
Type Dispatch for Named Hierarchical Types ∗

Neal Glew

Department of Computer Science
Cornell University

Abstract

Type dispatch constructs are an important feature of many
programming languages. Scheme has predicates for testing
the runtime type of a value. Java has a class cast expression
and a try statement for switching on an exception’s class.
Crucial to these mechanisms, in typed languages, is type
refinement: The static type system will use type dispatch
to refine types in successful branches. Considerable previ-
ous work has addressed type case constructs for structural
type systems without subtyping, but these do not extend to
named type systems with subtyping, as is common in ob-
ject oriented languages. Previous work on type dispatch in
named type systems with subtyping has not addressed its
implementation formally.

This paper describes a number of type dispatch con-
structs that share a common theme: class cast and class
case constructs in object oriented languages, ML style ex-
ceptions, hierarchical extensible sums, and multimethods. I
describe a unifying mechanism, tagging, that abstracts the
operation of these constructs, and I formalise a small tagging
language. After discussing how to implement the tagging
language, I present a typed language without type dispatch
primitives, and a give a formal translation from the tagging
language.

1 Introduction

A number of programming languages include type dispatch
constructs: conditional constructs that test the runtime
type of a value. For example, Scheme [KCR98] has pred-
icates for testing if a value is the empty list, an integer,
a pair, and so on. These predicates make Scheme more
expressive than it would be without them, and can be
used to write polymorphic print and marshalling functions
and metaprograms like eval. The intermediate language
λML

i [HM95, Mor95], used in the TIL compiler [TMC+96],
has a case construct similar to Scheme’s type predicates.

∗This paper is based on work supported in part by the NSF grant
CCR-9708915, AFOSR grant F49620-97-1-0013, and ARPA/RADC
grant F30602-1-0317. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the author
and do not reflect the views of these agencies.

To appear in the 1999 ACM SIGPLAN International
Conference on Functional Programming, September
1999, Paris, France.

The code typecase α of α1 × α2 ⇒ e1 | α1 → α2 ⇒ e2 | · · ·
will execute e1 if α is a pair type, and execute e2 if α is
a function type. The construct is crucial for implementing
specialised data representations in the presence of polymor-
phism, and for writing polymorphic print and marshalling
functions.

Class based object oriented languages have a related but
slightly different construct: the ability to dispatch on an
object’s runtime class. The class from which an object is in-
stantiated is called its runtime class. The static type systems
of these languages determine a conservative approximation
of the runtime class of each expression: The static class of an
expression is always a superclass of the runtime class of any
object that expression might evaluate to. In part to make
up for this conservatism, these languages allow the program-
mer to test the runtime class of an object with a class cast
or a class case mechanism. For example, in Java [GJS96]
the expression (c)e tests if e’s runtime class is a subclass of
c, and if not throws an exception. Java also has a class case
construct, but only for examining the class of an exception
packet. The try statement try blk catch (classname1 x1)
blk1 · · · catch (classnamen xn) blkn executes blk , and if
blk throws an exception, matches that exception’s runtime
class against classname1 through classnamen. If classnamei

is the first matching class, xi is bound to the exception, and
blki is executed. The ability to examine runtime classes is
crucial to Java’s exception mechanism, and is generally use-
ful in a number of other situations.

In typed languages, type refinement is a key property of
type dispatch constructs: After dispatching on the runtime
type of a value, that value’s static type changes to reflect
the new type information. For example, in the λML

i code:

Λα.λx:α.typecase α of α1 × α2 ⇒ e1 | . . .

x initially has static type α, but in expression e1 it is refined
to α1 × α2. Similarly in Java, if Student is a subclass of
Person and x is declared to have type Person, then in the
expression (Student)x, while x has static type Person the
whole expression has the refined type Student.

The importance of type dispatch constructs to languages
that have them, and the need to implement sound type
refinement, justifies seeking formal foundations for them.
There are two aspects to the formal analysis of these pro-
gramming language constructs: First, the constructs them-
selves should be formalised as primitives in some small lan-
guage and desired properties proven (e.g., type soundness).
Second, the common implementation techniques should be
formalised as translations between the above languages and

ones without type dispatch primitives, and the translations
proven correct.

Previous work on type dispatch in typed languages
does exist. Abadi et al. [ACPP91] introduce the type dy-
namic with a type case construct, formalise its semantics
and typing rules, and prove soundness. The afore men-
tioned work on λML

i treats a similar construct, also formal-
ising it and proving soundness. Crary, Weirich, and Mor-
risett [CWM98, CW99] show how to formalise type case in
a type erasure interpretation rather than the type passing in-
terpretation used in other works. Their work also addresses
the implementation aspect that I mentioned: Their language
LX [CW99] has no term level type dispatch primitives, only
the necessary typing machinery.

This work on type dynamic and type case does not ex-
tend to the case for object oriented languages as it neglects
two important features: subtypes and the creation of “new”
(i.e., generative) types. For these features, the only previous
work is that of Reppy and Riecke [RR96] who describe an
extension of SML with objects. Included in their language
are hierarchically organised object type constructors, and
a case mechanism for dispatching on an object’s runtime
class. They formalise this construct, and prove it sound.
They sketch an implementation, but do not formalise it.
This paper formalises a tagging language, which contains a
similar construct. The tagging language explains class cast
and class constructs, ML style exceptions, and hierarchical
extensible sums, and could be used in a typed compilation
of multidispatch languages such as Cecil [Cha97].

This paper also formalises a translation of the tagging
language into a variant of the typed lambda calculus with
some additional typing machinery. Like Crary, Weirich, and
Morrisett, I use a type erasure interpretation, and the both
the tagging and target languages are eraseable.1 Correct-
ness theorems for the translation are stated here and proven
in a companion technical report [Gle99]. I implemented the
ideas in a type directed compiler as part of the TALx86
project [MCG+99]. TALx86 is a typed assembly language,
and the key ideas of the target language were used to aug-
ment TALx86’s type system; these extensions were straight-
forward. This result is significant for without it, type di-
rected compilers must keep type dispatch as a primitive, and
language based security must include type dispatch primi-
tives (as the Java Virtual Machine does).

In the remainder of the paper, I will develop the tag-
ging language and discuss its implementation. I begin by
describing in more detail the programming language con-
structs being addressed. From these constructs I extract a
core mechanism, and define a small tagging language that
abstracts their fundamental operation. Next, I informally
discuss how this language could be implemented and the
typing issues that arise. This leads to a formal target lan-
guage and a formal translation from the tagging language
to the target language. Finally, I describe some extensions.

2 Four Type Dispatch Constructs

Consider the following four language constructs:

Class Casting and Class Case: In Java, and in other
class based languages, objects are created by instan-
tiating a class, and that class is stored in the object

1The erasure of a term is obtained by deleting all its typing an-
notations. A langauge is eraseable, or is said to have a type erasure
interpretation, if its terms behave exactly as their erasures do.

when it is created. Java has a downcasting operation
(c)e that evaluates e to an object and then tests to see
if that object’s class is in the subhierarchy under class
c. If so, the cast expression evaluates to the object, but
has static type c, which is generally a refinement of e’s
type. If not, an exception is thrown. More generally,
these languages might provide a class case mechanism
for testing membership in one of several classes. Java
has this operation for the particular case of handling
exceptions.

Exceptions: At first glance, ML style exceptions might not
seem related to downcasting but, in fact, there is a
strong connection. Exception declarations are similar
to classes in that they create a new exception name
with an associated type. Exception packets, like ob-
jects, are created from an exception name, and that
name is stored in the packet. Exception matching,
then, is like downcasting: Known exception names are
compared against the name in an exception packet,
and successful comparisons allow access to the carried
value at the type of the known exception name. Un-
like classes, which are arranged hierarchically, ML style
exception names are not hierarchical. On the other
hand, Java implements exception packets by using ob-
jects, and the declaration of new exception names is
achieved by subclassing throwable.

Hierarchical Extensible Sums: ML style exceptions are
also an example of extensible sums. The exception type
is like a global sum type that can be extended by user
declarations. Each user-declared exception name is a
new branch in the sum. A hierarchical extensible sum
allows the sum branches to be arranged in a hierarchy.
For example, a programmer might define a hierarchi-
cal extensible sum type for the primitives of a compiler
intermediate language. She might define a construc-
tor of this sum, intbin, for binary integer primitives,
and then subconstructors under intbin for addition,
subtraction, and so on. The intermediate language’s
type checker could match against intbin, since all these
primitives have the same type, whereas a code genera-
tor would match against the more specific constructors
to determine the correct instruction to generate. Reppy
and Riecke [RR96] describe hierarhical extensible sums
in connection with their class case mechanism, and note
how they generalise ML style exceptions. Reppy and
Fisher are incorporating a form of hierarchical exten-
sible sums in the language Moby [FR99], a research
vehicle for ML2000.

Multimethods: Java has single dispatch: Methods can be
thought of as functions that are specialised on their first
argument’s class. Multimethods (c.f. Cecil [Cha97]) are
a generalisation of this paradigm: A multimethod is a
function that is specialised on any, possibly all, of its ar-
guments’ classes. Implementing multimethods requires
calling specialised code after determining which spe-
cialisation applies. The latter could be implemented by
comparing the arguments’ runtime classes against pat-
terns of known classes. In a type directed compilation
framework, when one of these comparisons succeeds,
the types of the arguments must be refined to match
the types required by the specialised code. These com-
parisons are instances of the class case construct de-
scribed above. Multimethods are similar to Castagna

2

et al.’s overloaded functions [CGL95], except the latter
are considered in a structural rather than named typed
system.

The core mechanism in all of these examples is a tagging
mechanism. Exception names, classes, and the constructors
of an extensible sum are all examples of tags that are placed
with or within values. Associated with these tags are types
that correspond to the tagged values. The language has a
tag if/case construct with type refinement in the successful
branches. Furthermore, in the case of classes and hierarchi-
cal sums, the tags form a tag hierarchy and the associated
types are in a subtype hierarchy parallel to the tag hierar-
chy. Usually, the tests of a tag case are not “is tag t1 equal
to tag t2” but “is tag t1 in the subhierarchy under tag t2”.
I shall call “testing if a tag is under another in the tag hier-
archy” a tag check. The tagging language described in the
next section formalises this core mechanism.

3 A Tagging Language

This section describes a tagging language that abstracts the
core operation of the type dispatch constructs described in
the previous section. The desired operations are: creating
hierarchies of type tags, tagging a value with a tag, and
comparing the tag of a tagged value against known tags.

A new tag is created by one of two operations: newtag(τ)
or subtag(τ, e). In both cases the new tag is for tagging
values of type τ and has type tag(τ). The newtag(·) form
creates a top level tag, and the subtag(·, e) form creates a
subtag of tag e. For example, the ML style exception dec-
laration exception Failure of string could be coded in the
tagging language as:

let Failure = newtag(string) in

Note that for expository purposes, examples will use con-
structs not in the formal language, such as strings, integers,
floating point numbers, and let declarations. For an example
of subtags, assume string[10] is the type of strings of length
10, and is a subtype of string. The subexception declaration
exception MyFailure extends Failure of string[10] could be
coded as:

let MyFailure = subtag(Failure, string[10]) in

Values are tagged with the operation mktagged(〈e1, e2〉)
where e1 is the tag, and e2 the value to be tagged. The
result is a value of type tagged. For example, the creation
of an exception packet let ep = Failure “unimplemented”
could be coded as:

let ep = mktagged(Failure, “unimplemented”) in

Tagged values are compared against known tags with the
operation if tagof(e1) ≤ e2 then x.b1 else b2 fi where e1 is
a tagged value and e2 is a tag. Informally, the tag in e1 is
extracted and compared, along with all its ancestors in the
tag hierarchy, to e2. If any ancestor is equal to e2, b1 is
executed with x bound to the value in e1. Otherwise b2 is
executed. For example, exception matching such as:

match ep with
Failure(x) -> printf “Computation failed: %s” x

| -> printf “Some other exception”

could be coded as:

if tagof(ep) ≤ Failure then
x.printf “Computation failed: %s” x

else
printf “Some other exception”

fi

The tagging language has the above operations plus n-
tuples and functions with their usual introduction and elim-
ination forms. The syntax is:

Types τ, σ ::= tag(τ) | tagged | 〈~τ〉 | τ1 → τ2

Terms e, b ::= x | newtag(τ) | subtag(τ, e) |
mktagged(e) |
if tagof(e1) ≤ e2 then x.b1 else b2 fi |
〈~e〉 | e.i | fix f(x : τ1) : τ2.b | e1 e2

The term fix f(x:τ1):τ2.b binds f and x in b, and if
tagof(e1) ≤ e2 then x.b1 else b2 fi binds x in b1. I consider
syntactic objects equal up to α-equivalence. The capture
avoiding substitution of x for y in z is written z[y := x], and
simultaneous substitution is written z[y1, y2, := x1, x2]. A
sequence of objects from a syntactic class X will be written
~X .

The operational semantics is given in Figure 1. The key
part of the semantics is modelling the identity of tags. Intu-
itively, the abstract machine that executes tagging language
programs has a memory that stores the identities and de-
tails of all tags created in the execution so far. I use a well
known technique for modelling memory called an allocation
style semantics (c.f. Morrisett et al. [MFH95]). In this style
of semantics, a program state let H in e consists of a heap
H that models the memory, and an expression e that is
currently being evaluated. Heaps are finite maps from ad-
dresses to values stored in the memory, called heap values
h. Addresses are usually formalised by an abstract construct
called locations, or for the tagging language an abstract con-
struct called tag names might be used. For simplicity, I use
variables instead. The tagging language’s heap values are
tuples 〈~v〉2 and tag definitions (τ, s). The latter consists of
the type being tagged τ and the optional supertag s, which
is either ε for no supertag, or a variable that is the identity
of the supertag.

The most interesting reduction rules are the rules for
if tagof(·) ≤ · then · else · fi. A tag check of x against y is for-
malised by the predicate tagchkH(x, y) where H is the heap
containing the tag definitions, x is the address of the un-
known tag, and y is the address of the known tag. The defi-
nition of this predicate says that either x and y are the same
tag or x has a supertag and the predicate holds for the su-
pertag. The recursiveness of this definition deserves further
comment. As tag hierarchies are acyclic, I intend heaps to
be nonrecursive (that is, a heap value can only refer to vari-
ables defined earlier in the heap). The operational semantics
creates heap values that are nonrecursive, and the typing
rules (discussed shortly) force typeable heaps to be nonre-
cursive. Given that heaps are nonrecursive, tagchkH(x, y)
should be considered an inductive definition. If cyclic heaps
are considered, we would need to decide what cycles in the
tag hierarchy mean, and adjust the definition of tagchk·(·, ·)
accordingly. The rest of the semantics is fairly standard for

2Tuples are allocated in the heap to make the tagging language and
the target language closer. This makes it easier to prove operational
correctness of the translation.

3

Syntax:

Values v ::= x | mktagged(v) | fix f(x:τ1):τ2.b
Contexts E ::= [] | subtag(τ, E) | mktagged(E) | 〈~v, E, ~e〉 | E.i | E e | v E |

if tagof(E) ≤ e2 then x.b1 else b2 fi | if tagof(v) ≤ E then x.b1 else b2 fi
Heap Values h ::= (τ, ε) | (τ, x) | 〈~v〉
Heaps H ::= x1 = h1, . . . , xn = hn

Program States P ::= let H in e

Reduction Rules:
let H in E[I] 7→ let H ′ in E[e]

I e H ′ Side Conditions
newtag(τ) x H, x = (τ, ε) x fresh
subtag(τ, y) x H, x = (τ, y) x fresh
〈~v〉 x H, x = I x fresh
x.i vi H H(x) = 〈v1, . . . , vn〉; 1 ≤ i ≤ n
v1 v2 b[f, x := v1, v2] H v1 = fix f(x:τ1):τ2.b
if tagof(mktagged(x)) ≤ y
then z.b1 else b2 fi b1[z := v] H H(x) = 〈x′, v, ~v〉; tagchkH(x′, y)
if tagof(mktagged(x)) ≤ y
then z.b1 else b2 fi b2 H H(x) = 〈x′, v, ~v〉; not tagchkH(x′, y)

Tag checking:

tagchkH(x, y)
def
= (x = y) ∨ (H(x) = (τ, x′) ∧ tagchkH(x′, y))

Figure 1: Source Language Operational Semantics

a context and substitution based reduction semantics. Note
that the semantics is deterministic, call by value, and left to
right.

The tagging language is eraseable, and the types τ in the
operations newtag(τ) and subtag(e, τ) and the tag definitions
(τ, ε) and (τ, x) are not needed at runtime.

The typing rules appear in Figure 2, and consist of judge-
ments for subtyping `S τ1 ≤ τ2 and for typing expressions
Γ `S e : τ , heap values Γ `S h : τ , heaps `S H : Γ, and
program states `S P : τ . Here Γ is a typing context that
lists the types of variables. Subtyping for tag and tagged
types is trivial, and subtyping for tuples and functions is
standard. Note that reflexivity and transitivity of subtyp-
ing is derivable from the rules given. The rule for subtags
requires that e be a tag for type τ ′ and that τ be a sub-
type of τ ′. The latter ensures that types associated with
tags form a subtype hierarchy in parallel to the tag hier-
archy. The rule for mktagged(e) requires that e be a pair
of a type tag for τ and a value of type τ . The rule for
if tagof(e1) ≤ e2 then x.b1 else b2 fi requires e1 to have type
tagged, e2 to be a tag for some type σ, b1 to type check in
a context with x of type σ, and b2 to type check.

The typing rules are sound with respect to the opera-
tional semantics. The proof uses the standard techniques,
and the only interesting case is in the type preservation of a
successful tag comparison. In that case, a tag of type tag(σ1)
is compared against one of type tag(σ2). If the comparison
succeeds, the next program state has the form b1[z := v]
where b1 has the desired type if z has type σ2. However, v
has type σ1, so we need to show that `S σ1 ≤ σ2, which
follows from this lemma:

Lemma 3.1 If `S H : Γ, Γ `S x : tag(σ1), Γ `S y :

tag(σ2), and tagchkH(x, y) then `S σ1 ≤ σ2.

4 Implementation

Real machine languages do not provide primitives like
newtag(τ), subtag(τ, e), mktagged(e), and if tagof(e1) ≤
e2 then x.b1 else b2 fi. Compiler writers must select data
structures to represent the tags and algorithms to imple-
ment tag checks. The goal of this section is to formalise a
typed translation of the tagging language to another lan-
guage without the above primitives. For now, think of the
target of this translation as a typical lambda calculus with
physical pointer equality and some typing machinery that I
will develop in this section. This typing machinery is gen-
eral enough to type other less naive strategies as I sketch
in Section 5, and can be added to other low level languages
such as Typed Assembly Language [MWCG98, MCG+99].

Consider first how a compiler would translate the exam-
ples in the previous section ignoring types. To create the
new tag Failure the compiler would dynamically allocate
a new block of memory. Since, throughout the lifetime of
this new block, its address is different from the address of
any other dynamically allocated memory block, the compiler
can use this address as a unique identifier for the tag. The
compiler needs to record the position of Failure in the tag
hierarchy, so it stores a null pointer into the newly allocated
block to indicate that Failure is at the top level of the hierar-
chy. I will use ML’s none constructor as to represent the null
pointer, and ML’s some(v) to represent a non-null pointer
to v. Similarly, to create MyFailure the compiler would
allocate a new block of memory and store some(Failure) in
it.

To create the tagged value ep the compiler would create
a pair consisting of Failure and the literal string. So the first

4

Typing contexts Γ are lists x1 : τ1, . . . , xn : τn.

`S τ1 ≤ τ2

`S tag(τ) ≤ tag(τ) `S tagged ≤ tagged

`S τi ≤ σi

`S 〈τ1, . . . , τm〉 ≤ 〈σ1, . . . , σn〉 (m ≥ n)
`S τ2 ≤ τ1 `S σ1 ≤ σ2

`S τ1 → σ1 ≤ τ2 → σ2

Γ `S e : τ

Γ `S e : τ1 `S τ1 ≤ τ2

Γ `S e : τ2 Γ `S x : τ
(Γ(x) = τ)

Γ `S newtag(τ) : tag(τ)

Γ `S e : tag(τ ′) `S τ ≤ τ ′

Γ `S subtag(τ, e) : tag(τ)

Γ `S e : 〈tag(τ), τ〉
Γ `S mktagged(e) : tagged

Γ `S e1 : tagged Γ `S e2 : tag(σ) Γ, x : σ `S b1 : τ Γ `S b2 : τ

Γ `S if tagof(e1) ≤ e2 then x.b1 else b2 fi : τ
(x /∈ dom(Γ))

Γ `S ei : τi

Γ `S 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
Γ `S e : 〈τ1, . . . , τn〉

Γ `S e.i : τi
(1 ≤ i ≤ n)

Γ, f :τ1 → τ2, x:τ1 `S b : τ2

Γ `S fix f(x:τ1):τ2.b : τ1 → τ2
(f,x /∈ dom(Γ))

Γ `S e1 : τ1 → τ2 Γ `S e2 : τ1

Γ `S e1 e2 : τ2

Γ `S h : τ `S H : Γ `S P : τ

Γ `S (τ, ε) : tag(τ)

Γ `S x : tag(τ ′) `S τ ≤ τ ′

Γ `S (τ, x) : tag(τ)

Γ `S vi : τi

Γ `S 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉
`S h1 : τ1 . . . x1 : τ1, . . . , xn−1 : τn−1 `S hn : τn

`S x1 = h1, . . . , xn = hn : x1 : τ1, . . . , xn : τn
(x1, . . . , xn distinct)

`S H : Γ Γ `S e : τ

`S let H in e : τ

Figure 2: Source Language Typing Rules

three examples might become:

let Failure = 〈none〉 in
let MyFailure = 〈some(Failure)〉 in
let ep = 〈Failure, “unimplemented”〉 in

To translate the last example, the compiler would extract
the tag in ep, which is the address of some dynamic memory
block, and compare it against Failure. If they are equal
x would be bound to the second component of ep and b1
executed. Otherwise, the supertag would be extracted and
the process repeated until there is no supertag, in which case
b2 would be executed. The translated code might be:

let z = ep.1 in
loop1 : if z = Failure then let x = ep.2 in b1

else match z.1 with none → b2
| some(z′) → (z := z′; goto loop1)

Now consider designing a type system to annotate the
code above. The key difficulty is giving x the correct type.
In general, the type of a tagged value like ep is unknown,
yet if the comparison z = Failure succeeds, the type of ep.2
is string, and this fact is needed to give x type string. What
makes this difficult is that z and Failure are values unre-
lated to ep.2. In order to make this connection clear, the
target type system needs to do two things: First, it needs

to generate type equalities from physical pointer compar-
isons; second, it needs to link z and ep together, so that
type information generated by the comparison will change
ep’s type.

The solution to the second problem is to use type vari-
ables to link tags to values being tagged. For example, ep’s
type could be 〈tag(α), α〉 for a yet to be determined type
constructor tag(·) and some type variable α. Then compar-
ing z, which has type tag(α), to Failure, which has type
tag(string), will cause the type checker to change α to string
in the successful branch, thus changing ep.2’s type to string
also.

The solution to the first problem lies in the following ob-
servation. The compiler is using the address of the memory
block allocated for Failure as a name for the type string.
It never uses the same address as a name for two different
types, so if two addresses are equal, the types they name
must be equal. To reflect this behaviour the target type
system must track which addresses are names for types, and
which types they name. The compiler gives the target lan-
guage type tag(τt, τds) to these pointers. These types re-
semble the tagging language type tag(τt), as both are for
tags for type τt. However, whereas tags were primitives in
the tagging language, they are explicit datastructures in the
target language, and τds reflects the type of these datastruc-
tures. In particular, a value v is in the type tag(τt, τds) if

5

Types τ, σ ::= α | tagφ(τ1, τ2) | rec α.τ | ∃α.τ | τ? | 〈~τ〉 | τ1 → τ2

Variances φ ::= + | − | ◦
Terms e, b ::= x | mktag(τ, 〈~e〉) | if e1 = e2 then b1 else b2 fi | rollτ (e) | unroll(e) |

pack[τ1, e] as τ2 | unpack[α,x] = e1 in e2 | noneτ | some(e) | if? e1 then x.b1 else b2 fi |
〈~e〉 | e.i | fix f(x : τ1) : τ2.b | e1 e2 | let x1 = e1 and x2 = e2 in e

Figure 3: Target Language Syntax

v also has type τds and the programmer declared v to be a
tag for type τt.

Now consider the datastructures used, and the type τds

for the examples. Failure is a linked list of Failure’s ances-
tors, and each pointer in this linked list is being used as a
name for the type string. Linked lists have type rec β.〈β?〉
(where τ? is an option type). So Failure has type:

tag(string) = rec β.tag(string, 〈β?〉)
The tagged value ep is a pair of such a tag and a string
except that string is abstracted over, thus ep has type
∃α.〈tag(α), α〉. To get the initial value of z, ep is un-
packed introducing α into the type context, and giving z
the type tag(α). If z = Failure succeeds then the type z
tags and the type Failure tags must be the same, that is, α
is string. The target type system will use this in type check-
ing let x = ep.2 in b1. Since ep.2 has type α, which is string,
x will get type the correct type.

Two complications arise with this basic scheme. The first
is ensuring that a pointer is used to name only one type. If
the same pointer is used to name two different types, runtime
type errors could occur. To see this, assume an operation
mktag(τ, e) that declares that value e is a tag for τ , and
consider the following malicious code:

let x1 = 〈none〉 in
let x2 = mktag(string, x1) in
let x3 = mktag(float, x1) in
let y = 〈x2, “hello”〉 in

The variables x1, x2, and x3 are all bound to the same
pointer, which points to a tuple with a single element none.
However, the type system types x2 as a tag for strings and
x3 as a tag for floats. The code uses x2 to created a tagged
“hello” value, which is bound to y. Now consider the fol-
lowing innocent code:

fun foo[α](z : 〈rec β.tag(α, 〈β?〉), α〉) =
if z.1 = x3 then sin(z.2) else 1.0 fi

The body of foo compares z.1 a tag for α to x3 a tag for float.
Therefore in the then branch z.2 is refined to type float and
the sine computation type checks. However, suppose foo was
applied to string and y. Since y.1 is x2 which equals x3, the
then branch is executed. But z.2 is a string and the sine
computation fails. The target type system must ensure that
x1 can be declared a tag for at most one type.

One way to ensure a value is declared a tag for at most
one type, is to use a linear type system. If v is of linear
type τ1, then v can be “used” only once. Then it is suffi-
cient for mktag(τ, e) to require e : σ1 for some σ. However,
this requires all the machinery of linear type systems in the
target language. A simpler solution, pursued in this paper,
is to allow mktag(τ, e) only at points where new heap values

are created. For example, 〈~e〉 creates a new heap value; the
target operation mktag(τ, 〈~e〉) does the same thing but gives
the result type tag(τ, 〈~τ〉) where ~e : ~τ .

The other complication concerns the interaction between
subtyping and tag types. In particular, if tag(τ1, . . .) ≤
tag(τ2, . . .) then what should be the relationship between
τ1 and τ2 (the second position is covariant, i.e., τ1 ≤ τ2

implies tag(τ, τ1) ≤ tag(τ, τ2)). As we shall see, different
and conflicting relationships are required by the process of
creating subtags and the process of destructing tagged val-
ues. The solution is to introduce a variance mechanism that
states the relationship that holds. First some terminology,
the value mktag(τ, e) is said to have been created as a tag
for τ . For example, Failure was created as a tag for string.

Now consider the creation of a subtag. For this example,
string[10] will be the type of strings of length 10, and is
a subtype of string. Joe User desires a subtag of Failure,
MyFailure, that tags string[10]. Using the scheme above,
the translated code for MyFailure is:

let MyFailure = mktag(string[10], 〈some(Failure)〉) in

Consider how this type checks. MyFailure should have have
tag(string[10]), and the right hand side has this type if
Failure has type tag(string[10]). In fact, Failure has type
tag(string) so we require that tag(string) ≤ tag(string[10]),
that is:

rec β.tag(string, 〈β?〉)
≤ rec β.tag(string[10], 〈β?〉)

This would hold if tag(string, . . .) ≤ tag(string[10], . . .), in
other words, a contravariant subtyping rule: if τ1 ≤ τ2 then
tag(τ2, . . .) ≤ tag(τ1, . . .).

However, now consider tagged value destruction, and the
code from above:

z : rec β.tag(α, 〈β?〉), ep : 〈rec β.tag(α, 〈β?〉), α〉
if z = Failure then let x = ep.2 in b1 else . . . fi

Under the contravariant rule Failure subsumes to a tag type
for string[10], so the type system could type check let x =
ep.2 in b1 under the assumption that α is string[10]. Under
this incorrect assumption, x has type string[10], but ep.2 is
actually a thirteen character string. Thus for destruction,
subtyping must not be contravariant.

I introduce a variance mechanism3 to track the subtyp-
ing rules used. Now a tag type has the form tagφ(τt, τds)
where φ is a variance: either covariant +, contravariant −,
or invariant ◦. A value is in this type if it has type τds

and was created to tag type σ. Furthermore, the variance
states the relationship between τt and σ. For covariance τt

is a supertype of σ, for contravariant τt is a subtype of σ,

3Abadi and Cardelli [AC96] describe variances and their typing
rules in detail.

6

Syntax:
Values v ::= x | rollτ (v) | pack[τ1, v] as τ2 | noneτ | some(v) | fix f(x : τ1) : τ2.b
Contexts E ::= [] | mktag(τ, 〈~v, E, ~e〉) | if E = e then b1 else b2 fi |

if v = E then b1 else b2 fi | rollτ (E) | unroll(E) | pack[τ1, E] as τ2 |
unpack[α,x] = E in e | some(E) | if? E then x.b1 else b2 fi |
〈~v, E, ~e〉 | E.i | E e | v E | let x1 = E and x2 = e2 in e |
let x1 = v and x2 = E in e

Heap Values h ::= 〈~v〉 | mktag(τ, 〈~v〉)
Heaps H ::= x1 = h1, . . . , xn = hn

Programs P ::= let H in e

Reduction Rules:
let H in E[I] 7→ let H ′ in E[e]

I e H ′ Side Conditions
〈~v〉 or mktag(τ, 〈~v〉) x H, x = I x fresh
if x = x then b1 else b2 fi b1 H
if x = y then b1 else b2 fi b2 H x 6= y
unroll(rollτ (v)) v H
unpack[α, x] = pack[τ1, v] as τ2 in e e[α := τ1, x := v] H
if? noneτ then x.b1 else b2 fi b2 H
if? some(v) then x.b1 else b2 fi b1[x := v] H
x.i vi H H(x) = v or mktag(τ, v)

1 ≤ i ≤ n, v = 〈v1, . . . , vn〉
v1 v2 b[f, x := v1, v2] H v1 = fix f(x : τ1) : τ2.b
let x1 = v1 and x2 = v2 in e′ e′[x1, x2 := v1, v2] H

Figure 4: Target Language Operational Semantics

and for invariance τt is σ. Using this new form, we can re-
vise the type for z to tag−(α, . . .), and type for Failure to
tag+(string, . . .). Then if z equals Failure we know that the
types these tags were created to tag are equal. If σ is this
type, we further know that α ≤ σ since z has the contravari-
ant tag type, and that σ ≤ string as Failure has the covariant
tag type. So α ≤ string and it safe to assume x : string in
b1.

The key is the relationship between the static tag type
and the runtime tag type. In creating tagged values and
subtags, we want the static tag type to be a subtype of
the runtime tag type, and for destructing tagged values, we
want the runtime tag type to be a subtype of the static type
so that the type system conservatively refines types. The
variance mechanism tracks and ensures the correct relation-
ships.

Using these ideas, I present the target language in the
next section, and then a translation from the tagging lan-
guage to the target language in the following section.

4.1 Target Language

The target language incorporates the keys ideas of the pre-
vious section, that is, tag types with a variance mechanism
and physical pointer equality, with a typical typed lambda
calculus. The syntax appears in Figure 3. The operation
mktag(τ, 〈~e〉) creates a new tuple in the heap that can be
used as a tag for the type τ ; it has type tag◦(τ, 〈~τ〉) where

~e : ~τ . The type tagφ(τ1, τ2) contains values of type τ2 that
are used as tags for the type τ1. The value in this type may
have been created as a tag for a subtype of τ1 if φ is +, a
supertype of τ2 if φ is −, but only τ1 if φ is ◦. Two values
that tag types can be compared for physical pointer equal-
ity using the operation if e1 = e2 then b1 else b2 fi. This

operation is asymmetric as it is intended to compare a tag
for an unknown type, e1, with a tag for a known type, e2.
If the two values are equal b1 is executed, and e2’s tag type
is used to refine e1’s; otherwise b2 is executed. There are n-
tuples and functions as before. In addition the translation
will need recursive types, existentials, and option types. The
recursive and existential types are standard. An option type
τ? is either the value noneτ or the value some(v) for some
v : τ ; the operation if? e1 then x.b1 else b2 fi can be used
to discriminate the two. I also include a special let form
let x1 = e1 and x2 = e2 in e. This expression first evaluates
e1 to a value v1, then evaluates e2 to a value v2, and the
evaluates e with vi substituted for xi. It makes the proof of
operational correctness simpler.

The operational semantics is similar in spirit to the tag-
ging language, and is given in Figure 4. Like in the tagging
language, the heap is used to remember identities, in par-
ticular, the identities of the tuples created. Two tuples, or
pointers, are equal if they have the same address, that is,
if they are the same variable. Hence the rules for the if
construct.

The target language is eraseable. The operation mktag(τ,
e) is equivalent to e, and the annotation mktag(τ, ·) on heap
values is not needed at runtime.

The static semantics appears in Figures 5 and 6. Note
that a typing context of the form ∆, α ≤ τ must have
ftv(τ) ⊆ ∆. This syntactic restriction ensures that all typing
contexts are well formed, which simplifies the proof of sound-
ness. The static semantics is straightforward except for the
tagging constructs. First, values in the type tagφ(τt, τds)
also have type τds, and the rule tag-sub reflects this spe-
cialised subsumption principle. This rule is used to manip-
ulate the datastructure a type tag contains.

The two rules for tag comparison deserve mention.

7

Typing Contexts ∆ ::= ε | ∆, α | ∆, α ≤ τ (ftv(τ) ⊆ ∆)
Value Contexts Γ ::= x1 : τ1, . . . , xn : τn

∆ `T τ
(ftv(τ) ⊆ ∆)

∆ `T τ

∆ `T τ ≤ τ

∆ `T τ1 ≤ τ2 ∆ `T τ2 ≤ τ3

∆ `T τ1 ≤ τ3 ∆ `T α ≤ τ
(α ≤ τ ∈ ∆)

∆ `T τ1 ≤ τ2 ∆ `T σ1 ≤ σ2

∆ `T tagφ(τ1, σ1) ≤ tag+(τ2, σ2)
(φ ∈ {+, ◦}) ∆ `T τ2 ≤ τ1 ∆ `T σ1 ≤ σ2

∆ `T tagφ(τ1, σ1) ≤ tag−(τ2, σ2)
(φ ∈ {−, ◦})

∆ `T τ ∆ `T σ1 ≤ σ2

∆ `T tag◦(τ, σ1) ≤ tag◦(τ, σ2)

∆ `T rec α.τ1 ∆ `T rec β.τ2 ∆, β, α ≤ β `T τ1 ≤ τ2

∆ `T rec α.τ1 ≤ rec β.τ2
(α 6= β;α, β /∈ ∆)

∆, α `T τ1 ≤ τ2

∆ `T ∃α.τ1 ≤ ∃α.τ2
(α /∈ ∆)

∆ `T τ1 ≤ τ2

∆ `T τ1? ≤ τ2?

∆ `T τi ≤ σi

∆ `T 〈τ1, . . . , τm〉 ≤ 〈σ1, . . . , σn〉 (m ≥ n)
∆ `T τ2 ≤ τ1 ∆ `T σ1 ≤ σ2

∆ `T τ1 → σ1 ≤ τ2 → σ2

Figure 5: Target Language Typing Rules for Types

Rule t1 is for comparing an unknown tag against a known
one. This is the rule used to type the translation, which
always unpacks an existentially quantified package, extracts
from it a tag for the quantified type, and compares it to a
known tag. The rule requires the unknown tag e1 to be a
tag for a supertype of some type variable α, the known tag
e2 to be a tag for a subtype of a closed type. I assume, as
in Java and ML, that classes and exception names are al-
ways associated with closed types. If the tags are equal then
they must be tags for a type between the unknown type and
the known type, that is, the unknown type is a subtype of
the known one. The then branch b1 is checked with this
additional information.

However, rule t1 is not closed under type substitution.
In particular, if a closed type is substituted for α then the
expression compares two tags for known types, and the rule
no longer applies. Thus to prove type substitution and thus
type soundness, the rule t2 is used to type this case. It
requires both e1 and e2 to be tags for known closed types σ1

and σ2 respectively. If ε `T σ1 ≤ σ2 does not hold then it is
impossible for e1 to be equal to e2, therefore b1 is only type
checked when this condition holds. In fact, b1 will probably
not type check at all when this condition does not hold, as
it may use values of type σ1 where σ2’s are expected.

The static semantics is sound with respect to the op-
erational semantics. The proof appears in the companion
technical report [Gle99]. Standard techniques are used in
the proof and the only difficulty is with the tag comparison
operation. In showing type preservation for a successful tag
comparison I use the fact that ε; Γ `T x : tag−(σ1, τ1) and
ε; Γ `T x : tag+(σ2, τ2) implies ε `T σ1 ≤ σ2. Then by
rule t2 the then branch must type check. The other differ-
ence is the type substitution lemma mentioned earlier.

4.2 Translation

The translation from the tagging language to the target
language is given in Figure 7. It is based on the ideas

I sketched earlier. The key to the type translation is
the translation of tag types. A tag for type τ is trans-
lated to a tuple with a tag option, suggesting the type
rec α.tag−([[τ]]type, 〈α?〉). This is not quite correct as the
tag itself needs to be invariant, so the translation is ac-
tually one unrolling of this type with the outermost tag
type invariant, tag◦([[τ]]type, 〈(rec α.tag−([[τ]]type, 〈α?〉))?〉),
except the option type is shifted into the recursive type,
tag◦([[τ]]type, 〈rec α.tag−([[τ]]type, 〈α〉)?〉). The translation of
tagged is an existential abstracting over α a pair of a tag
for α and an α. The operations newtag(τ), subtag(τ, e), and
mktagged(e) are translated as I described earlier modulo all
the typing annotations needed for recursive types, option
types, and existential types. The tagchkH(x, y) predicate
is reified as a recursive function, tagchk(y1, y2, τ, σ), that
searches the superchain and then returns a σ option where
σ is the known type. The translation of the tag compari-
son operation uses the let form to evaluate the arguments,
then unpacks the tagged value, uses the reified tag check
predicate to do the comparison, and then executes the ap-
propriate translated branch.

Technically the translation is type directed as it needs
type information in two places. Thus, the translation may
not be defined for all source terms, but it is easy to show
that it is defined for all typeable source terms. Furthermore,
because the tag type is invariant it is easy to show that there
is only one type possible in the places where type informa-
tion is required, so the translation is coherent. Rather than
presenting the translation as a acting on typing derivations,
I have indicated the necessary type information with a : τ
notation on the source terms.

The translation is both type preserving and operationally
correct. These theorems are stated below and are proven
in the companion technical report [Gle99]. Proving type
preservation is a straightforward inductive proof. Because
I carefully chose the tagging and target language semantics
to match on common constructs, and through the use of the
let construct, operational correctness can be proven by a

8

∆;Γ `T e : τ1 ∆ `T τ1 ≤ τ2

∆; Γ `T e : τ2
[rule tag-sub]

∆; Γ `T e : tagφ(τ, σ)

∆; Γ `T e : σ

∆;Γ `T x : τ
(Γ(x) = τ)

∆; Γ `T ei : τi ∆ `T τ

∆;Γ `T mktag(τ, 〈e1, . . . , en〉) : tag◦(τ, 〈τ1, . . . , τn〉)

[rule t1]

ε `T σ
∆;Γ `T e1 : tag−(α, τ1)
∆; Γ `T e2 : tag+(σ, τ2)

∆1, α ≤ σ, ∆2; Γ `T b1 : τ
∆;Γ `T b2 : τ

∆;Γ `T if e1 = e2 then b1 else b2 fi : τ
(∆ = ∆1, α, ∆2)

[rule t2]

∆; Γ `T e1 : tag−(σ1, τ1) ε `T σ1

∆;Γ `T e2 : tag+(σ2, τ2) ε `T σ2

(ε `T σ1 ≤ σ2 ⇒ ∆;Γ `T b1 : τ)
∆; Γ `T b2 : τ

∆;Γ `T if e1 = e2 then b1 else b2 fi : τ

∆;Γ `T e : σ[α := τ]

∆; Γ `T rollτ (e) : τ
(τ = rec α.σ)

∆; Γ `T e : τ

∆;Γ `T unroll(e) : σ[α := τ]
(τ = rec α.σ)

∆ `T τ1 ∆;Γ `T e : τ2[α := τ1]

∆; Γ `T pack[τ1, e] as ∃α.τ2 : ∃α.τ2

∆;Γ `T e1 : ∃α.τ1 ∆, α; Γ, x : τ1 `T e2 : τ ∆ `T τ

∆;Γ `T unpack[α, x] = e1 in e2 : τ
(α /∈ ∆, x /∈ Γ)

∆ `T τ

∆;Γ `T noneτ : τ?

∆; Γ `T e : τ

∆;Γ `T some(e) : τ?

∆; Γ `T e1 : σ? ∆; Γ, x : σ `T b1 : τ ∆; Γ `T b2 : τ

∆;Γ `T if? e1 then x.b1 else b2 fi : τ
(x /∈ Γ)

∆; Γ `T ei : τi

∆;Γ `T 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
∆;Γ `T e : 〈τ1, . . . , τn〉

∆;Γ `T e.i : τi
(1 ≤ i ≤ n)

∆ `T τ1 → τ2 ∆;Γ, f : τ1 → τ2, x : τ1 `T b : τ2

∆;Γ `T fix f(x : τ1) : τ2.b : τ1 → τ2
(f, x /∈ Γ)

∆; Γ `T e1 : τ1 → τ2 ∆;Γ `T e2 : τ1

∆; Γ `T e1 e2 : τ2

∆;Γ `T e1 : τ1 ∆;Γ `T e2 : τ2 ∆;Γ, x1:τ1, x2:τ2 `T e : τ

∆;Γ `T let x1 = e1 and x2 = e2 in e : τ
(x1, x2 /∈ Γ)

ε; ε `T h1 : τ1 . . . ε; x1 : τ1, . . . , xn−1 : τn−1 `T hn : τn

`T x1 = h1, . . . , xn = hn : x1 : τ1, . . . , xn : τn
(x1, . . . , xn distinct)

`T H : Γ ε; Γ `T e : τ

`T let H in e : τ

Figure 6: Target Language Typing Rules for Terms

9

tag(φ, τ) = tagφ(τ, 〈tag ′(τ)〉)
tag′(τ) = rec α.tag−(τ, 〈α〉)?
[[tag(τ)]]type = tag(◦, [[τ]]type)
[[tagged]]type = ∃α.〈tag(−, α), α〉
[[〈τ1, . . . , τn〉]]type = 〈[[τ1]]type, . . . , [[τn]]type〉
[[τ1 → τ2]]type = [[τ1]]type → [[τ2]]type

[[x1:τ1, . . . , xn:τn]]ctxt = x1:[[τ1]]type, . . . , xn:[[τn]]type

[[x]]exp = x

[[newtag(τ)]]exp = mktag([[τ]]type, 〈rolltag′([[τ]]type)(nonetag(−,[[τ]]type))〉)
[[subtag(τ, e)]]exp = mktag([[τ]]type, 〈rolltag′([[τ]]type)(some([[e]]exp))〉)
[[mktagged(e : 〈tag(τ), τ〉)]]exp = pack[[[τ]]type, [[e]]exp] as [[tagged]]type

tagchk(y1, y2, τ, σ) = fix y3(y4 : tag(−, τ)) : σ?.
if y4 = y2 then some(y1.2) else
if? unroll(y4.1) then y5.y3 y5 else noneσ fi fi

[[if tagof(e1) ≤ e2 : tag(σ)
then x.b1 else b2 fi]]exp = let x1 = [[e1]]exp and x2 = [[e2]]exp in unpack[α,y1] = x1 in

if? tagchk(y1, x2, α, [[σ]]type) y1.1 then x.[[b1]]exp else [[b2]]exp fi
[[〈e1, . . . , en〉]]exp = 〈[[e1]]exp, . . . , [[en]]exp〉
[[e.i]]exp = [[e]]exp.i
[[fix f(x:τ1):τ2.e]]exp = fix f(x:[[τ1]]type):[[τ2]]type.[[e]]exp

[[e1 e2]]exp = [[e1]]exp [[e2]]exp

[[(τ, ε)]]hval = mktag([[τ]]type, 〈rolltag′([[τ]]type)(nonetag(−,[[τ]]type))〉)
[[(τ, x)]]hval = mktag([[τ]]type, 〈rolltag′([[τ]]type)(some(x))〉)
[[〈v1, . . . , vn〉]]hval = 〈[[v1]]exp, . . . , [[vn]]exp〉
[[x1 = h1, . . . , xn = hn]]heap = x1 = [[h1]]hval, . . . , xn = [[hn]]hval

[[let H in e]]prog = let [[H]]heap in [[e]]exp

Figure 7: The Translation

simulation argument. Most of the work is in showing that
tag checks are implemented properly.

Theorem 4.1 If `S P : τ then `T [[P]]prog : [[τ]]type.

Theorem 4.2 If `S P1 : τ and P1 7→ P2 then [[P1]]prog 7→+

[[P2]]prog. (An appropriate converse also holds.)

5 Extensions and Implementation

The implementation given is quite naive, although it re-
quires only constant space for each tag, it takes time linear
in the height of the tag hierarchy for each tag check. Java
implementations typically trade space for time, and repre-
sent a tag as an array of all of the tag’s ancestors. This
implementation requires only one array subscript and one
physical pointer equality test per tag check, but uses space
proportional to the height of the tag hierarchy per tag. Also,
this scheme is not suitable for multiple inheritance hierar-
chies. The companion technical report [Gle99] shows how to
express this array scheme in a variant of the target language.
I expect that most schemes for implementing multiple inher-
itance hierarchies that use pointer comparisons, could also
be expressed in variants of the target language.

For expository purposes, I used a type lambda calculus as
the target of the translation. However, the ideas could be ap-
plied to other languages. In fact, they were used to augment
TALx86 [MCG+99], a typed assembly language [MWCG98]
for Intel’s IA32 architecture, to provide support for excep-
tions and downcasting in object oriented languages. This

implementation was straightforward: One type construc-
tor was extended, and two instructions and the static data
mechanism were changed to use this extended type construc-
tor. The TALx86 implementation includes a compiler for a
language called Popcorn, a safe C-like language. Popcorn
has ML style exceptions, and the compiler was modified to
use the new type tagging mechanisms instead of the old ad
hoc mechanisms. Furthermore, the array scheme mentioned
above could be implemented in the augmented TALx86.

6 Related Work

Reppy and Riecke [RR96] describe an extension of SML with
objects. Their language contains a class case mechanism,
and they discuss the connections of this mechanism with
hierarchy extensible sums and exceptions. Their paper in-
cludes a formalised core calculus, and a sketch of their imple-
mentation. There are three important differences between
their system and the one presented in this paper. First,
their tags are second class, whereas mine are first class. Sec-
ond, their type system is named, whereas mine is structural.
Third, they do not formalise their implementation nor dis-
cuss the typing issues that arise. Harper and Stone [HS97]
formalise a non-hierarchical extensible sum for modelling ex-
ceptions in a type theoretic account of SML. Their extensible
sum is like my tagging language without subtags. However,
they do not discuss implementation issues.

Type dispatch in a structurally typed language was first
discussed by Abadi et al. [ACPP91]. Harper and Mor-

10

risett [HM95, Mor95] discuss the related problem of type
analysis, and formalise a type dispatch language for struc-
tural types without subtyping. Crary, Weirich, and Mor-
risett’s work on λR and LX [CWM98, CW99] shows how to
do type analysis in a type erasure framework. Their work is
the only work I know of that addresses the implementation
of type dispatch for structural types. I know of no work that
addresses structural types with subtyping.

I think it is worth spelling out the two key differences
between the type analysis of structural types and my prob-
lem. First, my tagging language is concerned with matching
whole types and their subtypes, whereas λR is concerned
with matching the top level structure of types: is v in τ
versus does v have an arrow type and what are tags for the
argument and result type. To achieve the type refinement
of my target language a λR implementation would have to
crawl over the entire structure of a tag for the unknown
type, whereas my language can make the refinement with
one pointer equality test. Second, my language is concerned
with branded types whereas λR is concerned with the types
themselves. Consider my informal coding of exceptions. In
O’Caml there are at least three exceptions that carry strings.
Therefore, there will be at least three tags for the type string,
and the distinction between a string tagged with Failure
and the same string tagged with Invalid argument is im-
portant. In the λR setting this distinction is irrelevant, only
the fact that the value is a string is important.

7 Summary

This paper has shown that a number of language mecha-
nisms, among them class casting, class casing, exceptions,
and extensible hierarchical sums, share a common mech-
anism: type tagging. A tagging language containing this
core mechanism was defined and then translated into a more
primitive language with just the notion of values being tags
for types and physical pointer equality. The type soundness
of the target language and the type preservation and op-
erational correctness of the translation was proven. Thus,
this paper provides a solid theoretical foundation for all the
mechanisms mentioned above. Along with the work in type
analysis of structural types, this work provides foundations
for a theory of type dispatch in programming languages.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory Of Ob-
jects. Springer-Verlag, 1996.

[ACPP91] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and
Gordon Plotkin. Dynamic typing in a statically
typed language. ACM Transactions on Progamming
Languages and Systems, 13(2):237–268, April 1991.

[CGL95] Giuseppe Castanga, Giorgio Ghelli, and Guiseppe
Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115–
135, 1995.

[Cha97] Craig Chambers. The Cecil language, specifica-
tion and rationale. Technical report, Department
of Computer Science and Engineering, University
of Washington, Box 352350, Seattle, Washington
98195-2350, USA, March 1997.

[CW99] Karl Crary and Stephanie Weirich. Flexible type
analysis. In 1999 ACM SIGPLAN International
Conference on Functional Programming, Paris,
France, September 1999. This volume.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
In 1998 ACM SIGPLAN International Conference
on Functional Programming, pages 301–312, Balti-
more Maryland, USA, September 1998.

[FR99] Kathleen Fisher and John Reppy. The design of
a class mechanism for Moby. In 1999 ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, Atlanta, GA, USA, May
1999. Moby information is available at http://
www.cs.bell-labs.com/~jhr/moby.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, 1996.

[Gle99] Neal Glew. Type dispatch for named hierarchi-
cal types. Technical Report TR99-1738, Depart-
ment of Computer Science, Cornell University, 4130
Upson Hall, Ithaca, NY 14853-7501, USA, April
1999. Available at http://www.cs.cornell.edu/
glew/paper-list.html.

[HM95] Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In 22nd
ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 130–141, San
Francisco, CA, USA, January 1995.

[HS97] Robert Harper and Christopher Stone. An interpre-
tation of Standard ML in type theory. Technical Re-
port CMU-CS-97-147, Carnegie Mellon University,
Pittsburgh, PA 15213, June 1997.

[KCR98] Richard Kelsey, William Clinger, and Jonathan
Rees. Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9):26–76,
September 1998. With H. Abelson, N. I. Adams,
IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.
Friedman, R. Halstead, C. Hanson, C. T. Haynes, E.
Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas,
G. L. Steele, Jr., G. J. Sussman, and M. Wand.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Gross-
man, Richard Samuels, Frederick Smith, Daivd
Walker, Stephanie Weirich, and Steve Zdancewic.
TALx86: A realistic typed assembly language. In
ACM SIGPLAN Workshop on Compiler Support for
System Software, volume 0228 of INRIA Research
Reports, Atlanta, GA, USA, May 1999.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert
Harper. Abstract models of memory management. In
ACM Conference on Functional Programming and
Computer Architecture, 1995.

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis,
Carnegie Mellon University, December 1995. Pub-
lished as CMU Technical Report CMU-CS-95-226.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language.
In 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 85–
97, San Diego California, USA, January 1998. ACM
Press.

[RR96] John Reppy and Jon Riecke. Simple objects for
Standard ML. In 1996 ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 171–180. ACM Press, 1996.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng,
Christopher Stone, Robert Harper, and Peter Lee.
TIL: A type-directed optimizing compiler for ML. In
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 181–192,
Philadelphia, PA, USA, May 1996.

11

