ ′2{α := σ′} and A is:

∆E, α;BE , α ≤ τ1; ∅ �F v : τ2

∆E ;BE ; ∅ �F Λα ≤ τ1.v : ∀α ≤ τ1.τ2 ∆E;BE �F ∀α ≤ τ1.τ2 ≤ ∀α ≤ τ ′1.τ ′2
∆E;BE ; ∅ �F Λα ≤ τ1.v : ∀α ≤ τ ′1.τ ′2

By Subtyping ∆E, α �F τ1 = τ ′1 and ∆E, α;BE , α1 ≤ τ1 �F τ2 ≤ τ ′2. By Type Substitu-
tion ∆E �F τ1{α := σ′} = τ ′1{α := σ′}. By rules (eqs), (subr), and (subt), ∆E;BE �F
σ′ ≤ τ1{α := σ′}. By Type Subsitution, ∆E;BE ; ∅ �F v{α := σ′} : τ2{α := σ′} and
∆E ;BE �F τ2{α := σ′} ≤ τ ′2{α := σ′}. The result follows by subsumption.

case ι = unpack α, x = pack v, τ ′ as self α.τ1 in b: In this case e = b{α, x := τ ′, v}. TD must
have the form, where v′ = pack v, τ as self α.σ:

A ∆E, α;BE , α ≤ τ2;x:α �F b : σ ∆E �F σ

∆E ;BE ; ∅ �F ι : σ

Where A is:

∆E;BE ; ∅ �F v : τ ′ ∆E;BE �F τ ′ ≤ τ1{α := τ ′}
∆E;BE ; ∅ �F v′ : self α.τ1 ∆E;BE �F self α.τ1 ≤ self α.τ2

∆E ;BE; ∅ �F v′ : self α.τ2

By Subtyping ∆E , α;BE �F τ1 ≤ τ2. By Type Substitution ∆E;BE �F τ1{α :=
τ ′} ≤ τ2{α := τ ′}. By (subt) ∆E;BE �F τ ′ ≤ τ2{α := τ ′}. By Type Substitution
∆E ;BE ;x:τ ′ �F b{α := τ ′} : σ. Note that BE{α := τ} = BE because α /∈ ∆E ⊇
ftv(ran(BE)) and σ{α := τ ′} = σ because α /∈ ∆E ⊇ ftv(σ) by Derived Judgements. By
Value Substitution ∆E;BE ; ∅ �F b{α := τ ′}{x := v} : σ as required.

case ι = let x1 = v2 and · · · and xn = vn in b: In this case e = b{*x := *v}. TD must have the
form:

∆E;BE ; ∅ �F vi : τi ∆E ;BE ;x1:τ1, . . . , xn:τn �F b : v
∆E ;BE ; ∅ �F ι : σ

The result follows by Value Substitution n times.

✷

Theorem B.18 (Progress) If ∅; ∅; ∅ �F e : τ then either e is a value or there exists e′ such
that e �→ e′.

Proof: By Decomposition either e is a value, as required, or e has the form E{ι} for ι as in
that lemma. By Lemma B.14 ∆E;BE ; ∅ �F ι : σ for some type σ. It remains to show that ι
has one of the forms in Figure 4 and that the side conditions are satisfied. For ι = x, x is not
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typeable. For ι one of v1 v2, v. , v1. ← v2, v1. := v2, v1 + = v2, v[τ ], and unpack α, x = v in b
inspection of the last type rule used in ∆E;BE ; ∅ �F ι : σ reveals a certain form for the type of
v1 or v. The result then follows by Canonical Forms. For ι = let −−−→x = v in b, ι has the last form
and there are no sideconditions. ✷

Theorem B.19 If ∅; ∅; ∅ �F e : τ and e �→∗ e′ then e′ is not stuck.

Proof: By induction of the length of �→∗, Type Preservation, and Progress. ✷

C Type Preservation

Theorem C.1

• For any source type τ , ∅ �F [[τ ]]type.

• For any source row r, α �F [[r]]mt(α,ϕ) and α �F [[r]]full(α).

• For any source row r, and if ∆ �F τ then ∆ �F [[r]]mt(τ, ϕ) and ∆ �F [[r]]full(τ).

• For any source signature s, α �F [[s]]sig(α).

• For any source signature s, and if ∆ �F τ then ∆ �F [[s]]sig(τ).

Proof: I will prove that:
ftv([[τ ]]type) = ∅
ftv([[r]]mt(τ, ϕ)) = ftv(τ)
ftv([[r]]full(τ)) = ftv(τ)
ftv([[s]]sig(τ)) = ftv(τ)
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Then the result follows by Derived Judgements. The proof proceeds by mutual induction on
the structure of τ , r, and s. The rest is calculation:

ftv([[temp r]]type) = ftv(∀α ≤ [[r]]full(α).[[r]]mt(α, ◦))
= (ftv([[r]]full(α)) ∪ ftv([[r]]mt(α, ◦))) − α
= (ftv(α) ∪ ftv(α)) − α
= ∅

ftv([[obj r]]type) = ftv(self α.[[r]]full(α))
= ftv([[r]]full(α)) − α
= ftv(α)− α
= ∅

ftv([[r]]mt(τ, ϕ)) = ftv(〈mi:[[si]]sig(τ)+〉ϕi∈I)
= ∪i∈I ftv([[si]]sig(τ))
= ∪i∈I ftv(τ)
= ftv(τ)

ftv([[r]]full(τ)) = ftv(〈mt:[[r]]mt(τ,→)+, fj :[[σ]]φj

type〉j∈J)
= ftv([[r]]mt(τ,→)) ∪j∈J ftv([[σj ]]type)
= ftv(τ) ∪j∈J ∅
= ftv(τ)

ftv([[σ]]sig(τ)) = ftv(τ → [[σ]]type)
= ftv(τ) ∪ ftv([[σ]]type)
= ftv(τ) ∪ ∅
= ftv(τ)

✷

Theorem C.2 (Subtyping Preservation)

• If �O τ1 ≤ τ2 then ∅; ∅ �F [[τ1]]type ≤ [[τ2]]type.

• If �O objt r1 ≤ objt r2 then α; ∅ �F [[r1]]mt(α,→) ≤ [[r2]]mt(α,→) and α; ∅ �F [[r1]]full(α) ≤
[[r2]]full(α).

• If �O s1 ≤ s2 then α; ∅ �F [[s1]]sig(α) ≤ [[s2]]sig(α).

Proof: By induction on the source derivation. The third item follows from the first item and
Context Strengthening by the following derivation:

(subfun)
(subr)

α �F α = α

α; ∅ �F α ≤ α α; ∅ �F [[s1]]type ≤ [[s2]]type

α; ∅ �F [[s1]]sig(α) ≤ [[s2]]sig(α)

To prove the other two items, consider the last rule used in the derivation:

(subtemp): In this case τ1 = temp r = τ2. By Lemma C.1 ∅ �F [[τ ]]type. The result follows by
Derived Judgements and (subr).
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(subobj): In this case τk = obj rk, rk = [mi:ski; fk:σj]i∈Ik,j∈Jk
, I1 is a prefix of I2, J1 is a

prefix of J2, and �O s1i ≤ s2i for i ∈ I2.

First I show that α; ∅ �F [[r1]]mt(α,→) ≤ [[r2]]mt(α,→). By the induction hypothesis
α; ∅ �F [[s1i]]sig(α) ≤ [[s2i]]sig(α). By Lemma C.1, α �F [[s1i]]sig(α). So:

(subtup)
i ∈ I2 :

α; ∅ �F [[s1i]]sig(α) ≤ [[s2i]]sig(α)
α; ∅ �F [[s1i]]sig(α)+ ≤ [[s2i]]sig(α)+ i ∈ I1 − I2 : α �F [[s1i]]sig(α)

α; ∅ �F [[r1]]mt(α,→) ≤ [[r2]]mt(α,→)

Second I show that α; ∅ �F [[r1]]full(α) ≤ [[r2]]full(α), thus establishing the second item. By
the previous result and (subcov), α; ∅ �F [[r1]]mt(α,→)+ ≤ [[r2]]mt(α,→)+, call this A. By
Lemma C.1, Context Strengthening, and Derived Judgements, α �F [[σj ]]type = [[σj ]]type

for j ∈ J2. By Lemma C.1 and Context Strengthening, α �F [[σj]]type = for j ∈ J1 − J2.
The derivation is:

(subtup)
A j ∈ J2 :

α �F [[σj]]type = [[σj ]]type

α; ∅ �F [[σj ]]◦type ≤ [[σj ]]◦type j ∈ J1 − J2 : α �F σj

α; ∅ �F [[r1]]full(α) ≤ [[r2]]full(α)

Finally the first item follows by (subself).

✷

Lemma C.3 If �O r1 ≤ r2 then α;α ≤ [[r1]]full(α) �F α ≤ [[r2]]full(α).

Proof: By Subtyping Preservation α; ∅ �F [[r1]]full(α) ≤ [[r2]]full(α). By Context Strengthening
α;α ≤ [[r1]]full(α) �F [[r1]]full(α) ≤ [[r2]]full(α). The result follows by (subtv) and (subt). ✷

Theorem C.4 (Typing Preservation) If Γ �O e : τ then ∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type. If
Γ �M

O M : obj r ✄ s then α;α ≤ [[r]]full(α); [[Γ]]ctxt �F [[M ]]mth(α) : [[s]]sig(α).

Proof: By mutual induction on the derivations. Throughout this proof, I will use the
abbreviations for r, r1, r2, and s′′i at the bottom of Figure 7. It is easy to establish that
�O ri ≤ r for i ∈ {1, 2}. Consider the last rule used:

(subsume): In this case Γ �O e : τ ′ and �O τ ′ ≤ τ . There are two subcases according to
which rule is used to translate the derivation. Case 1, the translation of Γ �O e : τ
is the translation of Γ �O e : τ ′. By the induction hypothesis ∅; ∅; [[Γ]]ctxt �F [[e]]exp :
[[τ ′]]type. By Subtyping Preservation, ∅; ∅ �F [[τ ′]]type ≤ [[τ ]]type. The result follows
by subsumption. Case 2, the translation of Γ �O e : τ ′ is pack e′, σ as [[τ ′]]type and
the translation of Γ �O e : τ is pack e′, σ as [[τ ]]type: By the induction hypothesis
∅; ∅; [[Γ]]ctxt �F pack e′, τ as [[τ ′]]type : [[τ ′]]type. By inspection of the rules, it follows that
∅; ∅; [[Γ]]ctxt �F e′ : σ and ∅; ∅ �F σ ≤ [[r′]]full(α){α := σ} where τ ′ = objt r′. By Subtyping
Preservation, α; ∅ �F [[r′]]full(α) ≤ [[r]]full(α) where τ = objt r. By Type Substitution,
∅; ∅ �F [[r′]]full(α){α := σ} ≤ [[r]]full(α){α := σ}. By (subt), ∅; ∅ �F σ ≤ [[r]]full(α){α :=
σ}. By (pack), ∅; ∅; [[Γ]]ctxt �F pack e′, σ as [[τ ′]]type : [[τ ]]type as required.
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(var): In this case e = x and τ = Γ(x). The result follows by (var).

(et): In this case e = et and τ = temp[; ]. So:

α �F 〈mt:〈〉→+〉→ α;α ≤ 〈mt:〈〉→+〉→; [[Γ]]ctxt �F 〈〉 : 〈〉→
∅; ∅; [[Γ]]ctxt �F ∀α ≤ 〈mt:〈〉→+〉→.〈〉 : ∀α ≤ 〈mt:〈〉→+〉→.〈〉→
∅; ∅; [[Γ]]ctxt �F ∀α ≤ 〈mt:〈〉→+〉→.〈〉 : ∀α ≤ 〈mt:〈〉→+〉→.〈〉◦

∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

(addfield): In this case e = e′+f :σ, τ = temp r1, and ∆;B; Γ �O e′ : temp r. By the induction
hypothesis, ∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[temp r]]type. By Lemma C.1, α �F [[r1]]full(α). Let
B′ = α ≤ [[r1]]full(α). By Lemma C.3 α;B′ �F α ≤ [[r]]full(α). Note that [[r1]]mt(α, ◦) =
[[r]]mt(α, ◦) because r1 adds no methods nor changes their signatures. Then:

α �F [[r1]]full(α)
α;B′; [[Γ]]ctxt �F [[e′]]exp : [[temp r]]type α;B′ �F α ≤ [[r]]full(α)

α;B′; [[Γ]]ctxt �F [[e′]]exp[α] : [[r1]]mt(α, ◦)
∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

(aometh): In this case e = e′ ←+[mk = Mk]k∈K , τ = temp r2, Γ �O e′ : temp r, and
Γ �M

O Mk : obj r3 ✄ s′k for k ∈ K. Let:

B′ = α ≤ [[r2]]full(α)
e1 = [[e]]exp[α] +k∈K−I mk = [[Mk]]mth(α)
e2 = e1.mk ←k∈K∩I [[Mk]]mth(α)
τ1 = 〈mi:[[si]]sig(α)+,mk:[[s′k]]sig(α)◦〉◦i∈I,k∈K−I

τ2 = 〈mi:[[s′′i ]]sig(α)φ′
i ,mk:[[s′k]]sig(α)◦〉◦i∈I,k∈K−I

φ′
i =

{
+ i /∈ K
◦ i ∈ K

Similar to the previous case, α �F [[r3]]full(α) and α;B′; [[Γ]]ctxt �F [[e′]]exp[α] : [[r]]mt(α, ◦).
By the induction hypothesis α;B′; [[Γ]]ctxt �F [[Mk]]mth(α) : [[s′i]]sig(α). It is easy to estab-
lish α;B′ �F τ2 ≤ [[r2]]mt(α, ◦). Then:

α �F [[r3]]full(α)
A α;B′ �F τ2 ≤ [[r3]]mt(α, ◦)

α;B′; [[Γ]]ctxt �F e2 : [[r3]]mt(α, ◦)
∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

Where A is:
B k ∈ K ∩ I : α;B′; [[Γ]]ctxt �F [[Mk]]mth(α) : [[s′k]]sig(α)

α;B′; [[Γ]]ctxt �F e2 : τ2

Where B is:
α;B′; [[Γ]]ctxt �F [[e′]]exp[α] : [[r]]mt(α, ◦)

k ∈ K − I : α;B′; [[Γ]]ctxt �F [[Mk]]mth(α) : [[s′k]]sig(α)

α;B′; [[Γ]]ctxt �F e1 : τ1

(inst): In this case e = new e′[fj = ej ]j∈J , τ = obj r, Γ �O e′ : temp r, and Γ �O ej : σj .
By the induction hypothesis ∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[temp r]]type and ∅; ∅; [[Γ]]ctxt �F
[[ej ]]exp : [[σj ]]type. Let τ ′ = rec α.[[r]]full(α). By Lemma C.1 and Derived Judgements in
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the target language twice, ∅ �F τ ′. By Lemma C.1, Derived Judgements in the target
language, and (subr), ∅; ∅ �F [[si]]sig(τ ′) ≤ [[si]]sig(τ ′) and ∅; ∅ �F [[σj]]type ≤ [[σj ]]type. Let
τ ′′ = 〈mt = [[r]]mt(τ ′, ◦)◦, fj:[[σj ]]◦type〉◦j∈J . Let D be the following derivation:

D′

(eq1)

∅ �F τ ′

∅ �F τ ′ = [[r]]full(τ ′)
∅ �F [[r]]full(τ ′) = τ ′

∅; ∅ �F [[r]]full(τ ′) ≤ τ ′

∅; ∅ �F τ ′′ ≤ τ ′

where D′ is:

∅; ∅ �F [[si]]sig(τ ′) ≤ [[si]]sig(τ ′)
∅; ∅ �F [[si]]sig(τ ′)+ ≤ [[si]]sig(τ ′)+

∅; ∅ �F [[r]]mt(τ ′, ◦) ≤ [[r]]mt(τ ′,+)
∅; ∅ �F [[r]]mt(τ ′, ◦)◦ ≤ [[r]]mt(τ ′,+)+

∅; ∅ �F [[σj ]]type ≤ [[σj ]]type

∅; ∅ �F [[σj ]]◦type ≤ [[σj ]]+type

∅; ∅ �F τ ′′ ≤ [[r]]full(τ ′)

Let Γ′ = [[Γ]]ctxt, x:[[temp r]]type, xj:[[σj ]]type. Then:

∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[temp r]]type ∅; ∅; [[Γ]]ctxt �F [[ej ]]exp : [[σj ]]type A

∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

where A is:

B ∅; ∅; Γ′ �F xj : [[σj ]]type

∅; ∅; Γ′ �F 〈mt = x[τ ′], fj = xj〉j∈J : τ ′′ D

∅; ∅; Γ′ �F 〈mt = x[τ ′], fj = xj〉j∈J : τ ′

(eq1) ∅ �F τ ′ = [[r]]full(τ ′)
∅; ∅ �F τ ′ ≤ [[r]]full(τ ′)

∅; ∅; Γ′ �F pack 〈mt = x[τ ′], fj = xj〉j∈J , τ
′ as [[τ ]]type : [[τ ]]type

and B is:

∅; ∅; [[Γ]]ctxt �F x : [[temp r]]type

(eq1)
∅ �F τ ′

∅ �F τ ′ = [[r]]full(τ ′)
∅; ∅ �F τ ′ ≤ [[r]]full(τ ′)

∅; ∅; [[Γ]]ctxt �F x[τ ′] : [[r]]mt(τ ′, ◦)
(invoke): In this case e = e′.mk, τ = sk, Γ �O e′ : obj r. Let B′ = α ≤ [[r]]full(α) and

Γ′ = [[Γ]]ctxt, x:α. By the induction hypothesis, ∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[obj r]]type. By
Lemma C.1, ∅ �F [[τ ]]type. Then:

∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[obj r]]type A ∅ �F [[τ ]]type

∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

A is:
α;B′; Γ′ �F x : α

α;B′ �F α ≤ [[r]]full(α)

α;B′; Γ′ �F x : [[r]]full(α)
α;B′; Γ′ �F x.mt : [[r]]mt(α,→)

α;B′; Γ′ �F x.mt.mk : α → [[τ ]]type α;B′; Γ′ �F x : α
α;B′; Γ′ �F x.mt.mk x : [[τ ]]type
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(select): In this case e = e′.fk, τ = σk, and Γ �O e′ : obj r. By the induction hypothesis
∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[obj r]]type. Lemma C.1, ∆ �F [[τ ]]type. Let B′ = [[B]]ctxt, α ≤
[[r]]full(α). Then:

∅; ∅; [[Γ]]ctxt �F [[e′]]exp : [[obj r]]type

∅ �F [[τ ]]type

α;B′; [[Γ]]ctxt, x:α �F x : α
α;B′ �F α ≤ [[r]]full(α)

α;B′; [[Γ]]ctxt, x:α �F x : [[r]]full(α)
α;B′; [[Γ]]ctxt, x:α �F x.fk : [[σk]]type

∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

(update): In this case e = e1.fk := e2, τ = obj r, Γ �O e1 : τ , and Γ �O e2 : σk. By the
induction hypothesis, ∅; ∅; [[Γ]]ctxt �F [[e1]]exp : [[obj r]]type and ∅; ∅; [[Γ]]ctxt �F [[e2]]exp :
[[σk]]type. Then:

∅; ∅; [[Γ]]ctxt �F [[e1]]exp : [[τ ]]type ∅; ∅; [[Γ]]ctxt �F [[e2]]exp : [[σk]]type A

∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

Let Γ′ = [[Γ]]ctxt, x1:[[τ ]]type, x2:[[σk]]type and B′ = α ≤ [[r]]full(α). Lemma C.1, ∆ �F [[τ ]]type.
Then A is:

∅; ∅; Γ′ �F x1 : [[τ ]]type

∅ �F [[τ ]]type

B α;B′ �F α ≤ [[r]]full(α)
α;B′; Γ′, x:α �F pack x.f := x2, α as [[τ ]]type : [[τ ]]type

∅; ∅; Γ′ �F unpack α.[[r]]full(α), x = x1 in x.fk := x2 : [[τ ]]type

and B is:

α;B′; Γ′, x:α �F x : α α;B′ �F α ≤ [[r]]full(α) α;B′; Γ′, x:α �F x2 : [[σk]]type

α;B′; Γ′, x:α �F x.f := x2 : α

(method): In this case M = x.b:σ, s = σ, and x:α �O b : σ. Let B′ = α ≤ [[r]]full(α) and
Γ′ = [[Γ]]ctxt, x

′:α, x:[[objt r]]type. By the induction hypothesis ∅; ∅; [[Γ]]ctxt, x:[[objt r]]type �F
[[b]]exp : [[σ]]type. By Context Strengthening, α;B′; Γ′ �F [[b]]exp : [[σ]]type. Then:

α �F α

A α;B′; Γ′ �F [[b]]exp : [[σ]]type

α;B′; [[Γ]]ctxt, x
′:α �F let x = pack x′, α as [[objt r]]type in [[b]]exp : [[σ]]type

α;B′; [[Γ]]ctxt �F [[M ]]mth(α) : [[s]]sig(α)

where A is:

α;B′; [[Γ]]ctxt, x
′:α �F x′ : α α;B′ �F α ≤ [[r]]full(α)

α;B′; [[Γ]]ctxt, x
′:α �F pack x′, α as [[objt r]]type : [[objt r]]type

(meth-sub): In this case Γ �M
O M : σ′✄s and �O σ′ ≤ objt r. Note that σ′ must be of the form

objt r′. By the induction hypothesis α;α ≤ [[r′]]full(α); [[Γ]]ctxt �F [[M ]]mth(α) : [[s]]sig(α).
By Subtyping Preservation and Context Strengthening in Fself , α;α ≤ [[r′]]full(α) �F
[[r′]]full(α) ≤ [[r]]full(α). By Context Strengthening in Fself , α;α ≤ [[r′]]full(α); [[Γ]]ctxt �F
[[M ]]mth(α) ≤ [[s]]sig(α) as required.
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(temp): In this case e = temp[mi = Mi; fj:σj]i∈I,j∈J , τ = tempt r, and Γ �M
O Mi : objt r ✄ si.

Let B′ = α ≤ [[r]]full(α), τ1 = 〈mi:[[si]]sig(α, r)◦〉◦, and τ2 = 〈mi:[[si]]sig(α, r)+〉◦. It is easy
to establish that α;B′ �F τ1 ≤ τ2. By Lemma C.1, α �F [[r]]full(α). By the induction
hypothesis, α;B′; [[Γ]]ctxt �F [[Mi]]mth(α) : [[si]]sig(α). Then:

α �F [[r]]full(α)

α;B′; [[Γ]]ctxt �F [[Mi]]mth(α) : [[si]]sig(α)
α;B′; [[Γ]]ctxt �F 〈mi = [[Mi]]mth(α)〉i∈I : τ1 α;B′ �F τ1 ≤ τ2

α;B′; [[Γ]]ctxt �F 〈mi = [[Mi]]mth(α)〉i∈I : τ2

∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

(obj): In this case e = obj[mi = Mi; fj = vj]i∈I,j∈J , τ = objt r, Γ �M
O Mi : objt r ✄ si, and

Γ �O vj : σj. Let:
τ ′ = rec α.[[r]]full(α)
τ ′′ = 〈mt:[[r]]mt(τ ′,→)◦, fj :[[σj ]]◦type〉j∈J

w1 = 〈mi = [[Mi]]mth(τ ′)〉i∈I

w2 = 〈mt = w1, fj = vj〉j∈J

By reasoning similar to the case for (inst), ∅; ∅ �F τ ′′ ≤ τ ′ and ∅; ∅ �F τ ′ ≤ [[r]]full(τ ′).
By reasoning similar to the case for (temp), α;α ≤ [[r]]full(α) �F 〈mi = [[Mi]]mth(α)〉i∈I :
[[r]]mt(α,→). By Type Substitution, ∅; ∅ �F w1 : [[r]]mt(τ ′,→). By the induction hypothe-
sis, ∅; ∅; [[Γ]]ctxt �F [[vj ]]exp : [[σj ]]type. Then:

∅; ∅; [[Γ]]ctxt �F w1 : [[r]]mt(τ ′,→)
∅; ∅; [[Γ]]ctxt �F vj : [[σj ]]type

∅; ∅; [[Γ]]ctxt �F w2 : τ ′′ ∅; ∅ �F τ ′′ ≤ τ ′

∅; ∅; [[Γ]]ctxt �F w2 : τ ′ ∅; ∅ �F τ ′ ≤ [[r]]full(τ ′)
∅; ∅; [[Γ]]ctxt �F [[e]]exp : [[τ ]]type

✷

D Operational Correctness

Lemma D.1 [[e1{x := e2}]]exp = [[e1]]exp{x := [[e2]]exp}

Proof: Technically this means that for typing derivations for e1{x := e2} and [[e1]]exp and
[[e2]]exp that correspond, the two translations are equal. In fact the derivations of e1{x := e2}
might contain different derivations for the different occurances of x, this means that [[e1]]exp{x :=
[[e2]]exp} should be interpreted as substituted different translations for different occurances of
x. Other than these technicalities, the result follows by induction on the derivation of e1. ✷

Define [[E]]exp as [[E]]exp = [[E{x}]]exp{x := {}}. Technically this is a function from derivations
of the form x : τ �O E{x} : σ (which can be thought of as typing judgements for contexts) to
target language terms with holes in them.
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Lemma D.2 If E is a template language context then [[E]]exp is a target language context.

Proof: By induction on the structure of E and inspection of the translation. ✷

Lemma D.3 [[E{e}]]exp = [[E]]exp{[[e]]exp}

Proof: Follows immediately by definition and Lemma D.1. Note that because there is exactly
one occurance of the hole in E, the substitution in Lemma D.1 is of exactly one occurance.
Thus the derivations of E{e} correspond exactly to the derivations of [[E]]exp and [[e]]exp. ✷

Lemma D.4 For template language value v, [[v]]exp is a target language value.

Proof: By induction on the structure of v and inspection of the translation. ✷

Theorem D.5 If ∅; ∅; ∅ �O e1 : τ and e1 �→ e2 then [[e1]]exp �→+ [[e2]]exp.

Proof: Technically, this result means that for any derivation of e1 there exists some derivation
of e2 such that the translations of those derivations satisfy the given condition. Let e1 = E{ι}
and e2 = E{e} for some ι and e in Figure 2. By Lemma D.3 [[e1]]exp = [[E]]exp{[[ι]]exp} and
[[e2]]exp = [[E]]exp{[[e]]exp}. It suffices to show that [[ι]]exp �→+ [[e]]exp. Throughout this proof, I
will use the abbreviations at the bottom of Figure 7. Consider the cases for ι:

case ι = et: The result follows from [[ι]]exp = stutter([[e]]exp).

case ι = v1 + f :σφ: In this case e = temp[mi = Mi; fj:σ
φj

j , f :σφ]i∈I,j∈J . So:

[[ι]]exp = Λα ≤ [[r1]]full(α).((Λβ ≤ [[r]]full(β).〈mi = [[Mi]]mth(β)〉i∈I)[α])
�→ Λα ≤ [[r1]]full(α).〈mi = [[Mi]]mth(α)〉i∈I

= [[e]]exp

Note that the (meth-sub) rule is used to get a derivation for e that uses exactly the same
translation of Mi as was used in ι. Without the rule (meth-sub), the translation of e
would use the type objt r1 to translate Mi, whereas the translation of ι would use the
type objt r, resulting in a different translation and the simulation result would not hold.
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case ι = v1 ←+[mk = M ′
k]k∈K: In this case e = temp[ml = M ′′

l ; fj :σ
φj

j ]l∈(I,K−I),j∈J . So:

[[ι]]exp = Λα ≤ [[r2]]full(α).
((Λβ ≤ [[r]]full(β).〈mi = [[Mi]]mth(β)〉i∈I )[α]

.mk ←k∈I∩K [[M ′
k]]mth(α)

+k∈K−Imk = [[M ′
k]]mth(α))

�→ Λα ≤ [[r2]]full(α).
(〈mi = [[Mi]]mth(α)〉i∈I

.mk ←k∈I∩K [[M ′
k]]mth(α)

+k∈K−Imk = [[M ′
k]]mth(α))

�→|I∩K| Λα ≤ [[r2]]full(α).
(〈mi = [[M ′′

i ]]mth(α)〉i∈I +k∈K−I mk = [[M ′
k]]mth(α))

�→|K−I| Λα ≤ [[r2]]full(α).〈mi = [[M ′′
i ]]mth(α)〉i∈(I,K−I)

= [[e]]exp

Where M ′′
i = Mi if i /∈ K and M ′′

i = M ′
i if i ∈ K. Note that, as in the previous case, the

rule (meth-sub) is crucial.

case ι = new v1[fj = wj ]j∈J : In this case e = v2. Let τ = rec α..[[r]]full(α), then:

[[ι]]exp = let x = Λα ≤ [[r]]full(α).〈mi = [[Mi]]mth(α)〉i∈I and xj =j∈J [[wj ]]exp in
pack 〈mt = x[τ ], fj = xj〉j∈J , τ as [[objt r]]type

�→ pack 〈mt = (Λα ≤ [[r]]full(α).〈mi = [[Mi]]mth(α)〉i∈I )[τ ],
fj = [[wj ]]exp〉j∈J , τ as [[objt r]]type

�→ pack 〈mt = 〈mi = [[Mi]]mth(τ)〉i∈I , fj = [[wj ]]exp〉j∈J , τ as [[objt r]]type

= [[v2]]exp

case ι = v2.mk: In this case e = bk{xk := v2}. The derivation of ∅ �O e1 : τ must include a
derivation of ∅ �O v2 : objt r, which in turn must include a derivation of ∅ �M

O Mk : σ✄σk

for some σ. Furthermore, �O objt r ≤ σ, so σ must have the form objt r′ for some r′. Let
τ = rec α.[[r]]full(α) and v2′ = 〈mt = 〈mi = [[Mi]]mth(τ)〉i∈I , fj = [[wj ]]exp〉j∈J .

[[ι]]exp = unpack α, x = [[v2]]exp in x.mt.mk x
�→ v2′.mt.mk v2′

�→ 〈mi = [[Mi]]mth(τ)〉i∈I .mk v2′

�→ [[Mk]]mth(τ) v2′

�→ let xk = pack v2′, τ as [[objt r′]]type in [[bk]]exp

�→ [[bk]]exp{xk := pack v2′, τ as [[objt r′]]type}
= [[bk{xk := [[v2]]exp}]]exp

= [[e]]exp

The second to last step uses Lemma D.1 and it uses a translation for v2 based on the
derivation ∅ �O v2 : objt r′, which is obtained from ∅ �O v2 : objt r and �O objt r ≤ objt r′

by (subsume).

case ι = v2.fk: In this case e = wk. Let τ = rec α.[[r]]full(α). Then:

[[ι]]exp = unpack α, x = [[v2]]exp in x.fk

�→ 〈mt = 〈mi = [[Mi]]mth(τ)〉i∈I , fj = [[wj ]]exp〉j∈J .fk

�→ [[wk]]exp

= [[e]]exp
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case ι = v2.fk := v: In this case e = obj[mi = Mi; fj = w′
j]i∈I,j∈J where w′

j = wj if j �= k
and w′

k = v. By inspection of the typing rules, the type for v2.fk := v must be objt r′

for some r′ such that �O objt r ≤ objt r′. Let τ = rec α.[[r]]full(α) and meths = 〈mi =
[[Mi]]mth(α, r)〉i∈I . Then:

[[ι]]exp = let x1 = [[v2]]exp and x2 = [[v]]exp in
unpack α, x1 = x1 in
pack x1.fk := x2, α as [[objt r′]]type

�→ unpack α, x1 = [[v2]]exp in
pack x1.fk := [[v]]exp, α as [[objt r′]]type

�→ pack 〈mt = meths , fj = [[wj ]]exp〉.fk := [[v]]exp, τ as [[objt r′]]type

�→ pack 〈mt = meths , fj = [[w′
j ]]exp〉, τ as [[objt r′]]type

= [[e]]exp

Note that the translation of e is using the typing Γ �O e : objt r′.

✷

Theorem D.6 If ∅ �O e : τ then e ��→ if and only if [[e]]exp ��→.

Proof: Follows from the soundness of O, Lemma D.4, and Lemma D.5. ✷

Theorem D.7 If ∅ �O e : τ then: e �→∗ v if and only if [[e]]exp �→∗ [[v]]exp, and e �→ · · · if and
only if [[e]]exp �→ · · ·.

Proof: By induction, Theorem D.5, and Theorem D.6. ✷

E Covariant Self Types

This appendix describes how to extend the target language and the encoding to handle covariant
self types in the object language.

E.1 O with Covariant Self Types

The extended syntax for O is the following with the original defintions for r, e, and E.

τ ::= α | tempt r | objt r
s ::= α.τ
M ::= α, x.e : τ
v ::= temp[mi = Mi; fj :σj]i∈I,j∈J | obj[τ ;mi = Mi; fj = vj]i∈I,j∈J

52



Subject to the restriction that α must occur syntactically positive in τ for α.τ to be a signature.
A type variable α appears syntactically positive in τ if τ is a type variable, τ is tempt r and
α /∈ ftv(τ), or τ = objt[mi:αi.τi; fj:σj]i∈I,j∈J , α /∈ ftv(σj), and α = αi or α appears syntactically
positive in τi.

The operational semantics changes in two places. The rule for instantiation becomes:

new temp[mi = Mi; fj :σj ]i∈I,j∈J [fj = wj ]j∈J �→ obj[τ ;mi = Mi; fj = wj ]i∈I,j∈J

where Mi = αi, xi.ei:τi and τ = objt[mi:αi.τi; fj :σj]i∈I,j∈J . The rule for method invocation
becomes:

v.mk �→ e{α, x := τ, v}
where v = obj[τ ;mi = Mi; fj = vj ]i∈I,j∈J and Mk = α, x.e:σ.

To type the extended language, the judgements must be extended to include typing contexts
and subtyping bounds. A typing context ∆ is a sequence of type variables, and a subtying
bounds B is a list of type variables and their bounds α1 ≤ τ1. A type if well formed ∆ �O τ
exactly when ftv(τ) ⊆ ∆. Subtyping is giving by these rules:

∆;B �O α ≤ α
(α ∈ ∆)

∆;B �O τ1 ≤ τ2

∆;B �O α ≤ τ2
(α ∈ ∆;α ≤ τ1 ∈ B)

∆ �O tempt r

∆;B �O tempt r ≤ tempt r

i ∈ I2 : ∆, α;B �O τi ≤ τ ′i i ∈ I1 : ∆, α �O τi

∆;B �O objt[mi:α.τi; fj :σk]i∈I1,j∈J1 ≤ objt[mi:α.τ ′i ; fj:σk]i∈I2,j∈J2

where I2 is a prefix of I1 and J2 is a prefix of J1. Reflexivity and transitivity are derivably.

The typing rules for expressions are those in Figure 3 except for the rules for method invocation
and method bodies, with Γ replaced by ∆;B; Γ, with subtyping judgements in the context ∆;B,
and with �O s′i ≤ si in the rule for method add/override replaced with ∆, α;B �O τ ′i ≤ τi where
s′i = α.τ ′i and si = α.τi. Define the self-type expose operation as follows:

exp(α, objt r) = objt exp(α, r)
exp(α, [mi:si; fj:σj]i∈I,j∈J) = [mi:exp(α, si); fj :σj]i∈I,j∈J

exp(α,α.τ) = β.τ where β /∈ ftv(τ)

Then the rule for method bodies is:
∆, α;B,α ≤ exp(α, τ); Γ, x:α �O e : σ

∆;B; Γ �M
O α, x.e:σ : τ ✄ σ

The rule for method invocation is:
∆;B; Γ �O e : τ

∆;B; Γ �O e.mk : τk{αk = τ} (k ∈ I; τ = objt[mi:si; fj:σj]i∈I,j∈J ; sk = αk.τk)

The extended language is sound with respect to the operational semantics. To prove this, it
helps to make the subtyping rule for objects stronger by replacing the first hypothesis with
∆, α;B,α ≤ objt[mi:α.τi; fj:σk]i∈I1,j∈J1 �O τi ≤ τ ′i . This stronger rule makes the system
undecidable and the translation does not preserve it, but it enables the usual preservation and
progress style of type-soundness proof. In addition to the lemmas in Appendix A, which are
easily proven for the extended lanugage, a type substitution lemma is needed.
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E.2 Translation

The main idea of the translation is to treat the source-level self types just as the self type
is already delt with at the target level. This is most directly expressed in the translation of
signatures:

[[α.σ]]sig(τ) = (α → [[σ]]type){α := τ}
There are two further details. First, method invocation needs to be modified to deal with free
self variables. For example, if e : objt[bump:α.α; ] then e.bump should have type objt[bump:α.α; ].
The translation in Section 3.3 translates it to unpack α, x = [[e]]exp in x.mt.bump x. Using the
typing so far, the body of this unpack has type α, which is not allowed by the unpack rule.
However, the body can be repacked into type [[objt[bump:α.α; ]]]type . In general, the method
invocation e.m will have type σ{α := τ} where e : τ and m’s signature in τ is α.σ. In the
translation the body of the unpack will have type [[σ]]type where α may appear free but only
covariantly. Replacing these covariant occurances of α by [[τ ]]type by a pack like operation is safe,
but the machinery given so far does not allow it. To address this shortcoming, a deeper form of
pack is added to the language. This deeper pack is written pack+ v, τ1[α = τ2] as self β.σ and
changes a value v of type τ1{α := τ2} to type τ1{α := self β.σ} so long as α is only positive in
τ1 and τ2 ≤ σ{β := τ2}. The old pack can be considered syntactic sugar: pack v, τ as self α.σ =
pack+ v, β[β = τ ] as self α.σ. Using the deep pack, the translation of method invocation is
unpack α, x = [[e]]exp in pack+ x.mt.m x, [[σ]]type[β = α] as [[τ ]]type, where e : τ and m’s signature
in τ is β.σ.

Second, the translation of the context used to check method bodies does not agree with the
context in which translated methods are checked. For example, in et ←+[bump = α, x.x.bump:α]
the method body x.bump is checked in the context α;α ≤ objt[bump:β.α; ];x:α. Translated this
context becomes α;α ≤ self β.〈mt:〈bump:β → α+〉→+〉;x:α. However, the translated method
body is checked in the environment α;α ≤ 〈mt:〈bump:α → α+〉→+〉;x:α. Methods have to
be checked in this environment because they must be polymorphic in the type of self to work
properly in subclasses. The solution is to witness the subtyping in the source calculus of α
to exp(α, τ) with a pack coercion in the target calculus. To make this precise, I will add an
explicit coercion to O, then show how to translate O to itself replacing implicit subtyping by
the new explicit coercion, and finally show how to translate this extended O.

The explicit coercion is written tobnd(e, τ [α = β ≤ σ]) where e : τ{α := β}, α appears only
covariantly in τ , and σ is β’s bound. The goal is eliminate the use in a subsumption rule
of the bound introduced by the method body checking rule and replace it with the explicit
coercion. Consider any expression and a typing derivation for it. The expression is transformed
by considering each use of the method body checking rule on a method body α, x.e:τ . For each
use of the subsumption rule within the typing checking of e, if the subsumption rule is used on
an expression e′ with hypotheses ∆;B; Γ �O e1 : τ2 and ∆;B �O τ1 ≤ τ2, replace e′ by f(e′)
where ∆;B �O τ1 ≤ τ2 �→α,γ.γ f as determined by the following rules:

∆;B �O β ≤ β �→α,γ.τ λx.x
(β ∈ ∆)

∆;B �O τ1 ≤ τ2 �→α,γ.τ f

∆;B �O β ≤ τ2 �→α,γ.τ f
(β ∈ ∆;β ≤ τ1 ∈ B;α �= β)

∆;B �O τ1 ≤ τ2 �→α,γ.τ f

∆;B �O α ≤ τ2 �→α,γ.τ λx.f(tobnd(x, τ [γ = α ≤ τ1]))
(α ∈ ∆;α ≤ τ1 ∈ B)
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∆ �O tempt r

∆;B �O tempt r ≤ tempt r �→α,γ.τ λx.x

i ∈ I2 : ∆, β;B �O τi ≤ τ ′i �→α,γ.τ i
fi i ∈ I1 : ∆, α �O τi

∆;B �O objt[mi:β.τi; fj:σj ]i∈I1,j∈J1 ≤ objt[mi:β.τ ′i ; fj:σj ]i∈I2,j∈J2 �→α,γ.τ ◦i∈I2fi

where τk = τ{γ := objt[mi:β.τk
i ; fj:σj]i∈I1,j∈J1}, τk

k = γ, τk
i = τi if k �= i, β /∈ {α, γ}, I2 is a

prefix of I1, and J2 is a prefix of J1.

Given an expression e in the extended O such that the subtyping rule for bounds is not used
for any bound introduced by the method body checking rule, the translation is as follows:

[[α.σ]]sig(τ) = (α → [[σ]]type){α := τ}
[[e.m]]exp = unpack α, x = [[e]]exp in

pack+ x.mt.m x, [[σ]]type[β = α] as [[objt r]]type

where e has type objt r, m’s signature in r is β.σ;
α and x are fresh

[[tobnd(e, τ [α = β ≤ objt r])]]exp = pack+ [[e]]exp, [[τ ]]type[α = β] as self γ.[[r]]full(γ)
[[α, x.e:σ]]mth(τ) = (λx:α.[[e]]exp){α := τ}

The proofs of type preservation and operational correctness could probably be extended to this
translation.

E.3 Structural Method Invocation

A structural rule for method invocation would look like:

∆;B; Γ �O e : τ ∆;B �O τ ≤ objt[mi:αi.τi; fj :σj]i∈I,j∈J

∆;B; Γ �O e.mk : τk{αk := τ} (k ∈ I)

To translate this variant, a structural unpack rule is needed. This best expressed if unpack also
repacks its body:

unpack α, x = pack+ v, β[β = τ ] as self α.σ in e �→ pack+ e{α, x := τ, v}, τ ′[β = τ ] as self α.σ

where e has type τ ′. (To formalise this properly, we would need to annotate unpack with e’s
type.) The typing rule now becomes:

∆;B; Γ �F e1 : τ1 ∆;B �F α1 ≤ self α.τ ∆, α;B,α ≤ τ ; Γ, x:α �F e2 : τ2 �F τ2{α+}
∆;B; Γ �F unpack α, x = e1 in e2 : τ2{α := τ1}

The new translation now does not do the repack in method translation, as the unpack does it:

[[e.m]]exp = unpack α, x, [[e]]exp = x.mt.m x in

The rest of the translation is the same.
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E.4 Target Language Details

I will give a few more details of the deep pack coercions. The pack operation is replaced with
the deep one:

e ::= · · · | packφ e, τ1[β = τ2] as self α.τ
v ::= · · · | pack+ v, β[β = τ ] as self α.σ

E ::= · · · | packφ E, τ1[β = τ2] as self α.τ

where φ ∈ {+,−}. The pack− form is like the opposite of pack+ and is needed to deal with
contravariant positions such as function arguments.

The old pack is treated as syntactic sugar for a specific deep pack: pack v, τ as self α.σ =
pack+ v, β[β = τ ] as self α.σ. Using this sugar, the operational semantics of Figure 2 gives
unpack the semantics (I am not considering the structural pack rule from the previous subsec-
tion):

unpack α, x = pack+ v, β[β = τ ] as self α.σ in e �→ e{α, x := τ, v}

In addition there are operational rules for the other nonvalue pack forms. These rules just push
the pack coercions deeper into the term structure:

packφ v, β[α = σ1] as σ2 �→ v α �= β

pack+ λx:τ ′.e, (τ1 → τ2)[α = σ1] as σ2 �→
λx:τ1{α := σ2}.pack+ e{x := pack− x, τ1[α = σ1] as σ2}, τ2[α = σ1] as σ2

pack− λx:τ ′.e, (τ1 → τ2)[α = σ1] as σ2 �→
λx:τ1{α := σ1}.pack− e{x := pack+ x, τ1[α = σ1] as σ2}, τ2[α = σ1] as σ2

packφ 〈 i = vi〉i∈I1 , (〈 i:τ
φi
i 〉i∈I2)[α = σ1] as σ2 �→ 〈 i = dopackφ(vi, τ

φi
i , α, σ1, σ2, i ∈ I2)〉�∈I1

dopackφ(v, τφ′
, α, σ1, σ2, b) =

{
v b ⇒ φ′ = ◦
packφ.φ′

v, τ [α = σ1] as σ2 b ∧ φ′ �= ◦
packφ Λα ≤ τ.v, (∀α ≤ τ1.τ2)[α = σ1] as σ2 �→ Λα ≤ τ.packφ v, τ2[α = σ1] as σ2

packφ v, (rec β.τ)[α = σ1] as σ2 �→ v not β ↓ τ

packφ v, (rec β.τ)[α = σ1] as σ2 �→ packφ v, (τ{β := rec β.τ})[α = σ1] as σ2 β ↓ τ

The rule for pushing a pack through a pack is a little complicated. In the encoding presented in
this paper, the actual self type is always rec α.τ or some type variable that came from an unpack.
Therefore, at run time, the only self types in a pack form being evaluated are recursive types cor-
responding to the self types. Consider pack+ pack+ v, α[α = rec γ.τ1] as self γ.τ1, (self β.σ2)[α =
rec γ.τ2] as self γ.τ2. The typing rules ensure that self γ.τ1 ≤ (self β.σ2){α := rec γ.τ2}. In fact,
the encodings presented in this paper are such that self γ.τ1 = (self γ.σ1){α := rec γ.τ2} and
self γ.σ1 ≤ self γ.σ2. Therefore the following rule suffices for our purposes:

pack+ pack+ v, α[α = rec γ.τ1] as self γ.τ1, (self β.σ2)[α = rec γ.τ2] as self γ.τ2

�→
pack+

pack+ v, (rec γ.σ1)[α = rec γ.τ2] as self γ.τ2,
α[α = (rec γ.σ1){α := self γ.τ2}] as
(self γ.σ1){α := self γ.τ2}
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where α �= γ, ∆E , α;BE �F σ1 ≤ σ2, and σ1{α := rec γ.τ2} = τ1. Similarly:

pack− pack+ v, α[α = rec γ.τ1] as self γ.τ1, (self β.σ2)[α = rec γ.τ2] as self γ.τ2

�→
pack+

pack− v, (rec γ.σ1)[α = rec γ.τ2] as self γ.τ2,
α[α = (rec γ.σ1){α := rec γ.τ2}] as
(self γ.σ1){α := rec γ.τ2}

where α �= γ, ∆E , α;BE �F σ1 ≤ σ2, and σ1{α := self γ.τ2} = τ1.

The typing rules for deep packs are straighforward:

∆;B; Γ �F e : τ1{α := τ2} ∆;B �F τ2 ≤ σ{α := τ2}
∆;B; Γ �F pack+ e, τ1[α = τ2] as self α.σ : τ1{α := self α.σ} (τ1{α+})

∆;B; Γ �F e : τ1{α := self α.σ} ∆;B �F τ2 ≤ σ{α := τ2}
∆;B; Γ �F pack− e, τ1[α = τ2] as self α.σ : τ1{α := τ2}

(τ1{α−})

where τ{αφ} means that α appears only positively, if φ = +, or negatively, if φ = −, in τ . Its
definition is standard and omitted. It is straightfoward to extend the proof of soundness of the
target language to these deep packs. Essentially, Decomposition and Canonical Forms need to
be reformulated, but otherwise all the lemmas up to and including Canonical Forms still go
through. Type Preservation has a bunch of extra cases for all the pack rules, but these are all
just type chasing. Progress also has an extra case, but this follows by noting that the rules
partition the possible forms of the type τ and φ in packφ v, τ [α = σ1] as σ2 and that Canonical
Forms implies that v has an appropriate form for the form of τ . I omit the many details. The
proof could be extended to handle the structural unpack operation as well.

F Closure Conversion

This section details a closure-passing-style closure-conversion translation based on my previous
object closure conversion [Gle99a] and the encoding in this paper.

The source language is a typed lambda calculus with records:

τ ::= τ1 → τ2 | 〈 i:τi〉i∈I

e ::= x | fix f(x:τ1):τ2.e | e1 e2 | 〈 i = ei〉i∈I | e. 

The idea is to treat functions as single-method objects, closure convert the resulting object
language, and then encode these into records and functions (for single-method objects the
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method table might as well be collapsed into the object). The combined translation is:

[[τ1 → τ2]]type = self α.〈apply = ((α, [[τ1]]type) → [[τ2]]type)+〉→
[[〈 i:τi〉i∈I ]]type = 〈 i:[[τi]]+type〉→

[[x]]exp = x
[[fix f(x:τ1):τ2.e]]exp = pack 〈apply = λ(f ′:τ, x:[[τ1]]type).e′, gi = yi〉1≤i≤n, τ as [[τ1 → τ2]]type

where {yi:σi}1≤i≤n = fv(e)− {f, x}
e′ = let f = pack f ′, τ as [[τ1 → τ2]]type in ([[e]]exp{yi := f ′.gi}1≤i≤n)
τ = rec α.〈apply:((α, [[τ1]]type) → [[τ2]]type)+, gi:[[σi]]+type〉→1≤i≤n

g1, . . . , gn are fresh
[[e1 e2]]exp = unpack α, x = [[e1]]exp in x.apply(x, [[e2]]exp)
[[〈 i = ei〉i∈I ]]exp = 〈 i = [[ei]]exp〉i∈I

[[e. ]]exp = [[e]]exp. 

It is typical to follow closure conversion by hoisting, where all functions are lifted to the top
level. To perform hoisting after the above translation requires closing over type variables. In
particular, every term of the form λ(−→x:τ).e is replaced by x[*α], where x is a fresh global variable,
*α are ftv(λ(−→x:τ).e) plus the free variables of their bounds and their bounds et cetera, *σ are the
bounds of *α, and the global binding x = Λ−−−→α ≤ σ.λ(−→x:τ).e is introduced.

This translation could be proven correct by combining a proof of correctness for the embedding
of functions into single-method objects, the proof of correctness for object closure conver-
sion [Gle99b], and the proofs in Appendices C and D.

This translation along with Crary’s [Cra99] provide the first typed closure-passing-style closure-
conversion translations.
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