
Type Dispatch for Named Hierarchical Types ∗

Neal Glew
Cornell University

7 April 1999

Abstract

Type dispatch constructs are an important feature of many programming languages.
Scheme has predicates for testing the runtime type of a value. Java has a class cast expression
and a try statement for switching on an exception’s class. Crucial to these mechanisms, in
typed languages, is type refinement: The static type system will use type dispatch to refine
types in successful dispatch branches. Existing work in functional languages has addressed
certain kinds of type dispatch, namely, intensional type analysis. However, this work does
not extend to languages with subtyping nor to named types.

This paper describes a number of type dispatch constructs that share a common theme:
class cast and class case constructs in object oriented languages, ML style exceptions, hier-
archical extensible sums, and multimethods. I describe a unifying mechanism, tagging, that
abstracts the operation of these constructs, and formalise a small tagging language. After
discussing how to implement the tagging language, I present a more primitive language and
give a formal translation from the tagging language.

1 Introduction

A number of programming languages allow dispatch on the runtime type of a value. For
example, in Scheme [KCR98] there are predicates for testing if a value is the empty list, an
integer, a pair, and so on. In many object oriented languages there are constructs for testing
or switching on the class of an object.1 For example, Java [GJS96] has a cast expression
and an exception catch mechanism for switching on the class of the exception object. The cast
expression (classname)e tests whether e’s runtime class is in the hierarchy under the given class;
if so, it refines e’s type to the given class; if not, an exception is thrown. The try statement
try blk catch (classname1 x1) blk1 · · · catch (classnamen xn) blkn executes blk , and if
blk throws an exception, matches that exception against classname1 through classnamen. If
classnamei is the first matching class, xi is bound to the exception with type classnamei,
and blk i is executed. A final example of type dispatch is λML

i [HM95, Mor95], the basis for
an intermediate language in the TIL compiler [TMC+96]. The λML

i calculus has a typecase
construct for determining the outermost type constructor of an unknown type. The typecase

∗This material is based on work supported in part by the NSF grant CCR-9708915, AFOSR grant F49620-97-
1-0013, and ARPA/RADC grant F30602-1-0317. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author and do not reflect the views of these agencies.

1Classes are closely related to runtime types; I will often use a class when I mean the corresponding type.

1

construct is used to implement specialised data representations in the presence of polymorphism
and for writing polymorphic print and marshaling functions.

Scheme’s type predicates make the language much more expressive. Java’s implementation of
exceptions crucially relies upon a class matching mechanism. The TIL compiler’s use of runtime
type examination leads to significant optimisation benefits. The importance of type dispatch
constructs justifies seeking formal foundations for them.

In typed languages, type refinement is a key property of type dispatch constructs: After switch-
ing on the runtime type of a value, that value’s static type changes to reflect the type being com-
pared against. Consider the Java code (note that FileNotFound is a subclass of IOException,
which is a descendant of Throwable):

try { throw new FileNotFound(); } catch (IOException x) blk;

The try body throws an exception that has runtime type FileNotFound, but Java’s type rule for
try gives the exception static type Throwable. The exception matches against the catch clause,
and x is bound to the exception with static type IOException, a refinement of Throwable. A
similar sort of refinement occurs in λML

i . For example, consider:

Λα.λx:α.typecase α of α1 × α2 ⇒ e1 | . . .

x initially has static type α, but in expression e1 it is refined to α1 × α2.

While type dispatch constructs in functional languages have been studied formally [HM95,
Mor95, CWM98, CW99, etc.], this work does not extend to object oriented languages as it
neglects two important features: subtypes and the creation of “new” (i.e. generative) types.
To my knowledge, this paper is the first to formalise type dispatch constructs common in object
oriented languages. The tagging language I will define handles both features mentioned above,
and is quite general: It explains class cast and class case constructs in object oriented languages,
ML style exceptions, and hierarchical extensible sums, and could be used in a typed compilation
of multidispatch languages such as Cecil [Cha97].

Languages with type dispatch pose another problem. Consider compiling type dispatch to
Typed Assembly Language [MWCG98, MCG+99]. Since TAL does not have type dispatch
primitives, the compiler writer has to design data structures and algorithms to use these data
structures to perform type dispatch. Furthermore, these data structures and algorithms have
to type check. TAL’s current type system is not expressive enough to type check a typical
implementation. To address this inexpressiveness, this paper defines a typed target language
without type dispatch primitives and a formal translation. Correctness theorems for the trans-
lation are stated and proven in a companion technical report [MCG+99]. I used the key ideas in
the target language to extend TAL [MCG+99] so that the type dispatch mechanism described
in this paper can be compiled to TAL; these extensions were straightforward. This result is
significant for without it, type directed compilers must keep type dispatch as a primitive, and
language based security must include type dispatch primitives (as the Java Virtual Machine
does).

In the remainder of the paper, I will develop the tagging language mentioned earlier and discuss
its implementation. I begin by describing in more detail the programming language constructs
being addressed. From these constructs I extract a common theme, and define a small tagging

2

language that abstracts their fundamental operation. Next, I informally discuss how this lan-
guage could be implemented and the typing issues that arise. This leads to a formal target
language and a formal translation from the tagging language to the target language. Finally, I
describe some extensions.

2 Four Type Dispatch Constructs

Consider the following four language constructs:

Class Casting and Class Case: In Java, and in other class based languages, objects are
created by instantiating a class, and that class is stored in the object when it is created.
Java has a downcasting operation (c)e that evaluates e to an object and then tests to
see if that object’s class is in the subhierarchy under class c. If so, the cast expression
evaluates to the object but at the type implied by c, which is generally a refinement of
e’s type. If not, an exception is thrown. More generally, these languages might provide
a class case mechanism for testing membership in one of several classes. Java has this
operation for the particular case of handling exceptions.

Exceptions: At first glance, ML style exceptions might not seem related to downcasting but,
in fact, there is a strong connection. Exception declarations are similar to classes in
that they create a new exception name with an associated type. Exception packets, like
objects, are created from an exception name, and that name is stored in the packet.
Exception matching, then, is like downcasting: Known exception names are compared
against the name in an exception packet, and successful comparisons allow access to the
carried value at the type of the known exception name. Unlike classes, which are be
arranged hierarchically, ML style exception names are not hierarchical. On the other
hand, Java implements exception packets by using objects, and the declaration of new
exception names is achieved by subclassing throwable.

Hierarchical Extensible Sums: ML style exception packets are an example of extensible
sums. The exception type is like a giant sum type that can be extended by user decla-
rations. Each user declared exception name is a new branch in the sum. A hierarchical
extensible sum allows the sum branches to be arranged in a hierarchy. For example, a pro-
grammer might define a hierarchical extensible sum type for the primitives of a compiler
intermediate language. She might define a constructor of this sum, intbin, for binary
integer primitives, and then subconstructors under intbin for addition, subtraction, and
so on. The intermediate language’s type checker could match against intbin, since all
these primitives have the same type, whereas a code generator would match against the
more specific constructors to determine the correct instruction to generate. Hierarchi-
cal extensible sum types are being considered for ML2000, and appear in the language
Moby [FR99], a research vehicle for ML2000.

Multimethods: Java has single dispatch: Methods can be thought of as functions that are
specialised on their first argument’s class. Multimethods (c.f. Cecil [Cha97]) are a general-
isation of this paradigm: A multimethod is a function that is specialised on any, possibly
all, of its arguments’ classes. Implementing multimethods requires calling specialised

3

let Failure = newtag(string) in // exception Failure of string
let ep1 = tagged(〈Failure,“unimplemented”〉) in // ep1 = Failure “unimplemented”
...
iftagof ep1 = Failure then // match ep1 with

x.printf “Computation failed: %s” x // Failure(x) -> · · ·
else

printf “Some other exception” // | -> · · ·
fi

Figure 1: Exceptions Coded in the Tagging Language

code after determining which specialisation applies. The latter could be implemented by
comparing the arguments’ runtime classes against patterns of known classes. In a type
directed compilation framework, when one of these comparisons succeeds, the types of the
arguments must be refined to match the types required by the specialised code. These
comparisons are instances of the class case construct described above.

The core mechanism in all of these examples is a tagging mechanism. Exception names, classes,
and the constructors of an extensible sum are all examples of tags that are placed with or
within values. Associated with these tags are types that correspond to the tagged values. The
language has a tag if or a tag case construct with type refinement in the successful branches
of the test(s). Furthermore, in the case of classes and hierarchical sums, the tags form a tag
hierarchy and the associated types are in a subtype hierarchy parallel to the tag hierarchy.
Often, the tests are not “is tag t1 equal to tag t2” but “is tag t1 in the subhierarchy under tag
t2”. The tagging language described in the next section formalises this core mechanism.

3 A Tagging Language

This section describes a tagging language that abstracts the core operation of the type dispatch
constructs described in the previous section. The desired operations are: tagging a value with
a type tag, comparing the tag of a tagged value against known tags, and creating hierarchies
of type tags. A new tag is created by one of two operations: newtag(τ) or subtag(e, τ). In
both cases the new tag is for tagging values of type τ and has type tag(τ). The newtag(·) form
creates a top level tag, and the subtag(e, ·) form creates a subtag of tag e. Values are tagged
with the operation tagged(〈e1, e2〉) where e1 is the type tag, and e2 the value to be tagged.
The result is a value of type tagged. Tagged values are compared against known tags with the
operation iftagof e1 = e2 then x.b1 else b2 fi where e1 is a tagged value and e2 is a tag. Informally,
the tag in e1 is extracted and compared, along with all its ancestors in the tag hierarchy, to e2.
If any ancestor is equal to e2, b1 is executed with x bound to the value in e1. Otherwise b2 is
executed.

An example of how to use these operations to code exceptions appears in Figure 1. For expos-
itory purposes, the example uses some constructs not in the formal language.

The tagging language has the above operations plus n-tuples and functions with their usual

4

Syntax:

Values v ::= x | tagged(v) | fix f(x:τ1):τ2.b

Contexts E ::= [] | subtag(E, τ) | tagged(E) | 〈~v, E, ~e〉 | E.i | E e | v E |
iftagof E = e2 then x.b1 else b2 fi | iftagof v = E then x.b1 else b2 fi

Heap Values h ::= (τ, ε) | (τ, x) | 〈~v〉
Heaps H ::= x1 = h1, . . . , xn = hn

Program States P ::= let H in e

Reduction Rules:
let H in E[I] 7→ let H ′ in E[e]

I e H ′ Side Conditions
newtag(τ) x H, x = (τ, ε) x fresh
subtag(y, τ) x H, x = (τ, y) x fresh
〈~v〉 x H, x = I x fresh
x.i vi H H(x) = 〈v1, . . . , vn〉; 1 ≤ i ≤ n
v1 v2 b[f, x := v1, v2] H v1 = fix f(x:τ1):τ2.b

iftagof tagged(x) = y

then z.b1 else b2 fi b1[z := v] H H(x) = 〈x′, v, ~v〉; tagchkH(x′, y)
iftagof tagged(x) = y

then z.b1 else b2 fi b2 H H(x) = 〈x′, v, ~v〉; not tagchkH(x′, y)

Tag checking:

tagchkH(x, y) def= (x = y) ∨ (H(x) = (τ, x′) ∧ tagchkH(x′, y))

Figure 2: Source Language Operational Semantics

introduction and elimination forms. The syntax is:

Types τ, σ ::= tag(τ) | tagged | 〈~τ〉 | τ1 → τ2

Terms e, b ::= x | newtag(τ) | subtag(e, τ) | tagged(e) | iftagof e1 = e2 then x.b1 else b2 fi |
〈~e〉 | e.i | fix f(x : τ1) : τ2.b | e1 e2

The notation ~X denotes a vector of objects drawn from syntactic category X . The f and x in
fix f(x:τ1):τ2.b bind in b and the x in iftagof e1 = e2 then x.b1 else b2 fi binds in b1. I consider
syntactic objects equal up to α-equivalence.

The operational semantics is given in Figure 2. The generation of new tags is modeled by an
allocation style semantics (c.f. Morrisett et al. [MFH95]). In an allocation style semantics terms
are evaluated in the presence of a heap, H . Heaps are intended to model the store, and they
map variables to heap values h. Variables are like pointers into memory, and heap values are
like the contents of the memory pointed to. An advantage of this model is that it captures
identity: Different tags get different variables even if they tag the same type and have the
same supertag. For the tagging language, heap values are either tuples of values, 〈~v〉, or tag
definitions (τ, s) where τ is the type being tagged and s is the optional supertag (ε denotes the
absence of a supertag).

5

The most interesting rule is the one for iftagof · = · then · else · fi. The comparison of a tag
and its ancestors against a known tag is formalised by the predicate tagchkH(x, y) where H

contains the tag definitions, x the unknown tag, and y the known tag. The definition of this
predicate essentially says that either x and y are the same tag or x has a supertag and the
predicate holds for supertag. The recursiveness of this definition deserves further comment. As
tag hierarchies are acyclic, I intend heaps to be nonrecursive (that is, a heap value can only refer
to variables defined earlier in the heap). The operational semantics creates heap values that are
nonrecursive, and the typing rules (discussed shortly) force typeable heaps to be nonrecursive.
Given that heaps are nonrecursive, tagchkH(x, y) should be considered an inductive definition
in the depth of x in the tag hierarchy. If cyclic heaps are considered, we would need to decide
what cycles in the tag hierarchy mean, and adjust the definition of tagchk ·(·, ·) accordingly. The
rest of the semantics is fairly standard for a context and substitution based reduction semantics.
Note that the semantics is deterministic, call by value, and left to right.

The typing rules appear in Figure 3, and consist of judgements for subtyping and expression,
heap value, heap, and program state typing. Subtyping for tag and tagged types is trivial, and
the subtyping for tuples and functions is standard. Note that reflexivity and transitivity of
subtyping is derivable from the rules given. The rule for subtag requires that e be a tag for
type τ ′ and that τ be a subtype of τ ′, the later ensures that types associated with tags form
a subtype hierarchy in parallel to the tag hierarchy. The rule for tagged(e) requires that e be
a pair of a type tag for τ and a value of type τ . The rule for iftagof e1 = e2 then x.b1 else b2 fi
requires e1 to have type tagged, e2 to be a tag for σ, b1 to type check in a context with x of
type σ, and b2 to type check.

The typing rules are sound with respect to the operational semantics. The proof uses the
standard techniques, and the only interesting case is in the type preservation of a successful
tag comparison. In that case, a tag of type tag(σ1) is compared against one of type tag(σ2).
If the comparison succeeds, the next program state has the form b1[z := v] where b1 has the
desired type if z has type σ2. However, v has type σ1, so we need to show that `S σ1 ≤ σ2,
which follows from this lemma:

Lemma 3.1 If `S H : Γ, Γ `S x : tag(σ1), Γ `S y : tag(σ2), and tagchkH(x, y) then `S σ1 ≤
σ2.

4 Implementation

Real machines do not provide primitives like newtag(τ), subtag(e, τ), tagged(e), and iftagof e1 =
e2 then x.b1 else b2 fi. Compiler writers must select data structures to represent the tags and
algorithms to implement tag comparisons. The goal of this section is to formalise a typed
translation of the tagging language to another language without the above primitives. For now,
think of the target of this translation as a typical lambda calculus with physical pointer equality
and some typing machinery that I will develop in this section. This typing machinery is general
enough to type other less naive strategies as I sketch in Section 5, and can be added to other
low level languages such as Typed Assembly Language [MWCG98, MCG+99].

Consider first how a compiler would translate the example in Figure 1 ignoring types. To create
the new tag Failure the compiler would allocate a new heap block storing in it the optional

6

Typing contexts Γ are lists x1 : τ1, . . . , xn : τn.

`S τ1 ≤ τ2

`S tag(τ) ≤ tag(τ) `S tagged ≤ tagged

`S τi ≤ σi

`S 〈τ1, . . . , τm〉 ≤ 〈σ1, . . . , σn〉 (m ≥ n) `S τ2 ≤ τ1 `S σ1 ≤ σ2

`S τ1 → σ1 ≤ τ2 → σ2

Γ `S e : τ

Γ `S e : τ1 `S τ1 ≤ τ2

Γ `S e : τ2 Γ `S x : τ
(Γ(x) = τ)

Γ `S newtag(τ) : tag(τ)
Γ `S e : tag(τ ′) `S τ ≤ τ ′

Γ `S subtag(e, τ) : tag(τ)
Γ `S e : 〈tag(τ), τ〉

Γ `S tagged(e) : tagged

Γ `S e1 : tagged Γ `S e2 : tag(σ) Γ, x : σ `S b1 : τ Γ `S b2 : τ

Γ `S iftagof e1 = e2 then x.b1 else b2 fi : τ
(x /∈ dom(Γ))

Γ `S ei : τi

Γ `S 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
Γ `S e : 〈τ1, . . . , τn〉

Γ `S e.i : τi
(1 ≤ i ≤ n)

Γ, f :τ1 → τ2, x:τ1 `S b : τ2

Γ `S fix f(x:τ1):τ2.b : τ1 → τ2
(f, x /∈ dom(Γ)) Γ `S e1 : τ1 → τ2 Γ `S e2 : τ1

Γ `S e1 e2 : τ2

Γ `S h : τ `S H : Γ `S P : τ

Γ `S (τ, ε) : tag(τ)
Γ `S x : tag(τ ′) `S τ ≤ τ ′

Γ `S (τ, x) : tag(τ)
Γ `S vi : τi

Γ `S 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉
`S h1 : τ1 . . . x1 : τ1, . . . , xn−1 : τn−1 `S hn : τn

`S x1 = h1, . . . , xn = hn : x1 : τ1, . . . , xn : τn
(x1, . . . , xn distinct)

`S H : Γ Γ `S e : τ

`S let H in e : τ

Figure 3: Source Language Typing Rules

supertag. To create the tagged value ep1 the compiler would create a pair consisting of Failure
and the literal string. So the first two lines might become:

let Failure = 〈none〉 in
let ep1 = 〈Failure,“unimplemented”〉 in

To translate the last part of the example, the compiler would extract the tag in ep1, which is
just a heap pointer, and compare it against Failure. If they are equal x would be bound to the
second component of ep1 and b1 executed. Otherwise, the supertag would be extracted and the
process repeated until there is no supertag, in which case b2 would be executed. The translated
code might be:

let z = ep1.1 in
loop : if z = Failure then let x = ep1.2 in b1

else match z.1 with none → b2 | some(z′) → z := z′; goto loop

Now consider designing a type system to annotate the code above. The key difficulty is giving x

7

the correct type. In general, the type of a tagged value like ep1 is unknown, yet if the comparison
z = Failure succeeds, the type of ep1.2 is string, and this fact is needed to give x type string.
What makes this difficult is that z and Failure are values unrelated to ep1. The target type
system needs to do two things: First, it needs to generate type equalities from physical pointer
comparisons; second, it needs to link z and ep1 together, so that type information generated
by the comparison will change ep1’s type.

The solution is to introduce a new type for the values being used to implement type tags, and
to use type variables to link tags to values being tagged. The target type tag(τ1, τ2) is similar
to the tagging language tag type. However, where the tagging language hides the structure
of the tag, the target language allows the user to specify the structure through the additional
argument τ2. In particular, a value v is in the type tag(τ1, τ2) if v also has type τ2 and the
programmer declared v to be a tag for type τ1. Continuing the example, Failure is essentially
a linked list with no data, which has type rec α.〈α?〉 (where τ? is an option type), except that
the nodes are also tags for string. So Failure has type rec α.tag(string, 〈α?〉). The tagged value
ep1 is a pair of such a tag and a value except that the type of the value is abstracted, thus ep1
has type ∃β.〈rec α.tag(β, 〈α?〉), β〉. To get the initial value of z, ep1 is unpacked introducing
β into the type context. Thus z has type rec α.tag(β, 〈α?〉). If z = Failure succeeds then the
type z tags and the type Failure tags must be the same, that is, β is string. The target type
system will use this in type checking let x = ep1.2 in b1. Since ep1.2 has type β, which is string,
x will get type the correct type.

Two complications arise with this basic scheme. The first concerns how to create values of type
tag(τ1, τ2). Ideally, target code would just declare that a value of type τ2 was being used as
a tag for τ1 with an operation tag(e, τ). However, this is unsound as the same value may be
declared a tag for several types. To see this unsoundness consider the following malicious code:

let x1 = 〈none〉 in let x2 = tag(x1, string) in let x3 = tag(x1, float) in let y = 〈x2, “hello”〉 in

The variables x1, x2, and x3 are all bound to the same heap value, a tuple with a single element
none. However, the type system types x2 as a tag for strings and x3 as a tag for floats. The
code uses x2 to created a tagged “hello” value, which is bound to y. Now consider the following
innocent code:

fun foo[β](z : 〈rec α.tag(β, 〈α?〉), β〉) = if z.1 = x3 then sin(z.2) else 1.0 fi

The body of foo compares z.1 a tag for β to x3 a tag for float. Thus in the then branch z.2 is
refined to type float and the sine computation type checks. However, suppose foo was applied
to string and y. Since y.1 is x2 which equals x3, the then branch is executed. But z.2 is a string
and the sine computation fails. The target type system must ensure that x1 can be declared a
tag of at most one type.

One way to ensure a value is declared a tag for at most one type, is to use a linear type system.
If v is of linear type τ1, then v can be “used” only once. Then it is sufficient for tag(e, τ) to
require e : σ1 for some σ. However, this requires all the machinery of linear type systems in the
target language. A simpler solution, pursued in this paper, is to allow tag(e, τ) only at points
where new heap values are created. For example, 〈~e〉 creates a new heap value; the target
operation tag(〈~e〉, τ) does the same thing but gives the result type tag(τ, 〈~τ〉) where ~e : ~τ .

The other complication concerns the interaction between subtyping and tag types. Consider
a subtag of Failure, MyFailure, that tags type string[10] (the type for strings of length 10).

8

(Note that string[10] is a subtype of string.) The translated code for MyFailure is:

let MyFailure = tag(〈some(Failure)〉, string[10], in)

Consider how this type checks. As discussed before Failure has type rec α.tag(string, 〈α?〉), and
MyFailure should have type rec α.tag(string[10], 〈α?〉). However, the right hand side above
has type tag(string[10], 〈(rec α.tag(string, 〈α?〉))?〉). The later type would be an unrolling of
the desired type if tag(string, . . .) was a subtype of tag(string[10], . . .). Thus it seems that in
creating the data structures that implement type tags the tag type needs to be contravariant
in its first argument.

However, making the tag type contravariant in the first argument is unsound for tag compar-
isons. Consider again, the code from above:

if z.1 = Failure then let x = ep1.2 in b1 else . . . fi

Under the contravariant rule Failure subsumes to a tag type for string[10], so the type system
could type check let x = ep1.2 in b1 under the assumption that β is string[10]. Under this
incorrect assumption, x has type string[10], but ep1.2 is actually a thirteen character string.
Thus it seems that for tag comparisons the tag type should be at least invariant in its first
argument (in fact, covariance is sound). Fortunately, the need for different subtyping behaviours
arises in different situations: tag data structure creation and tag comparisons. Thus a variance
mechanism (c.f. Abadi and Cardelli [AC96]) can be used to get each behaviour when it is
needed.

Using these ideas, I present the target language in the next section, and then a translation from
the tagging language to the target language in the following section.

4.1 Target Language

The target language combines the keys ideas of the previous section, tag types with a variance
mechanism and physical pointer equality. The syntax is:

Types τ, σ ::= α | tagφ(τ1, τ2) | rec α.τ | ∃α.τ | τ? | 〈~τ〉 | τ1 → τ2

Variances φ ::= + | − | ◦
Terms e, b ::= x | tag(〈~e〉, τ) | if e1 = e2 then b1 else b2 fi |

rollτ (e) | unroll(e) | pack[τ1, e] as τ2 | unpack[α, x] = e1 in e2 |
noneτ | some(e) | if? e1 then x.b1 else b2 fi |
〈~e〉 | e.i | fix f(x : τ1) : τ2.b | e1 e2 | let x1 = e1 and x2 = e2 in e

The operation tag(〈~e〉, τ) creates a new tuple in the heap that can be used as a tag for the type
τ ; it has type tag◦(τ, 〈~τ〉) where ~e : ~τ . The type tagφ(τ1, τ2) contains values of type τ2 that are
used as tags for the type τ1. The value in this type may have been created as a tag for a subtype
of τ1 if φ is +, a supertype of τ2 if φ is −, but only τ1 if φ is ◦. Two values that tag types can
be compared for physical pointer equality using the operation if e1 = e2 then b1 else b2 fi. This
operation is asymmetric as it is intended to compare a tag for an unknown type, e1, with a tag
for a known type, e2. If the two values are equal b1 is executed, and e2’s tag type is used to
refine e1’s; otherwise b2 is executed. There are n-tuples and functions as before. In addition
the translation will need recursive types, existentials, option types, and a parallel let form. The

9

Syntax:

Values v ::= x | rollτ (v) | pack[τ1, v] as τ2 | noneτ | some(v) | fix f(x : τ1) : τ2.b

Contexts E ::= [] | tag(〈~v, E, ~e〉, τ) | if E = e then b1 else b2 fi |
if v = E then b1 else b2 fi | rollτ (E) | unroll(E) | pack[τ1, E] as τ2 |
unpack[α, x] = E in e | some(E) | if? E then x.b1 else b2 fi |
〈~v, E, ~e〉 | E.i | E e | v E | let x1 = E and x2 = e2 in e |
let x1 = v and x2 = E in e

Heap Values h ::= 〈~v〉 | tag(〈~v〉, τ)
Heaps H ::= x1 = h1, . . . , xn = hn

Programs P ::= let H in e

Reduction Rules:
let H in E[I] 7→ let H ′ in E[e]

I e H ′ Side Conditions
〈~v〉 or tag(〈~v〉, τ) x H, x = I x fresh
if x = x then b1 else b2 fi b1 H

if x = y then b1 else b2 fi b2 H x 6= y
unroll(rollτ (v)) v H

unpack[α, x] = pack[τ1, v] as τ2 in e e[α := τ1, x := v] H
if? noneτ then x.b1 else b2 fi b2 H

if? some(v) then x.b1 else b2 fi b1[x := v] H
x.i vi H H(x) = v or tag(v, τ)

1 ≤ i ≤ n, v = 〈v1, . . . , vn〉
v1 v2 b[f, x := v1, v2] H v1 = fix f(x : τ1) : τ2.b

let x1 = v1 and x2 = v2 in e′ e′[x1, x2 := v1, v2] H

Figure 4: Target Language Operational Semantics

recursive and existential types are standard. An option type τ? is either the value noneτ or the
value some(v) for some v : τ ; the operation if? e1 then x.b1 else b2 fi can be used to discriminate
the two. The let form could be defined in terms of tuples and functions, but was included to
ease proving operational correctness.

The α in rec α.τ and ∃α.τ binds in τ ; the α and x in unpack[α, x] = e1 in e2 binds in e2; the x
in if? e1 then x.b1 else b2 fi binds in b1; the f and x in fix f(x:τ1):τ2.b bind in b; the x1 and x2

in let x1 = e1 and x2 = e2 in e bind in e.

The operational semantics is similar in spirit to the tagging language, and is given in Figure 4.
Recall, that in an allocation style semantics, pointers are modeled by variables, and two pointers
are equal if they are the same variable. Hence the rules for the if construct.

The static semantics appears in Figures 5 and 6. Note that a typing context of the form ∆, α ≤ τ
must satsify the condition in parenthesis in the figure. This syntactic restriction ensures that
all typing contexts are well formed, simplying the proof of soundness. The static semantics
is straightforward except for the tagging constructs. First, values in the type tagφ(τ1, τ2) also
have type τ2, and there is a specialised subsumption rule to reflect this. This rule is used to

10

Typing Contexts ∆ ::= ε | ∆, α | ∆, α ≤ τ (ftv(τ) ⊆ ∆)
Value Contexts Γ ::= x1 : τ1, . . . , xn : τn

∆ `T τ
(ftv(τ) ⊆ ∆)

∆ `T τ
∆ `T τ ≤ τ

∆ `T τ1 ≤ τ2 ∆ `T τ2 ≤ τ3

∆ `T τ1 ≤ τ3 ∆ `T α ≤ τ
(α ≤ τ ∈ ∆)

∆ `T τ1 ≤ τ2 ∆ `T σ1 ≤ σ2

∆ `T tagφ(τ1, σ1) ≤ tag+(τ2, σ2)
(φ ∈ {+, ◦}) ∆ `T τ2 ≤ τ1 ∆ `T σ1 ≤ σ2

∆ `T tagφ(τ1, σ1) ≤ tag−(τ2, σ2)
(φ ∈ {−, ◦})

∆ `T τ ∆ `T σ1 ≤ σ2

∆ `T tag◦(τ, σ1) ≤ tag◦(τ, σ2)

∆ `T rec α.τ1 ∆ `T rec β.τ2 ∆, β, α ≤ β `T τ1 ≤ τ2

∆ `T rec α.τ1 ≤ rec β.τ2
(α 6= β; α, β /∈ ∆)

∆, α `T τ1 ≤ τ2

∆ `T ∃α.τ1 ≤ ∃α.τ2
(α /∈ ∆)

∆ `T τ1 ≤ τ2

∆ `T τ1? ≤ τ2?

∆ `T τi ≤ σi

∆ `T 〈τ1, . . . , τm〉 ≤ 〈σ1, . . . , σn〉 (m ≥ n) ∆ `T τ2 ≤ τ1 ∆ `T σ1 ≤ σ2

∆ `T τ1 → σ1 ≤ τ2 → σ2

Figure 5: Target Language Typing Rules for Types

manipulate the datastructure a type tag contains. There are two rules for tag comparison:
one is for typing the translation and the other is for proving type preservation and soundness.
Rule t1 requires that e1 be a tag for an unknown type, in fact, for a supertype of an unknown
type. It also requires that e2 be a tag for a known closed type, again, actually a subtype of the
known type. I assume that, as in Java and ML, that classes and exception names are always
associated with closed types. If the tags are equal then they must be tags for a type between
the unknown type and the known type, that is, the unknown type is a subtype of the known
one. The then branch b1 is checked with this additional information.

During the actual execution of translated code, the unknown type α is replaced by a known
closed type. Therefore, to prove the preservation of typing across the reduction that replaces
α, rule t2 allows the comparison of two known types. If ε `T σ1 ≤ σ2 does not hold then it is
impossible for e1 to be equal to e2, therefore b1 is only type checked when this condition holds.
In fact, b1 will probably not type check at all when this condition does not hold, as it may use
values of type σ1 where σ2’s are expected.

The static semantics is sound with respect to the operational semantics. The proof appears
in Appendix A. Standard techniques are used in the proof and the only difficulty is with the
tag comparison operation. In showing type preservation for a successful tag comparison I use
the fact that ε; Γ `T x : tag−(σ1, τ1) and ε; Γ `T x : tag+(σ2, τ2) implies ε `T σ1 ≤ σ2, this is
lemma A.9. Then by rule t2 the then branch must type check. Another difficulty is with the
type substitution lemma. In particular in proving that if α; Γ `T if e1 = e2 then b1 else b2 fi : τ

and ε `T σ then ε; Γ[α := σ] `T if e1 = e2 then b1 else b2 fi[α := σ] : τ [α := σ]. If rule t1
is used with α; Γ `T e1 : tag−(α, τ1) used to show the hypothesis then the conclusion has to
follow from rule t2. There must be a certain coherence between these two rules.

11

∆; Γ `T e : τ1 ∆ `T τ1 ≤ τ2

∆; Γ `T e : τ2 ∆; Γ `T x : τ
(Γ(x) = τ)

∆; Γ `T ei : τi ∆ `T τ

∆; Γ `T tag(〈e1, . . . , en〉, τ) : tag◦(τ, 〈τ1, . . . , τn〉)
∆; Γ `T e : tagφ(τ, σ)

∆; Γ `T e : σ

[rule t1]

ε `T σ
∆; Γ `T e1 : tag−(α, τ1)
∆; Γ `T e2 : tag+(σ, τ2)

∆1, α ≤ σ, ∆2; Γ `T b1 : τ
∆; Γ `T b2 : τ

∆; Γ `T if e1 = e2 then b1 else b2 fi : τ
(∆ = ∆1, α, ∆2)

[rule t2]

ε `T σ1

ε `T σ2

∆; Γ `T e1 : tag−(σ1, τ1)
∆; Γ `T e2 : tag+(σ2, τ2)

ε `T σ1 ≤ σ2

⇒
∆; Γ `T b1 : τ ∆; Γ `T b2 : τ

∆; Γ `T if e1 = e2 then b1 else b2 fi : τ

∆; Γ `T e : σ[α := τ]
∆; Γ `T rollτ (e) : τ

(τ = rec α.σ)
∆; Γ `T e : τ

∆; Γ `T unroll(e) : σ[α := τ]
(τ = rec α.σ)

∆ `T τ1 ∆; Γ `T e : τ2[α := τ1]
∆; Γ `T pack[τ1, e] as ∃α.τ2 : ∃α.τ2

∆; Γ `T e1 : ∃α.τ1 ∆, α; Γ, x : τ1 `T e2 : τ ∆ `T τ

∆; Γ `T unpack[α, x] = e1 in e2 : τ
(α /∈ ∆, x /∈ Γ)

∆ `T τ
∆; Γ `T noneτ : τ?

∆; Γ `T e : τ

∆; Γ `T some(e) : τ?

∆; Γ `T e1 : σ? ∆; Γ, x : σ `T b1 : τ ∆; Γ `T b2 : τ

∆; Γ `T if? e1 then x.b1 else b2 fi : τ
(x /∈ Γ)

∆; Γ `T ei : τi

∆; Γ `T 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
∆; Γ `T e : 〈τ1, . . . , τn〉

∆; Γ `T e.i : τi
(1 ≤ i ≤ n)

∆ `T τ1 → τ2 ∆; Γ, f : τ1 → τ2, x : τ1 `T b : τ2

∆; Γ `T fix f(x : τ1) : τ2.b : τ1 → τ2
(f, x /∈ Γ)

∆; Γ `T e1 : τ1 → τ2 ∆; Γ `T e2 : τ1

∆; Γ `T e1 e2 : τ2

∆; Γ `T e1 : τ1 ∆; Γ `T e2 : τ2 ∆; Γ, x1:τ1, x2:τ2 `T e : τ

∆; Γ `T let x1 = e1 and x2 = e2 in e : τ
(x1, x2 /∈ Γ)

ε; ε `T h1 : τ1 . . . ε; x1 : τ1, . . . , xn−1 : τn−1 `T hn : τn

`T x1 = h1, . . . , xn = hn : x1 : τ1, . . . , xn : τn
(x1, . . . , xn distinct)

`T H : Γ ε; Γ `T e : τ

`T let H in e : τ

Figure 6: Target Language Typing Rules for Terms

12

4.2 Translation

The translation from the tagging language to the target language is given in Figure 7. It is
based on the ideas I sketched earlier. The key to the type translation is the translation of
tag types. A tag for type τ is translated to a tuple with a tag option, suggesting the type
rec α.tag−([[τ]]type, 〈α?〉). This is not quite correct as the tag itself needs to be invariant, so
the translation is actually one unrolling of this type with the outermost tag type invariant,
tag◦([[τ]]type, 〈(rec α.tag−([[τ]]type, 〈α?〉))?〉), except the option type is shifted into the recursive
type, tag◦([[τ]]type, 〈rec α.tag−([[τ]]type, 〈α〉)?〉). The translation of tagged is just a pair of a
tag for α and an α abstracted over α. The operations newtag(τ), subtag(e, τ), and tagged(e)
are translated as I described earlier modulo all the typing annotations needed for recursive
types, option types, and existential types. The tagchkH(x, y) predicate is reified as a recursive
function, tagchk(y1, y2, τ, σ), that searches the superchain and then returns a σ option where
σ is the known type. The translation of the tag comparison operation uses the let form to
evaluate the arguments, then unpacks the tagged value, uses the reified tag check predicate to
do the comparison, and then executes the appropriate translated branch.

Technically the translation is type directed as it needs type information in two places. Thus,
the translation may not be defined for all source terms, but it is easy to show that it is defined
for all typeable source terms. Furthermore, because the tag type is invariant it is easy to show
that there is only one type possible in the places where type information is required, so the
translation is coherent. Rather than present the translation as a acting on typing derivations,
I have indicated the necessary type information with a : τ notation on the source terms.

The translation is both type preserving and operationally correct. Proving type preservation
is a straight forward inductive proof, and appears in Appendix B. Because I carefully chose
the tagging and target language semantics to match on common constructs, and through the
use of the let construct, operational correctness can be proven by a simulation argument. Most
of the work is in showing that the tag check is implemented properly. The proof appears in
Appendix C.

5 Extensions

The implementation given is quite naive, it takes time linear in the height of the tag hierarchy.
Java implementations typically trade space for time, and represent tags as an array of all of the
tags ancestors. This implementation requires only one array subscript and one physical pointer
equality test, but uses space proportional to height of the tag hierarchy, and it is not suitable
for multiple inheritance hierarchies. Appendix D gives an extension of the target language,
and shows how to express this optimised implementation strategy in the extended language.
I expect that most schemes for implementing multiple inheritance hierarchies efficiently could
also be expressed in variants of the target language.

The particular target language chosen is not crucial to implementing type tagging mecha-
nisms. In fact, the key ideas were used to augment TALx86 [MCG+99], a typed assembly
language [MWCG98] for Intel’s IA32 architecture, to provide support for downcasting in ob-
ject oriented languages and support for exceptions. This implementation was straightforward:

13

tag(φ, τ) = tagφ(τ, 〈tag′(τ)〉)
tag ′(τ) = rec α.tag−(τ, 〈α〉)?
[[tag(τ)]]type = tag(◦, [[τ]]type)
[[tagged]]type = ∃α.〈tag(−, α), α〉
[[〈τ1, . . . , τn〉]]type = 〈[[τ1]]type, . . . , [[τn]]type〉
[[τ1 → τ2]]type = [[τ1]]type → [[τ2]]type

[[x1:τ1, . . . , xn:τn]]ctxt = x1:[[τ1]]type, . . . , xn:[[τn]]type

[[x]]exp = x

[[newtag(τ)]]exp = tag(〈rolltag
′([[τ]]type)(nonetag(−,[[τ]]type))〉, [[τ]]type)

[[subtag(e, τ)]]exp = tag(〈rolltag
′([[τ]]type)(some([[e]]exp))〉, [[τ]]type)

[[tagged(e : 〈tag(τ), τ〉)]]exp = pack[[[τ]]type, [[e]]exp] as [[tagged]]type

tagchk(y1, y2, τ, σ) = fix y3(y4 : tag(−, τ)) : σ?.
if y4 = y2 then some(y1.2) else
if? unroll(y4.1) then y5.y3 y5 else noneσ fi fi

[[iftagof e1 = e2 : tag(σ)
then x.b1 else b2 fi]]exp = let x1 = [[e1]]exp and x2 = [[e2]]exp in unpack[α, y1] = x1 in

if? tagchk(y1, x2, α, [[σ]]type) y1.1 then x.[[b1]]exp else [[b2]]exp fi
[[〈e1, . . . , en〉]]exp = 〈[[e1]]exp, . . . , [[en]]exp〉
[[e.i]]exp = [[e]]exp.i
[[fix f(x:τ1):τ2.e]]exp = fix f(x:[[τ1]]type):[[τ2]]type.[[e]]exp

[[e1 e2]]exp = [[e1]]exp [[e2]]exp

[[(τ, ε)]]hval = tag(〈rolltag
′([[τ]]type)(nonetag(−,[[τ]]type))〉, [[τ]]type)

[[(τ, x)]]hval = tag(〈rolltag
′([[τ]]type)(some(x))〉, [[τ]]type)

[[〈v1, . . . , vn〉]]hval = 〈[[v1]]exp, . . . , [[vn]]exp〉
[[x1 = h1, . . . , xn = hn]]heap = x1 = [[h1]]hval, . . . , xn = [[hn]]hval

[[let H in e]]prog = let [[H]]heap in [[e]]exp

Figure 7: The Translation

One type constructor was extended, and two instructions and the static data mechanism were
changed to use this extended type constructor. The TALx86 implementation includes a com-
piler for a language called Popcorn, a safe C-like language. Popcorn has ML style exceptions,
and the compiler was modified to use the new type tagging mechanisms instead of the old ad
hoc mechanisms.

6 Related Work

This work is closely related to work on type dispatch in functional languages [HM95, Mor95,
CWM98, CW99, etc.]. In particular, the work on λR [CWM98] and its follow-up LX [CW99]
both address the implementation of λML

i type dispatch. There are two key differences between
their work and mine. First, my tagging language is concerned with matching whole types and

14

their subtypes, whereas λR is concerned with matching the top level structure of types: is v in
τ versus does v have an arrow type and what are “tags” for the argument and result type. To
achieve the type refinement of my target language a λR implementation would have to crawl
over the entire structure of a “tag” for the unknown type, whereas my language can make the
refinement with one pointer equality test. Furthermore, their language does not handle sub-
typing. Second, my language is concerned with branded types whereas λR is concerned with
the types themselves. Consider my informal coding of exceptions. In Ocaml there are at least
three exceptions that carry strings. Therefore, there will be at least three tags for the type
string, and the distinction between a string tagged with Failure and the same string tagged
with Invalid argument is important. In the λR setting this distinction is irrelevant, only the
fact that the value is a string is important. Of course, λR is designed to implement inten-
sional polymorphism and does that well, whereas my language cannot implement intensional
polymorphism.

7 Summary

This paper has shown that a number of language mechanisms, among them class casting, class
casing, exceptions, and extensible hierarchical sums, share a common mechanism: type tag-
ging. A tagging language containing this core mechanism was defined and then translated into
a more primitive language with just the notion of values being tags for types and physical pointer
equality. The type soundness of the target language and the type preservation and operational
correctness of the translation was proven. Thus, this paper provides a solid theoretical foun-
dation for all the mechanisms mentioned above. Along with the work in functional languages,
this work provides foundations for a theory of type dispatch in programming languages.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory Of Objects. Springer-Verlag, 1996.

[Cha97] Craig Chambers. The Cecil language, specification and rationale. Technical report, Department
of Computer Science and Engineering, University of Washington, Box 352350, Seattle, Washington
98195-2350, USA, March 1997.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. Technical report, Department of Com-
puter Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853-7501, USA, 1999. Forthcom-
ing, available at http://www.cs.cornell.edu/sweirich.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-erasure
semantics. In Third ACM SIGPLAN International Conference on Functional Programming, pages
301–312, Baltimore Maryland, USA, September 1998.

[FR99] Kathleen Fisher and John Reppy. The design of a class mechanism for Moby. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, May 1999. To appear. Moby
information is available at http://www.cs.bell-labs.com/~jhr/moby.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley, 1996.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis. In
Twenty-Second ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 130–141, San Francisco, CA, USA, January 1995.

[KCR98] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9):26–76, September 1998. With H. Abelson, N. I. Adams, IV,
D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes, E.
Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman, and M. Wand.

15

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick Smith, Daivd
Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realistic type assembly language.
February 1999. Submitted to WCSSS’99, available at http://www.cs.cornell.edu/talc.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory management.
In ACM Conference on Functional Programming and Computer Architecture, 1995.

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, December 1995.
Published as CMU Technical Report CMU-CS-95-226.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language. In Twenty-Fifth ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 85–97, San Diego California, USA, January 1998.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper, and Peter Lee.
TIL: A type-directed optimizing compiler for ML. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 181–192, Philadelphia, PA, USA, May 1996.

A Type Soundness of Target Calculus

The presence of the two subsumption rules and reflexive and transitive subtyping rules compli-
cates the arguments for type soundness. Thus to start with, I will argue that derivations in the
systems can be canonicalised and then argue based on the canonical derivations. First consider
subtyping, and a more syntax directed set of subtyping rules.

Let S1 be the subtyping rules in Figure 5. Let S2 be S1 with the reflexive rule specialised
to type variables and recursive types only, the transitive rule removed, and the rule for type
variables replaced by:

∆ `T τ1 ≤ τ2

∆ `T α ≤ τ2
(α ≤ τ1 ∈ ∆)

Lemma A.1 The judgement ∆ `T τ1 ≤ τ2 is derivable in S1 if and only if it is derivable in
S2.

Proof: First I will show that S2 is reflexive and transitive, that is, that the general reflexive
and the transitive rules are derivable. The proof for reflexivity proceeds by induction on the
structure of τ . In the cases that τ is a type variable or a recursive type, the desired result
follows by the specialised reflexive rules. In other cases the induction hypothesis is applied to
the immediate subterms and then the one rule for that case is applied. The proof for transitivity
proceeds by simultaneous induction on derivations of ∆ `T τ1 ≤ τ2 and ∆ `T τ2 ≤ τ3. If
either judgement was derived by the specialised reflexive rules, then the result is immediate.
Otherwise, enumerate the cases for the last rule used in each derivation and notice that either
the same rule is used or the variable rule is used. In the case that the same rule is used,
apply the induction hypothesis to the hypotheses in the derivations and then apply the same
rule again. In the case the type variable rule is used on ∆ `T τ1 ≤ τ2, apply the induction
hypothesis to the hypothesis of this derivation and the other judgement and then apply the
type rule again. In the case the type variable rule is used on ∆ `T τ2 ≤ τ3, it must be that τ2

is a type variable, so the only rule for deriving ∆ `T τ1 ≤ τ2, which has a type variable on the
right hand side, is the type variable rule so the previous case applies.

Now I will show that a judgement derivable in S1 is derivable in S2. I have just shown that the
reflexive and transitive rules are derivable. The other rules except the one for type variables are

16

rules of S2. The type variable rule of S1 can be derived in S2 by applying the derived reflexive
rule and then the type variable rule.

Finally I will show that a judgement derivable in S2 is derivable in S1. All the rules of S2 are
rules of S1 except for the type variable rule, this can be derived by applying S1’s type variable
rule and then the transitive rule. 2

From now on, I will use both systems interchangeably.

Second, in a program derivation, I can assume that the derivation of a heap value ends in either
the tag rule or the tuple rule. The only other applicable rules are the tag subsumption rule
and the subsumption rule. These rules can be removed and then inserted at all places in the
derivation to the right where the variable in question appears.

Third, in any expression derivation between any two uses of rules that are not tag subsumption
or subsumption rules I can assume there is exactly one use of the subsumption rule and zero
or more uses of the tag subsumption rule. Furthermore, it will often be the case the there are
zero uses of the tag subsumption rule because the types in question will not have a tag form.
The assumption is valid because the tag subsumption and subsumption clearly commute, two
consequtive uses of the subsumption rule can be replaced with one by using the transitive rule,
and a subsumption rule can be inserted by using the reflexive rule.

With these arguments about subtyping and about where subsumption and tag subsumption
rules can appear, I proceed to show type soundness of the target calculus, through a series of
lemmas.

Typing context ∆1 extends ∆2 if and only if the type variables defined by ∆2 all appear in ∆1

and in the same order, and either ∆2 does not give the type variable a bound or ∆1 gives it
the same bound. Value context Γ1 extends Γ2 if and only if dom(Γ1) ⊆ dom(Γ2) and for all
x ∈ dom(Γ2) Γ1(x) = Γ2(x). Note that the value context used to type the main expression of
a program extends all the value contexts used to type the heap values in the program.

Lemma A.2 (Weakening) If ∆1 extends ∆2 and Γ1 extends Γ2 then:

1. If ∆2 `T τ then ∆1 `T τ

2. If ∆2 `T τ1 ≤ τ2 then ∆1 `T τ1 ≤ τ2

3. If ∆2; Γ2 `T e : τ then ∆1; Γ1 `T e : τ

Proof: The first result is immediate from the definitions. The proof of the other results
proceeds by induction on the structure of the hypothesis derivation and the desired result
follows in a straightforward way from the induction hypothesis on the hypotheses of the last
rule used in the derivation. 2

Lemma A.3 (Derived Judgements)

1. If ∆ `T τ1 ≤ τ2 then ∆ `T τ1 and ∆ `T τ2.

17

Proof: The proof proceeds by induction on the derivation of ∆ `T τ1 ≤ τ2 and the result
follows in a straightforward way from the induciton hypothesis on the hypotheses of the last
rule used in the derivation, or in the case of the reflexive and recursive type rules, directly from
a hypothesis. Note that the syntactic restriction on typing contexts is used in the case of the
typing variable rule. 2

Lemma A.4 (Type Substitution) If α /∈ ∆1 then:

1. If ∆1 `T σ and ∆1, α, ∆2 `T τ or ∆1, α ≤ σ′, ∆2 `T τ then ∆1, ∆2[α := σ] `T τ [α := σ].

2. If ∆1 `T σ and ∆1, α, ∆2 `T τ1 ≤ τ2 then ∆1, ∆2[α := σ] `T τ1[α := σ] ≤ τ2[α := σ].

3. If ∆1 `T σ1 ≤ σ2 and ∆1, α ≤ σ2, ∆2 `T τ1 ≤ τ2 then ∆1, ∆2[α := σ1] `T τ1[α := σ1] ≤
τ2[α := σ1].

4. If ε `T σ and ∆1, α, ∆2; Γ `T e : τ then ∆1, ∆2[α := σ]; Γ[α := σ] `T e[α := σ] : τ [α :=
σ].

5. If ε `T σ1 ≤ σ2 and ∆1, α ≤ σ2, ∆2; Γ `T e : τ then ∆1, ∆2[α := σ1]; Γ[α := σ1] `T e[α :=
σ1] : τ [α := σ1].

Proof: The proof of the first result is immediate from the definitions.

The proof of the second result proceeds by induction on the derivation in S2 of ∆, α `T τ1 ≤ τ2.
Apply the induction hypothesis to the hypotheses of the last rule used in the derivation and
then reapply the rule. This works in every case except if the last rule is the reflexive rule for
α, in this case ∆ `T α[α := σ] ≤ α[α := σ] follows by the reflexive rule, ∆1 `T σ, and the
weakening lemma.

The proof of the third result is similar except if the last rule used is new type variable rule
for α. In this case ∆1, α ≤ σ2, ∆2 `T α ≤ τ2, and the hypothesis of the last rule is ∆1, α ≤
σ2, ∆2 `T σ2 ≤ τ2. Applying the induction hypothesis, it must be that ∆1, ∆2[α := σ1] `T
σ2[α := σ1] ≤ τ2[α := σ1]. By the derived judgements lemma, ∆1 `T σ2, so α /∈ ftv(σ2), and
thus ∆1, ∆2[α := σ1] `T σ2 ≤ τ2[α := σ1]. By the we the weakening lemma ∆1, ∆2[α := σ1] `T
σ1 ≤ σ2, so by tranisitivity ∆1, ∆2[α := σ1] `T α[α := σ1] ≤ τ2[α := σ1] as required.

The proof of the fourth and fifth results proceed by induction of the derivation of C `T e : τ
(for appropriate C). In almost all cases the desired result follows in a straight forward manner
from the induction hypothesis applied to the hypotheses of the last rule used in the derivation
and from (1), (2) and (3) applied to typing hypotheses. The only interesting case is rule t1
when α in that rule is the same as the α in question. Applying the induction hypothesis
to the first three and last hypothesis gives the first, third, fourth, and sixth hypotheses of
rule t2. If ε `T σ1 ≤ σ2 then by the induction hypothesis applied to the fourth hypothesis,
∆1, ∆2[α := σ1]; Γ[α := σ2] `T b2[α := σ2] : τ [α := σ1], which is the fifth hypothesis of rule t2.
The second hypothsis follows from the derived judgements lemma, and rule t2 gives the desired
result. 2

Note that in typing derivations for programs, the α in ∆ are always distinct, because ∆ starts
out empty and the rules only add α not already in ∆. Thus the condition α /∈ ∆1 will always
be satsified for judgements that come from program derivations.

18

Lemma A.5 If ∆ `T rec α.τ1 ≤ rec α.τ2 then ∆ `T τ1[α := rec α.τ1] ≤ τ2[α := rec α.τ2].

Proof: In S2 there are two rules for ∆ `T rec α.τ1 ≤ rec α.τ2: the reflexive rule for
recursive types or the rule for recursive types. In the case of the reflexive rule, τ1 = τ2 so
τ1[α := rec α.τ1] = τ2[α := rec α.τ2] and the desired result follows by the reflexive rule in S1. In
the case of the recursive types rule, it must be that ∆, α `T τ1 ≤ τ2. The desired result follows
by the type substitution lemma. 2

Lemma A.6 (Decomposition) An expression e is either a value or of the form E[ι] for some
E and some ι drawn from the following grammar:

ι ::= h | if v1 = v2 then b1 else b2 fi | unroll(v) | unpack[α, x] = v in e |
if? v then x.b1 else b2 fi | v.i | v1 v2 | let x1 = v2 and x2 = v2 in e

Proof: The proof proceeds by induction on the structure of e and a massive inspection of
the various forms for e and E. 2

Lemma A.7 (Context Typing) If ε; Γ `T E[ι] : τ then there exists σ such that ε; Γ `T ι : σ
and for all e if ε; Γ, Γ′ `T e : σ then ε; Γ, Γ′ `T E[e] : τ . Furthermore, the derivation of
ε; Γ `T ι : σ does not end in a use of either the subsumption or tag subsumption rule.

Proof: The proof proceeds by induction on the derivation of ε; Γ `T E[ι] : τ . The desired
result follows straightforwardly from the induction hypothesis on the appropriate hypothesis of
the last rule in the derivation. 2

A value typing Γ has a heap form if and only if ∀τ ∈ ran(Γ) : τ = 〈~τ〉 or tagφ(〈τ〉, σ). Note
that if `T H : Γ then Γ has a heap form, hence the name.

Lemma A.8 (Canonical Forms) If Γ has a heap form and ε; Γ `T v : τ then v has the form
given by the following table:

τ v

tagφ(τ1, τ2) x

rec α.σ rollrec α.σ′
(v′)

∃α.σ pack[τ ′, v′] as ∃α.σ′

σ? noneσ′
or some(v′)

〈~σ〉 x
σ1 → σ2 fix f(x : τ1) : τ2.v

Proof: The derivation of ε; Γ `T v : τ consists of a nonsubsumption rule followed by an
optional tag subsumption rule and an optional subsumption rule. By inspection of S2 with
an empty typing context note that all the applicable rules for subsumption do not change the
form of τ . Next, notice that tag subsumption changes τ from a tuple form to a tag form. Now,
inspect the rules for typing values for each of the forms for τ and notice that only one or two
rules are applicable in each case and have the forms shown for v in the table. 2

Lemma A.9 If ε; Γ `T x : tag−(σ1, τ1) and ε; Γ `T x : tag+(σ2, τ2) then ε `T σ1 ≤ σ2.

19

Proof: The only rules for deriving the judgements are the variable rule and the subsumption
rule, therefore there must be a τ such that ε `T τ ≤ tag−(σ1, τ1) and ε `T τ ≤ tag+(σ2, τ2). In
S2 the only rules that can derive these judgements are the tag subtyping rules, so it must be
the case that τ = tag◦(σ, τ) and that ε `T σ1 ≤ σ and ε `T σ ≤ σ2. The desired result follows
by the transitivity rule. 2

Lemma A.10 (Value Substitution) If ∆; Γ1 `T e1 : τ1 and ∆; Γ1, x : τ1, Γ2 `T e2 : τ2 then
∆; Γ1, Γ2 `T e2[x := e1] : τ2.

Proof: The proof proceeds by induction on the derivation of ∆; Γ, x : τ1 `T e2 : τ2. The
desired result follows in a striaghforward manner from the induction hypothesis applied to the
hypotheses of the last rule in the derivation. 2

Theorem A.11 (Type Preservation) If `T P1 : τ and P1 7→ P2 then `T P2 : τ .

Proof: Let P1 = let H1 in E[ι] and P2 = let H2 in E[e] where ι, e, and H2 are given by one of
the rules in Figure 4. The derivation of `T P1 : τ must be by the rule for programs, so there
exists Γ1 such that `T H1 : Γ1 and ε; Γ1 `T E[ι] : τ . So by lemma A.7 there exists σ such
that Γ1 `T ι : σ. The goal is to find Γ2 such that `T H2 : Γ1, Γ2 and ε; Γ1, Γ2 `T e : σ. Then
by lemma A.7 ε; Γ1, Γ2 `T E[e] : τ and by the program rule `T P2 : τ as desired. The proof
proceeds by a case analysis of the rule used for P1 7→ P2.

ι = 〈~v〉 or tag(~v, τ): In this case e = x for some fresh x and H2 = H1, x = ι. Clearly, by the
rule for heaps, `T H1, x = ι : Γ1, x : σ. So selecting Γ2 = x : σ, it remains to show that
Γ1, Γ2 `T x : σ which follows by the variable rule.

ι = if x = x then b1 else b2 fi: In this case e = b1 and H2 = H1. Selecting Γ2 = ε it remains to
show that Γ1 `T b1 : τ . Since ι type checks in an empty type context, only rule t2 is
applicable. Therefore the derivation of ε; Γ1 `T ι : σ has the form:

ε; Γ1 `T x : tag−(σ1, τ1) ε; Γ1 `T x : tag+(σ2, τ2)

ε `T σ1 ≤ σ2

⇒
ε; Γ1 `T b1 : σ · · ·

ε; Γ1 `T if x = x then b1 else b2 fi : σ

By the two judgements on x and lemma A.9 it must be that ε `T σ1 ≤ σ2. By the
judgement on b1, ε; Γ1 `T b1 : σ as required.

ι = if x = y then b1 else b2 fi: In this case e = b2 and H2 = H1. Selecting Γ2 = ε it remains to
show that ε; Γ1 `T b2 : σ. By similar reasoning to the previous case, ε; Γ1 `T ι : σ has the
form: · · · ε; Γ1 `T b2 : σ

ε; Γ1 `T if x = x then b1 else b2 fi : σ

The desired result is the judgement on b2.

ι = unroll(rollσ1(v)): In this case e = v and H2 = H1. Selecting Γ2 = ε, it remains to show that
ε; Γ1 `T e : σ. The derivation of ε; Γ1 `T ι : σ has the form:

ε; Γ1 `T v : σ2[α := σ1]
ε; Γ1 `T rollσ1(v) : σ1 ε `T σ1 ≤ σ3

ε; Γ1 `T rollσ1(v) : σ3

ε; Γ1 `T ι : σ

20

where σ = σ4[α := σ3], σ1 = rec α.σ2, and σ3 = rec α.σ4. Note that the tag sumsumption
rule cannot be used between the roll and unroll rule because the types have a recursive
form not a tag form. By ε `T σ1 ≤ σ3 and lemma A.5, ε `T σ2[α := σ1] ≤ σ3[α := σ4].
The later is σ, so by judgement on v and subsumption ε; Γ `T v : σ as required.

ι = unpack[α, c] = pack[τ1, v] as τ2 in b: In this case e = b[α := τ1, x := v] and H2 = H1. Select-
ing Γ2 = ε, it remains to show that ε; Γ1 `T e : σ. The derivation of ε; Γ1 `T ι : σ has the
form:

ε `T τ1 ε; Γ1 `T v : τ3[α := τ1]
ε; Γ1 `T pack[τ1, v] as τ2 : τ2 ε `T τ2 ≤ ∃α.τ4

ε; Γ1 `T pack[τ1, v] as τ2 : ∃α.τ4 α; Γ1, x : τ4 `T b : σ ε `T σ

ε; Γ1 `T ι : σ

where τ2 = ∃α.τ3. Note that the tag subsumption rule cannot be used between the pack
and unpack rules because the types have an existential form not a tag form. In S2 there
is only one rule for ε `T ∃α.τ3 ≤ ∃α.τ4 so it must be that α `T τ3 ≤ τ4. By the type
substitution lemma, ε `T τ3[α := τ1] ≤ τ4[α = τ1]. By subsumption ε; Γ1 `T v : τ4[α :=
τ1]. Now, by the type substitution lemma, ε; (Γ1, x : τ4)[α := τ1] `T b[α := τ1] : σ[α := τ1].
Since Γ1 is the type for H1 it has no free type variables so (Γ1, x : τ4)[α := τ1] = Γ1, x :
τ4[α := τ1], and ε `T σ implies ftv(σ) = ∅ so σ[α := τ1] = σ. So ε; Γ1, x : τ4[α := τ1] `T
b[α := τ1] : σ. By the value substitution lemma ε; Γ1 `T b[α := τ1, x := v] : σ as required.

ι = if? noneτ ′
then x.b1 else b2 fi: In this case e = b2 and H2 = H1. Selecting Γ2 = ε it remains

to show that ε; Γ1 `T e : σ. The derivation of ε; Γ1 `T ι : σ must have the form:

ε; Γ1 `T noneτ ′
: τ ′? ε; Γ1, x : τ ′ `T b1 : σ ε; Γ1 `T b2 : σ

ε; Γ1 `T ι : σ

Note that the tag subsumption rule cannot be used between the none rule and the opt
if rule because the types have an opt form not a tag form. The judgemnet on b2 is the
desired result.

ι = if? some(v) then x.b1 else b2 fi: In this case e = b1[x := v] and H2 = H1. Selecting Γ2 = ε it
remains to show that ε; Γ1 `T e : σ. The derivation of ε; Γ1 `T ι : σ must have the form:

ε; Γ1 `T v : τ2

ε; Γ1 `T some(v) : τ2? ε `T τ2? ≤ τ1?
ε; Γ1 `T some(v) : τ1? ε; Γ1, x : τ1 `T b1 : σ ε; Γ1 `T b2 : σ

ε; Γ1 `T ι : σ

Note that the tag subsumption rule cannot be used between the some rule and the opt
if rule because the types have an opt form not a tag form. In S2 there is only one rule
for deriving ε `T τ2? ≤ τ1?, so it must be that ε `T τ2 ≤ τ1. By the judgement on v and
subsumption ε; Γ1 `T v : τ1. By the judgement on b1 and the value substitution lemma
ε; Γ1 `T b1[x := v]σ : as required.

ι = x.i: In this case e = vi and H2 = H1. Selecting Γ2 = ε it remains to show that ε; Γ1 `T e : σ.
There are two cases: H(x) = 〈v1, . . . , vn〉 or H(x) = tag(〈v1, . . . , vn〉, τ ′). Consider the

21

former first. The derivation of `T H1 : Γ1 must have the form:

· · ·
ε; Γi `T vi : τi

ε; Γ′ `T 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉 · · ·
`T . . . , x = 〈v1, . . . , vn〉, . . . : Γ1

for some Γ′ that Γ1 extends. The derivation of ε; Γ1 `T ι : σ must have the form:

ε; Γ1 `T x : 〈τ1, . . . , τn〉 ε `T 〈τ1, . . . , τm〉 ≤ 〈σ1, . . . , σn〉
ε; Γ1 `T x : 〈σ1, . . . , σm〉

ε; Γ1 `T ι : σ

where σ = σi. Note that the tag subsumption rule cannot be used between the tuple rule
and the projection rule because the types have a tuple form not a tag form. In S2 there
is only one rule for ε `T 〈τ1, . . . , τm〉 ≤ 〈σ1, . . . , σn〉, so it must be that ε `T τi ≤ σi.
Thus by the judgement for vi and subsumption ε; Γi `T vi : σ. By the weakening lemma
ε; Γ1 `T vi : σ as required.

Now consider the case H(x) = tag(〈v1, . . . , vn〉, τ ′). Now `T H1 : Γ1 will have the form:

· · ·
ε; Γi `T vi : τi ε `T τ ′

ε; Γi `T tag(〈v1, . . . , vn〉, τ ′) : tag◦(τ ′, 〈τ1, . . . , τn〉) · · ·
`T . . . , x = tag(〈v1, . . . , vn〉, τ ′), . . . : Γ1

and the derivation of ε; Γ1 `T x : 〈τ1, . . . , τn〉 has an extra rule:

ε; Γ1 `T x : tag◦(τ ′, 〈τ1, . . . , τn〉)
ε; Γ1 `T x : 〈τ1, . . . , τn〉

Otherwise the reasoning is the same.

ι = v1 v2: Note that v1 = fix f(x : τ1) : τ2.b. In this case e = b[f, x := v1, v2] and H2 = H1.
Selecting Γ2 = ε it remains to show that ε; Γ1 `T e : σ. The derivation of ε; Γ1 `T ι : σ
must have the form:

ε; Γ1, f :τ1 → τ2, x:τ1 `T b : τ2

ε; Γ1 `T v1 : τ1 → τ2 ε `T τ1 → τ2 ≤ σ1 → σ

ε; Γ1 `T v1 : σ1 → σ ε; Γ1 `T v2 : σ1

ε; Γ1 `T ι : σ

Note that the tag subsumption rule cannot be used between the fix rule and the application
rule because the types have a function form not a tag form. In S2 there is only one rule
for ε `T τ1 → τ2 ≤ σ1 → σ, so it must be that ε `T σ1 ≤ τ1 and ε `T τ2 ≤ σ. Using
the former, the judgement for v2 and subsumption, ε; Γ1 `T v2 : τ1. Then, by the value
subsitution lemma and the judgements for v1 and b, ε; Γ1 `T b[f, x := v1, v2] : τ2. Finally,
using ε `T τ2 ≤ σ and subsumption the desired result follows.

ι = let x1 = v1 and x2 = v2 in e′: In this case e = e′[x1, x2 := v1, v2] and H2 = H1. Selecting
Γ2 = ε it remains to show that ε; Γ1 `T e : σ. The derivation of ε; Γ1 `T ι : σ must have
the form:

ε; Γ1 `T v1 : τ1 ε; Γ1 `T v2 : τ2 ε; Γ1, x1:τ1, x2:τ2 `T e′ : σ

ε; Γ1 `T ι : σ

22

By the value substitution lemma and the judgements for v2 and e′, ε; Γ1, x1:τ1 `T e′[x2 :=
v2] : σ. By the value substitution lemma and the judgement for v1, ε; Γ1 `T e′[x1, x2 :=
v1, v2] : σ, as required.

2

A terminal configuration is a program of the form let H in v. A program that is irreducible and
not a terminal configuration is called stuck .

Theorem A.12 (Progress) If `T P : τ then either P is a terminal configuration or there
exists a P ′ such that P 7→ P ′.

Proof: Let P = let H in e, then by the decomposition lemma either e is a value in which case
P is a terminal configuration as required or e = E[ι] for some ι as given in that lemma. The
derivation of `T P : τ must be by the rule for programs, so there exists Γ such that `T H : Γ
and ε; Γ `T E[ι] : τ . Note that the former implies that Γ has a heap form. By the latter and
lemma A.7 there exists σ such that Γ `T ι : σ. I will show that the latter implies that ι has one
of the forms for I in Figure 4 and that the side conditions are satisfied. The proof proceeds by
a case analysis of the form of ι:

ι = h: In this case ι has the first form in the table and clearly a fresh x can be chosen.

ι = if v1 = v2 then b1 else b2 fi: The derivation of ε; Γ `T ι : σ must have the form:

· · · ε; Γ `T v1 : tag−(σ1, τ1) ε; Γ `T v2 : tag+(σ2, τ2) · · ·
ε; Γ `T ι : σ

By the canonical forms lemma case (1) v1 and v2 are variables and therefore ι has either
the second or the third form for I as required.

ι = unroll(v): The derivation of ε; Γ `T ι : σ must have the form:

ε; Γ `T v : rec α.σ′

ε; Γ `T ι : σ

By the canonical forms lemma case (2) v has the form rollrec α.σ′′
(v′) and therefore ι has

the fourth form for I as required.

ι = unpack[α, x] = v in b: The derivation of ε; Γ `T ι : σ must have the form:

ε; Γ `T v : ∃α.σ′ · · ·
ε; Γ `T ι : σ

By the canonical forms lemma case (3) v has the form pack[τ ′, v′] as ∃α.σ′′, therefore ι
has the fifth form for I as required.

ι = if? v then x.b1 else b2 fi: The derivation of ε; Γ `T ι : σ must have the form:

ε; Γ `T v : σ′? · · ·
ε; Γ `T ι : σ

By the canonical forms lemma case (4) v has the form noneσ′′
or some(v′), therefore ι has

either the sixth or seventh form for I as required.

23

ι = v.i: The derivation of ε; Γ `T ι : σ must have the form:

ε; Γ `T v : 〈σ1, . . . , σm〉
ε; Γ `T ι : σ

(1 ≤ i ≤ m)

By the canonical forms lemma case (5) v is a variable x, therefore ι has the eigth form for I
and it remains to show that the side conditions are satisfied. Since ε; Γ `T x : 〈σ1, . . . , σm〉
requires that x ∈ dom(Γ) and `T H : Γ requires that dom(H) = dom(Γ). There must be
a v = 〈v1, . . . , vn〉 such that H(x) = v or H(x) = tag(v, τ ′). Thus the first and third side
conditions are satisfied. By an inspection of the rules for ε; Γ `T x : 〈σ1, . . . , σm〉 it must
be the case that there are τ1, . . . , τn such that ε `T 〈τ1, . . . , τn〉 ≤ 〈σ1, . . . , σm〉. In S2

there is only one rule for this judgement so it must be that n ≥ m, so since 1 ≤ i ≤ m

the second side condition is also satisfied.

ι = v1 v2: In this case ι has the ninth form for I , it remains to show the side condition is
satisfied. The derivation of ε; Γ `T ι : σ must have the form:

ε; Γ `T v1 : σ1 → σ2 · · ·
ε; Γ `T ι : σ

By the canonical forms lemma case (6) v has the form fix f(x : τ1) : τ2.b as required.

ι = let x1 = v1 and x2 = v2 in e′: Clearly ι has the tenth form for I and there are no side condi-
tions that need to be satisfied.

2

Theorem A.13 (Type Safety) If `T P1 : τ and P1 7→∗ P2 then P2 is not stuck.

Proof: The proof proceeds by induction of the length of P1 7→ P2, the type preservation
lemma, and the progress lemma. 2

B Type Correctness of Translation

The main result of this appendix is that the translation preserves subtyping, typability and
the types of various syntactic constructs. These theorems are interpersed with some technical
lemmas, particular a typing derivation for the reified tag checker tagchk(y1, y2, τ, σ). These
results make fairly substantial use of the weakening lemma from Appendix A, but are otherwise
self contained.

Lemma B.1 ftv(tag(φ, τ)) = ftv(τ) and ftv(tag ′(τ)) ⊆ ftv(τ).

Proof: By inspection notice that ftv(tag(φ, τ)) = ftv(τ) ∪ ftv(tag ′(τ)) and ftv(tag ′(τ)) =
ftv(τ) − {α}, the desired result follows immediately. 2

Theorem B.2 For all types τ in the tagging language ε `T [[τ]]type.

24

Proof: The desired result follows if ftv([[τ]]type) = ∅. The proof of the latter proceeds by
induction of the structure of τ . Consider the forms that τ could take:

τ = tag(σ): The desired result follows immediately from the induction hypothesis on σ and
lemma B.1.

τ = tagged: By inspection ftv([[tagged]]type) = (ftv(tag(−, α))∪{α})−{α}. By lemma B.1 this
is equal to ({α} ∪ {α})− {α} = ∅.

τ = 〈τ1, . . . , τn〉: By inspection ftv([[〈τ1, . . . , τn〉]]type) = ftv([[τ1]]type)∪· · ·∪ ftv([[τn]]type). By the
induction hypothesis this is equal to ∅ ∪ · · · ∪ ∅ = ∅.

τ = τ1 → τ2: By inspection ftv([[τ1 → τ2]]type) = ftv([[τ1]]type) ∪ ftv([[τ2]]type). By the induction
hypothesis this is equal to ∅ ∪ ∅ = ∅.

2

Theorem B.3 If `S τ1 ≤ τ2 then ε `T [[τ1]]type ≤ [[τ2]]type.

Proof: The proof proceeds by induction on the derivation of `S τ1 ≤ τ2. Consider which
rule was used to derive this judgement:

tag rule: The result follows by theorem B.2 and the reflexive rule in the target calculus.

tagged rule: The result follows by theorem B.2 and the reflexive rule in the target calculus.

tuple rule: By the rule it must be that m ≥ n and `S τi ≤ σi. By the induction hypothesis,
it must be that ε `T [[τ1]]type ≤ [[σi]]type, so:

ε `T [[τi]]type ≤ [[σi]]type

ε `T [[〈τ1, . . . , τn〉]]type ≤ [[〈σ1, . . . , σm〉]]type
(m ≥ n)

function rule: By the rule it must be that `S σ1 ≤ τ1 and `S τ2 ≤ σ2. By the induction
hypothesis is must be that ε `T [[σ1]]type ≤ [[τ1]]type and ε `T [[τ2]]type ≤ [[σ2]]type, so:

ε `T [[σ1]]type ≤ [[τ1]]type ε `T [[τ2]]type ≤ [[σ2]]type

ε `T [[τ1 → σ1]]type ≤ [[τ2 → σ2]]type

2

Lemma B.4 If ∆ `T τ1 ≤ τ2 and φ ∈ {−, ◦} then ∆ `T tag(φ, τ2) ≤ tag(−, τ1).

Proof: First a derivation for ∆ `T tag ′(τ2) ≤ tag ′(τ1):

∆, β, α ≤ β `T τ1 ≤ τ2

∆, β, α ≤ β `T α ≤ β

∆, β, α ≤ β `T 〈α〉 ≤ 〈β〉
∆, β, α ≤ β `T tag−(τ2, 〈α〉) ≤ tag−(τ1, 〈β〉)

∆, β, α ≤ β `T tag−(τ2, 〈α〉)? ≤ tag−(τ1, 〈β〉)?
∆ `T tag ′(τ2) ≤ tag ′(τ1)

25

Note that the weakening lemma was used to get ∆, β, α ≤ β `T τ1 ≤ τ2. Second a derivation
for ∆ `T tag(φ, τ2) ≤ tag(−, τ1):

∆ `T τ1 ≤ τ2

∆ `T tag ′(τ2) ≤ tag ′(τ1)
∆ `T 〈tag ′(τ2)〉 ≤ 〈tag ′(τ1)〉

∆ `T tag(φ, τ2) ≤ tag(−, τ1)

2

Lemma B.5 If ε `T σ, α is arbitrary, Γ(y1) = 〈tag(−, α), α〉, and Γ(y2) = tag(+, σ) then
α; Γ `T tagchk(y1, y2, α, σ) : tag(−, α) → σ?.

Proof: First, by the weakening lemma α `T σ. Second, by lemma B.1 ftv(tag(−, α)) = {α},
and by target types well formedness rule ftv(σ) = ∅. Thus ftv(tag(−, α) → σ?) = {α} and
α `T tag(−, α) → σ?. Let Γ′ = Γ, y3 : tag(−, α) → σ?, y4 : tag(−, α). By the weakening lemma
α ≤ σ; Γ′ `T y1 : 〈tag(−, α), α〉 and α; Γ′ `T y2 : tag+(σ, 〈tag′(σ)〉). Let the A be the following
derivation:

α ≤ σ; Γ′ `T y1 : 〈tag(−, α), α〉
α ≤ σ; Γ′ `T y1.2 : α α ≤ σ `T α ≤ σ

α ≤ σ; Γ′ `T y1.2 : σ

α ≤ σ; Γ′ `T some(y1.2) : σ?

Let B be the following derivation:

α; Γ′, y5 : tag(−, α) `T y3 : tag(−, α) → σ? α; Γ′, y5 : tag(−, α) `T y5 : tag(−, α)
α; Γ′, y5 : tag(−, α) `T y3 y5 : σ?

Note that the first unrolling of tag ′(α) is tag(−, α)?. Using this, let C be the following derivation:

α; Γ′ `T y4 : tag(−, α)
α; Γ′ `T y4 : 〈tag ′(α)〉 (tag subsume)

α; Γ′ `T y4.1 : tag ′(α)
α; Γ′ `T unroll(y4.1) : tag(−, α)? B

α `T σ

α; Γ `T noneσ : σ?
α; Γ′ `T if? unroll(y4.1) then y5.y3 y5 else noneσ fi : σ?

The desired result follows from this derivation:

α `T tag(−, α) → σ?

ε `T σ
α; Γ′ `T y4 : tag−(α, 〈tag ′(α)〉)
α; Γ′ `T y2 : tag+(σ, 〈tag ′(σ)〉)

A

C

α; Γ′ `T if y4 = y2 then some(y2.2) else if? · · · then · · · else · · · fi fi : σ?
α; Γ `T tagchk (y1, y2, α, σ) : tag(−, α) → σ?

2

Theorem B.6 If Γ `S e : τ then ε; [[Γ]]ctxt `T [[e]]exp : [[τ]]type.

26

Proof: The proof proceeds by induction on the derivation of Γ `S e : τ . Consider the last
rule used in the derivation:

subsumption rule: In this case Γ `S e : τ1 and `S τ1 ≤ τ2 so by the induction hypothesis
and theorem B.3, ε; [[Γ]]ctxt `T e : [[τ1]]type and ε `T [[τ1]]type ≤ [[τ2]]type. The desired result
follows by target subsumption.

variable rule: In this case Γ(x) = τ so by the definition of [[Γ]]ctxt, [[Γ]]ctxt(x) = [[τ]]type and
the desired result follows by the target variable rule.

newtag rule: In this case e = newtag(σ) and τ = tag(σ). By theorem B.2 ε `T [[σ]]type,
and by lemma B.1 ε `T tag(−, [[σ]]type). Also note that one unrolling of tag ′([[σ]]type) is
tag(−, [[σ]]type)?. The desired result follows by this derivation:

ε `T tag(−, [[σ]]type)

ε; [[Γ]]ctxt `T nonetag(−,[[σ]]type) : tag(−, [[σ]]type)?

ε; [[Γ]]ctxt `T rolltag
′([[σ]]type)(nonetag(−,[[σ]]type)) : tag ′([[σ]]type) ε `T [[σ]]type

ε; [[Γ]]ctxt `T [[e]]exp : tag(◦, [[σ]]type)

subtag rule: In this case e = subtag(e1, σ), Γ `S e1 : σ1, and `S σ ≤ σ1. By theorem B.3
ε `T [[σ]]type ≤ [[σ1]]type, and by lemma B.4 ε `T tag(◦, [[σ1]]type) ≤ tag(−, [[σ]]type). By
the induction hypothesis ε; [[Γ]]ctxt `T [[e1]]exp : tag(◦, [[σ1]]type), so by target subsumption
ε; [[Γ]]ctxt `T [[e1]]exp : tag(−, [[σ]]type). Also note that one unrolling of tag ′([[σ]]type) is
tag(−, [[σ]]type)?. The desired result follows by this derivation:

ε; [[Γ]]ctxt `T [[e1]]exp : tag(−, [[σ]]type)
ε; [[Γ]]ctxt `T some([[e1]]exp) : tag(−, [[σ]]type)?

ε; [[Γ]]ctxt `T rolltag
′([[σ]]type)(some([[e1]]exp)) : tag ′([[σ]]type) ε `T [[σ]]type

ε; [[Γ]]ctxt `T [[e]]exp : tag(◦, [[σ]]type)

tagged rule: In this case e = tagged(e′), Γ `S e′ : 〈tag(σ), σ〉, and τ = tagged. By the in-
duction hypothesis ε; [[Γ]]ctxt `T e′ : 〈tag(◦, [[σ]]type), [[σ]]type〉. The following is a subtyping
derivation:

ε `T [[σ]]type ≤ [[σ]]type ε `T 〈tag ′([[σ]]type)〉 ≤ 〈tag ′([[σ]]type)〉
ε `T tag(◦, [[σ]]type) ≤ tag(−, [[σ]]type) ε `T [[σ]]type ≤ [[σ]]type

ε `T 〈tag(◦, [[σ]]type), [[σ]]type〉 ≤ 〈tag(−, [[σ]]type), [[σ]]type〉

So by subsumption ε; [[Γ]]ctxt `T e′ : 〈tag(−, [[σ]]type), [[σ]]type〉. The dersired result then
follows by the following derivation, which uses the pack rule:

ε `T [[σ]]type ε; [[Γ]]ctxt `T [[e′]]exp : 〈tag(−, [[σ]]type), [[σ]]type〉
ε; [[Γ]]ctxt `T [[e]]exp : [[tagged]]type

if tag rule: In this case e = iftagof e1 = e2 thenx.b1 else b2 fi, Γ `S e1 : tagged, Γ `S e2 : tag(σ),
Γ, x : σ `S b1 : τ , and Γ `S b2 : τ . Let Γ′ be:

[[Γ]]ctxt, x1 : [[tagged]]type, x2 : tag(+, [[σ]]type), y1 : 〈tag(−, α), α〉

27

By theorem B.2 ε `T [[σ]]type, so by lemma B.5:

α; Γ′ `T tagchk(y1, y2, α, [[σ]]type) : tag(−, α) → [[σ]]type?

Let A be the following derivation:

α; Γ′ `T tagchk(y1, x2, α, [[σ]]type) : tag(−, α) → [[σ]]type?
α; Γ′ `T y1 : 〈tag(−, α), α〉
α; Γ′ `T y1.1 : tag(−, α)

α; Γ′ `T tagchk(y1, x2, α, [[σ]]type) y1.1 : [[σ]]type?

By the induction hypothesis ε; [[Γ, x : σ]]ctxt `T [[b1]]exp : [[τ]]type and ε; [[Γ]]ctxt `T [[b2]]exp :
[[τ]]type. By the weakening lemma α; Γ′, x : [[σ]]type `T [[b1]]exp : [[τ]]type and α; Γ′ `T
[[b2]]exp : [[τ]]type. Let B be the following derivation:

A α; Γ′, x : [[σ]]type `T [[b1]]exp : [[τ]]type α; Γ′ `T [[b2]]exp : [[τ]]type

α; Γ′ `T if? tagchk(y1, x2, α, [[σ]]type) y1.1 then x.[[b1]]exp else [[b2]]exp fi : [[τ]]type

By theorem B.2 ε `T [[τ]]type. Let C be the following derivation:

ε; [[Γ]]ctxt, x1:[[tagged]]type, x2:tag(+, [[σ]]type) `T x1 : ∃α.〈tag(−, α), α〉 B ε `T [[τ]]type

ε; [[Γ]]ctxt, x1:[[tagged]]type, x2:tag(+, [[σ]]type) `T unpack[α, y1] = x1 in · · · : [[τ]]type

Since ε `T [[τ]]type it must be that ftv([[τ]]type) = ∅ so by lemma B.1 ftv(tag ′([[τ]]type)) = ∅
so ftv(〈tag ′([[τ]]type)〉) = ∅ so ε `T 〈tag ′([[τ]]type)〉. Thus ε `T [[τ]]type ≤ [[τ]]type and
ε `T 〈tag ′([[τ]]type)〉 ≤ 〈tag ′([[τ]]type)〉. By the tag subtyping rule ε `T tag(◦, [[σ]]type) ≤
tag(+, [[σ]]type). By the induction hypothesis ε; [[Γ]]ctxt `T [[e2]]exp : tag(◦, [[σ]]type) So let D
be the following derivation:

ε; [[Γ]]ctxt `T [[e2]]exp : tag(◦, [[σ]]type) ε `T tag(◦, [[σ]]type) ≤ tag(+, [[σ]]type)
ε; [[Γ]]ctxt `T [[e2]]exp : tag(+, [[σ]]type)

By the induction hypothesis ε; [[Γ]]ctxt `T [[e1]]exp : [[tagged]]type. The desired result follows
from this derivation:

ε; [[Γ]]ctxt `T [[e1]]exp : [[tagged]]type D C

ε; [[Γ]]ctxt `T [[e]]exp : [[τ]]type

tuple rule: In this case e = 〈e1, . . . , en〉, τ = 〈τ1, . . . , τn〉, and Γ `S ei : τi. By the induction
hypothesis ε; [[Γ]]ctxt `T [[ei]]exp : [[τi]]type. The desired result follows by applying the target
tuple rule.

projection rule: In this case e = e′.i, Γ `S e′ : 〈τ1, . . . , τn〉, 1 ≤ i ≤ n, and τ = τi. By
the induction hypothesis ε; [[Γ]]ctxt `T [[e′]]exp : [[〈τ1, . . . , τn〉]]type. The later is equal to
〈[[τ1]]type, . . . , [[τn]]type〉 so the desired result follows by applying the target projection rule.

function rule: In this case e = fix f(x:τ1):τ2.b, Γ, f :τ1 → τ2, x:τ1 `S b : τ2, and τ = τ1 → τ2.
By theorem B.2 it must be that ε `T [[τ1]]type → [[τ2]]type. By the induction hypothesis, it
must be that ε; [[Γ, f :τ1 → τ2, x:τ1]]ctxt `T [[b]]exp : [[τ2]]type. Since [[Γ, f :τ1 → τ2, x:τ1]]ctxt =
[[Γ]]ctxt, f :[[τ1]]type → [[τ2]]type, x:[[τ1]]type and [[τ1 → τ2]]type = [[τ1]]type → [[τ2]]type, the desired
result follows by an application of the fix rule.

28

application rule: In this case e = e1 e2, Γ `S e1 : τ2 → τ , and Γ `S e2 : τ2. By the
induction hypothesis ε; [[Γ]]ctxt `T [[e1]]exp : [[τ2 → τ]]type and ε; [[Γ]]ctxt `T [[e2]]exp : [[τ2]]type.
Since [[τ2 → τ]]type = [[τ2]]type → [[τ]]type, the desired result follows by applying the target
application rule.

2

Theorem B.7 If Γ `S h : τ then [[Γ]]ctxt `T [[h]]hval : [[τ]]type.

Proof: There are three cases:

h = (σ, ε): In this case τ = tag(σ). By theorem B.2 ε `T [[σ]]type, and by lemma B.1 ε `T
tag(−, [[σ]]type). Also note that one unrolling of tag ′([[σ]]type) is tag(−, [[σ]]type)?. The
desired result follows by this derivation:

ε `T tag(−, [[σ]]type)

ε; [[Γ]]ctxt `T nonetag(−,[[σ]]type) : tag(−, [[σ]]type)?

ε; [[Γ]]ctxt `T rolltag
′([[σ]]type)(nonetag(−,[[σ]]type)) : tag ′([[σ]]type) ε `T [[σ]]type

ε; [[Γ]]ctxt `T [[h]]hval : tag(◦, [[σ]]type)

h = (σ, x): In this case Γ `S x : tag(σx), `S σ ≤ σx, and τ = tag(σ). By theorem B.3
ε `T [[σ]]type ≤ [[σx]]type, and by lemma B.4 ε `T tag(◦, [[σx]]type) ≤ tag(−, [[σ]]type). By
theorem B.6 ε; [[Γ]]ctxt `T x : tag(◦, [[σx]]type), so by target subsumption ε; [[Γ]]ctxt `T x :
tag(−, [[σ]]type). Also note that one unrolling of tag ′([[σ]]type) is tag(−, [[σ]]type)?. The
desired result follows by this derivation:

ε; [[Γ]]ctxt `T x : tag(−, [[σ]]type)
ε; [[Γ]]ctxt `T some(x) : tag(−, [[σ]]type)?

ε; [[Γ]]ctxt `T rolltag
′([[σ]]type)(some(x)) : tag ′([[σ]]type) ε `T [[σ]]type

ε; [[Γ]]ctxt `T [[h]]hval : tag(◦, [[σ]]type)

h = 〈v1, . . . , vn〉: In this case τ = 〈τ1, . . . , τn〉 and Γ `S vi : τi. By theorem B.6 ε; [[Γ]]ctxt `T
[[vi]]exp : [[τi]]type. The desired result follows by applying the target tuple rule.

2

Theorem B.8 If `S H : Γ then `T [[H]]heap : [[Γ]]ctxt.

Proof: Let H = x1 = h1, . . . , xn = hn and Γ = x1:τ1, . . . , xn:τn, then it must be that
x1:τ1, . . . , xi−1:τi−1 `S hi : τi. By theorem B.7 [[x1:τ1, . . . , xi−1:τi−1]]ctxt `T [[hi]]hval : [[τi]]type.
Now [[x1:τ1, . . . , xi−1:τi−1]]ctxt = x1:[[τ1]]type, . . . , xi−1:[[τi−1]]type. So the desired result follows by
applying the target heap rule. 2

Theorem B.9 If `S P : τ then `T [[P]]prog : [[τ]]type.

Proof: Let P = let H in e. There must be a Γ such that `S H : Γ and Γ `S e : τ . By
theorem B.8 `T [[H]]heap : [[Γ]]ctxt and by theorem B.6 [[Γ]]ctxt `T [[e]]exp : [[τ]]type. The desired
result follows by the target program rule. 2

29

C Operational Correctness

The purpose of this appendix is to show that the translation preserves the operational se-
mantics of tagging language in the target language. In particular I show that the translated
term simulates the source term, which is usually considered a sufficient way to show semantics
preservation.

Define [[E]]ectxt to be [[E[x]]]exp[x := []] for some fresh x. By a straighforward induction it follows
that [[E]]ectxt is a target evaluation context.

Lemma C.1 [[e1[x := e2]]]exp = [[e1]]exp[x := [[e2]]exp]

Proof: The proof proceeds by induciton of the structure of e1 and reduces in a straight
forward manner to the induction hypothesis applied to the subterms of e1. 2

Lemma C.2 [[E[e]]]exp = [[E]]ectxt[[[e]]exp]

Proof: The result is immediate from the definition of [[·]]ectxt and lemma C.1 and the prop-
erties of substitution.
2

Lemma C.3 If `S H : Γ, Γ `S x : tag(τx), and y is arbitrary then there exists an n ≥ 1
such that there exist w1, . . . , wn, and τ1, . . . , τn, such that y /∈ {w1, . . . , wn−1}, x = w1,
∀1 ≤ i < n : H(wi) = (τi, wi+1), and:

tagchkH(x, y)∧ wn = y

∨ not tagchkH(x, y) ∧ wn 6= y ∧ H(wn) = (τn, ε)

Proof: The proof proceeds by induction on the size of H . If x = y then take n = 1, w1 = y,
and τ1 = τx and the result clearly follows. Otherwise, by an inspection of the tagging language
typing rules and induction of the derivation of H `S Γ : it must be that H = H1, x = hx, H2,
`S H1 : Γ1, and Γ1 `S hx : tag(τx). By inspection of the tagging languagetyping rules there
are two possible cases for hx: (τx, ε) and (τx, w), so consider these cases:

hx = (τx, ε): In this case tagchkH(x, y) does not hold. The required result follows if n = 1,
w1 = x, and τ1 = τx.

hx = (τx, w): By the tagging language typing rules Γ1 `S w : tag(τw) for some τw. Since H1 is
smaller than H , by the induction hypothesis there exists m ≥ 1, z1, . . . , zm, and σ1, . . . ,
σm such that y /∈ {z1, . . . , zm−1}, w = z1, ∀1 ≤ i < m : H(zi) = (σi, zi+1), and:

tagchkH(x, y) ∧ wn = y

∨ not tagchkH(x, y) ∧ wn 6= y ∧ H(wn) = (τn, ε)

The required result follows if n = m + 1, w1 = x, wi+1 = zi for 1 ≤ i ≤ m, τ1 = τx, and
τi+1 = σi for 1 ≤ i ≤ m and by noting that tagchkH(x, y) = tagchkH(w, y).

2

30

Lemma C.4 If `S H : Γ, H(x) = 〈x′, v, ~v〉, and Γ `S x′ : tag(τ1) then:

let [[H]]heap in E[tagchk(x, y, [[τ1]]type, [[σ]]type) x′] 7→+ let [[H]]heap in E[e]

where e =
{

some(v) tagchkH(x′, y)
none[[σ]]type not tagchkH(x′, y)

Proof: Let P (x) = let [[H]]heap in [[E]]ectxt[x]. By lemma C.3 there exists n ≥ 1, w1, . . . , wn,
and τ1, . . . , τn such that y /∈ {w1, . . . , wn−1}, x′ = w1, ∀1 ≤ i < n : H(wi) = (τi, wi+1) and:

tagchkH(x′, y) ∧ wn = y

∨ not tagchkH(x′, y) ∧ wn 6= y ∧ H(wn) = (τn, ε)

First I will show that for 1 ≤ i < n:

P (tagchk (x, y, [[τ1]]type, [[σ]]type) wi) 7→+ P (tagchk(x, y, [[τ1]]type, [[σ]]type) wi+1)

Note that wi 6= y and that:

[[H]]heap(wi) = [[(τi, wi+1)]]hval = tag(〈rolltag
′([[τi]]type)(some(wi+1))〉, [[τ1]]type)

Then:
P (tagchk (x, y, [[τ1]]type, [[σ]]type) wi)

7→ P (if wi = y then · · · else if? unroll(wi.1) then · · · else · · · fi fi)
7→ P (if? unroll(wi.1) then y5.tagchk(x, y, [[τ1]]type, [[σ]]type) y5 else · · · fi)
7→ P (if? unroll(rolltag

′([[τi]]type)(some(wi+1))) then y5.tagchk(x, y, [[τ1]]type, [[σ]]type) y5

else · · · fi)
7→ P (if? some(wi+1) then y5.tagchk(x, y, [[τ1]]type, [[σ]]type) y5 else · · · fi)
7→ P (tagchk (x, y, [[τ1]]type, [[σ]]type) wi+1)

So by induction:

P (tagchk(x, y, [[τ1]]type, [[σ]]type) x′) 7→∗ P (tagchk(x, y, [[τ1]]type, [[σ]]type) wn)

Now there are two cases: tagchkH(x′, y) or not. Assume tagchkH(x′, y), then wn = y so:

P (tagchk (x, y, [[τ1]]type, [[σ]]type) wn)
7→ P (if wn = y then some(x.2) else · · · fi)
7→ P (some(x.2))
7→ P (some(v))

Now assume not tagchkH(x′, y), then wn 6= y and H(wn) = (τn, ε). Note that:

[[H]]heap(wn) = [[(τn, ε)]]hval = tag(〈rolltag
′([[τn]]type)(nonetag(−,[[τn]]type))〉, [[τn]]type)

So:
P (tagchk (x, y, [[τ1]]type, [[σ]]type) wn)

7→ P (if wn = y then · · · else if? unroll(wn.1) then · · · else none[[σ]]type fi fi)
7→ P (if? unroll(wn.1) then · · · else none[[σ]]type fi)
7→ P (if? unroll(rolltag

′([[τn]]type)(nonetag(−,[[τn]]type))) then · · · else none[[σ]]type fi)
7→ P (if? nonetag(−,[[τn]]type) then · · · else none[[σ]]type fi)
7→ P (none[[σ]]type)

2

31

Theorem C.5 If `S P1 : τ and P1 7→ P2 then [[P1]]prog 7→+ [[P2]]prog.

Proof: Let P1 = let H1 in E[I] and P2 = let H2 in E[e] be given by the rules in Figure 2. By
the definition of [[·]]prog and lemma C.2 [[P1]]prog = let [[H1]]heap in [[E]]ectxt[[[I]]exp] and [[P2]]prog =
let [[H2]]heap in [[E]]ectxt[[[e]]exp] so it remains to show that the former reduces to the latter is some
finite nonzero number of steps. Consider the various cases for I :

I = newtag(τ): In this case e = x and H2 = H1, x = (τ, ε). Note that [[I]]exp = tag(〈· · ·〉, · · ·) =
[[(τ, ε)]]hval is a heap value so:

let [[H1]]heap in [[E]]ectxt[[[I]]exp]
7→ let [[H1]]heap, x = [[(τ, ε)]]hval in [[E]]ectxt[x]
= let [[H2]]heap in [[E]]ectxt[[[e]]exp]

I = subtag(y, τ): The same argument as the previous case applies except that [[I]]exp is a dif-
ferent heap value.

I = 〈v1, . . . , vn〉: The same argument as the previous case applies except that [[I]]exp is a different
heap value.

I = x.i: In this case e = vi, H2 = H1, H1(x) = 〈v1, . . . , vn〉, and 1 ≤ i ≤ n. Note that
[[I]]exp = x.i and [[H1]]heap(x) = [[H1(x)]]hval = 〈[[v1]]exp, . . . , [[vn]]exp〉. So:

let [[H1]]heap in [[E]]ectxt[[[I]]exp]
7→ let [[H1]]heap in [[E]]ectxt[[[vi]]exp]
= let [[H2]]heap in [[E]]ectxt[[[e]]exp]

I = v1 v2 and v1 = fix f(x:τ1):τ2.b: In this case e = b[f, x := v1, v2] and H2 = H1. Note that
[[I]]exp = [[v1]]exp [[v2]]exp and [[v1]]exp = fix f(x:[[τ1]]type):[[τ2]]type.[[b]]exp. So:

let [[H1]]heap in [[E]]ectxt[[[I]]exp]
7→ let [[H1]]heap in [[E]]ectxt[[[b]]exp[f, x := [[v1]]exp, [[v2]]exp]]
= let [[H1]]heap in [[E]]ectxt[[[b[f, x := v1, v2]]]exp]
= let [[H2]]heap in [[E]]ectxt[[[e]]exp]

Note that lemma C.1 was used twice in the second step.

I = iftagof tagged(x) = y then z.b1 else b2 fi: In this case H2 = H1 and H(x) = 〈x′, v, ~v〉. Since
`S P1 : τ there must be a Γ such that `S H1 : Γ and Γ `S E[I] : τ . By a fairly straight
forward induction of the structure of E, it can be shown that there exists τ ′ such that
Γ `S I : τ ′. By inspection of tagging language typing rules, it must be that the tag if
rule was used and hence that Γ `S tagged(x) : tagged and that Γ `S e2 : tag(σ) for some
σ. By further inspection of the rules, it must be that the tagged rule was used and hence
that Γ `S x : 〈tag(τ1), τ1〉. By inspection of the rules it must be that Γ(x′) = tag(τ1) and
hence Γ `S x′ : tag(τ1). Thus all of the hypotheses to lemma C.4 are satisfied. Note that
[[I]]exp is:

let x1 = pack[[[τ1]]type, x] as [[tagged]]type and x2 = y in unpack[α, y1] = x1 in
if? tagchk (y1, x2, α, [[σ]]type) y1.1 then z.[[b1]]exp else [[b2]]exp fi

32

So:

let [[H1]]heap in [[E]]ectxt[[[I]]exp]
7→ let [[H1]]heap in

[[E]]ectxt[unpack[α, y1] = pack[[[τ1]]type, x] as [[tagged]]type in
if? tagchk(y1, y, α, [[σ]]type) y1.1 then z.[[b1]]exp else [[b2]]exp fi]

7→ let [[H1]]heap in
[[E]]ectxt[if? tagchk(x, y, [[τ1]]type, [[σ]]type) x.1 then z.[[b1]]exp else [[b2]]exp fi]

7→ let [[H1]]heap in
[[E]]ectxt[if? tagchk(x, y, [[τ1]]type, [[σ]]type) x′ then z.[[b1]]exp else [[b2]]exp fi]

7→ let [[H1]]heap in [[E]]ectxt[if? f then z.[[b1]]exp else [[b2]]exp fi]

Where f = some(v) if tagchkH(x1, y) and f = none[[σ]]type otherwise. There are two cases:
tagchkH(x1, y) or not. Assume the former. Then f = some(v) and e = b2[z := v] and:

let [[H1]]heap in [[E]]ectxt[if? f then z.[[b1]]exp else [[b2]]exp fi]
7→ let [[H1]]heap in [[E]]ectxt[[[b1]]exp[z := v]]
= let [[H2]]heap in [[E]]ectxt[[[b1[z := v]]]exp]
= let [[H2]]heap in [[E]]ectxt[[[e]]exp]

Note that lemma C.1 was used in the second to last step. Now assume the other case.
Then f = none[[σ]]type and e = [[b2]]exp and:

let [[H1]]heap in [[E]]ectxt[if? f then z.[[b1]]exp else [[b2]]exp fi]
7→ let [[H1]]heap in [[E]]ectxt[[[b2]]exp]
= let [[H2]]heap in [[E]]ectxt[[[e]]exp]

2

Theorem C.6 If `S P : τ then P 67→ if and only if [[P]]prog 67→.

Proof: First, by an inspection of the translation rules, a value is translated into a value, and
a nonvalue is translated into a nonvalue. Second, by the soundness of the tagging language, if
P 67→ then P has the form let H in v, which means [[P]]prog is a terminal configuration, which is
irreducible in the target language. Third, by the type preservation lemma `T [[P]]prog : [[τ]]type.
So if [[P]]prog 67→ then by the target language type soundness [[P]]prog is a terminal configuration.
Therefore P must have the form let H in v, which is irreducible in the tagging language. 2

Putting the last two theorems together, a typeable tagging language program diverges if and
only if its translation diverges, and converges to a terminal configuration if and only if its
translation converges to the translation of that terminal configuration. I take this as an adequate
(but overly strict) meaning for operational correctness.

D Array Optimisation

Common implementations of downcasting for single inheritance hierarchies use arrays instead
of linked lists, and trade space for time. Let person by a top level tag, student a subtag of

33

person, and graduate a subtag of student. Under the array scheme, person is implemented
as an array of length one containing itself. Student is implemented as an array of length two
whose second element is itself and first element is person. Graduate is implemented as an array
of length three whose third element is itself, second element is student, and first element is
person. In general a tag at depth i in the tag hierarchy is implemented as an array of length i

whose i-th element is itself, and whose first through i − 1-th elements are the tag’s ancestors
at depth 1 through i− 1. Note that if t1 is under t2 in the tag hierarchy then t2 appears in the
t1 array, and at index equal to t2’s depth. Note also that a tags depth is just the length of the
array representing it. Therefore the predicate tagchkH(x, y) can be performed by comparing
entry y.size of array x to y. The rest of this section will present a variant of the target calculus,
and a formal translation corresponding to this array scheme. The array scheme requires space
proportional to the number of tags times the depth of the tag hierarchy but constant time for
a tag check; the scheme used in the main body of this report requires space porportional to the
number of tags but time proportional to the depth of the tag hierarchy.

First, to accomodate the cyclic datastructures inherent in the array scheme, the target language
heaps need to be cyclic. This is achieved by changing the typing rule for heaps to:

ε `T τi Γ `T hi : τi

`T x1 = h1, . . . , xn = hn : Γ
(Γ = x1:τ1, . . . , xn:τn)

Second, arrays need to be added to the language. The extended syntax is:

τ, σ ::= · · · | array(τ) | int
e, b ::= · · · | fix x = tag({e1, . . . , en}, τ) | fix x = tag(extend(e1, e2), τ) |

e.size | e1[e2] ⇒ x.b1 else b2

v ::= · · · | i
E ::= · · · | fix x = tag({~v, E, ~e}, τ) | fix x = tag(extend(E, e), τ) |

fix x = tag(extend(v, E), τ) | E.size | E[e] ⇒ x.b1 else b2 | v[E] ⇒ x.b1 else b2

h ::= · · · | tag({v1, . . . , vn}, τ)

Arrays are created by one of two operations. As I will use arrays only for implementing tags,
both operations are special recursive definition forms that introduce tags. The expression
fix x = tag(a, τ) creates a new array a which will be used as a tag for type τ ; x may be used
in a to refer to the new array. The first form, a = {e1, . . . , en}, creates an array of size n with
elements e1 through en. The second form, a = extend(e1, e2), creates an array that is a copy
of array e1 but with an additional element whose value is e2. An array’s size is obtained with
e.size. The subscript operation is a little unusual, in that, it combines an explicit bounds with
the subscript operation. The expression e1[e2] ⇒ x.b1 else b2 evalutes e1 to an array and e2 to
an integer, then if e2 is within the array bounds, x is bound to the desired element and b1 is
evaluated, otherwise b2 is evaluated.

34

The additional reduction rules necessary to formalise the operations are:

I e H ′ Side Conditions
fix x = tag({v1, . . . , vn}, τ) x H, x = h x /∈ H, h = tag({v1, . . . , vn}, τ)
fix x = tag(extend(y, v), τ) x H, x = h x /∈ H, h = tag({v1, . . . , vn, v}, τ)

H(y) = tag({v1, . . . , vn}, σ)
x.size n H H(x) = tag({v1, . . . , vn}, σ)
x[i] ⇒ x.b1 else b2 b1[x := vi] H H(x) = tag({v1, . . . , vn}, σ)

1 ≤ i ≤ n

x[i] ⇒ x.b1 else b2 b2 H H(x) = tag({v1, . . . , vn}, σ)
¬(1 ≤ i ≤ n)

The additional typing rules are:

∆ `T τ1 ≤ τ2

∆ `T array(τ1) ≤ array(τ2)

∆ `T σ ∆; Γ, x:σ `T ei : τ ′

∆; Γ `T fix x = tag({e1, . . . , en}, τ) : σ
(x /∈ Γ; σ = tag◦(τ, array(τ ′)))

∆ `T σ ∆; Γ, x:σ `T e1 : array(τ ′) ∆; Γ, x:σ `T e2 : τ ′

∆; Γ `T fix x = tag(extend(e1, e2), τ) : σ
(x /∈ Γ; σ = tag◦(τ, array(τ ′)))

∆; Γ `T e : array(τ)
∆; Γ `T e.size : int ∆; Γ `T i : int

∆; Γ `T e1 : array(σ) ∆; Γ `T e2 : int ∆; Γ, x:σ `T b1 : τ ∆; Γ `T b2 : τ

∆; Γ `T e1[e2] ⇒ x.b1 else b2 : τ

ε `T τ ε; Γ `T vi : σ

Γ `T tag({v1, . . . , vn}, τ) : tag◦(τ, array(σ))

This extended language is type sound. The proof is very similar to the one given in Appendix A
but has additional cases for the new constructs. These constructs, while presented in an unusual
way, are standard and have been proven sound before.

Third, I need to give a new translation that uses the array scheme. In fact, most of the old
translation can be reused, I just need to change some key items. At the type level only the
auxilary functions need to change, and they now reflect the array data structure rather than
the linked list data structure. At the term level the translation of newtag, subtag, and the
auxilary tag check function need to change to reflect the new datastructure.

tag(φ, τ) = tagφ(τ, array(tag ′(τ)))
tag ′(τ) = rec α.tag−(τ, array(α))
[[newtag(τ)]]exp = fix x = tag({rolltag

′([[τ]]type)(x)}, [[τ]]type)
[[subtag(e, τ)]]exp = fix x = tag(extend([[e]]exp, rolltag

′([[τ]]type)(x)), [[τ]]type)
tagchk(y1, y2, τ, σ) = fix y3(y4 : tag(−, τ)) : σ?.

y4[y2.size] ⇒
y5.if unroll(y5) = y2 then some(y1.2) else noneσ fi

else noneσ

35

The translation of heaps is trickier, because in translating a subtag, (τ, y), all the ancestors of
y are needed. To provide this information, the heap being constructed is threaded through the
translation of heap values.

[[x = (τ, ε)]]Hhval = x = tag({rolltag
′([[τ]]type)(x)}, [[τ]]type)

[[x = (τ, y)]]Hhval = x = tag({v1, . . . , vn, rolltag
′([[τ]]type)(x)}, [[τ]]type)

where H(y) = tag({v1, . . . , vn}, σ)
[[x = 〈v1, . . . , vn〉]]Hhval = x = 〈[[v1]]exp, . . . , [[vn]]exp〉
[[x1 = h1, . . . , xn = hn]]heap = Hn

where H0 = ε, Hi+1 = Hi, [[hi+1]]
Hi
hval

The new translation is type preserving and operationally correct. The proofs are very similar to
those given in Appendices B and C. In the case of type preservation, the proof of lemma B.1,
the proof of lemma B.4, the cases for newtag and subtag in the proof of theorem B.6, the
statement and proof of theorem B.7, and the proof of theorem B.8 change in a straighforward
manner to reflect the array datastructure.

The proof of operational correctness involves more substantial changes. Lemma C.3 is replaced
by the two lemmas below. The proof of lemma C.4, and the cases for newtag and subtag in the
proof of theorem C.5 change to reflect the new datastructure.

Lemma D.1 If `S H : Γ and Γ `S x : tag(τx) then there exists an n ≥ 1 such that there
exists w1, . . . , wn, and τ1, . . . , τn, such that x = wn, ∀1 < i ≤ n : H(wi) = (τi, wi−1), and
H(w1) = (τ1, ε). Define tchainH(x) = 〈w1, . . . , wn〉.

Lemma D.2 If `S H : Γ, Γ `S x : tag(τx), and Γ `S y : tag(τy) then tagchkH(x, y) if and
only if w|tchainH(y)| = y where tchainH(x) = 〈w1, . . . , wn〉.

Both the array scheme and the linked list scheme are examples of a more general scheme.
They both use unique pointers to represent tags and some sort of datastructure to capture the
hierarchy. Tag checking is performed by searching the datastructure for one or more pairs of
tags to compare, and the tag check succeeds only if one of these pointer comparisons succeed.
Any such scheme should be implementable in a variant of the target language suitable extended
with constructs to implement the datastructure. Such schemes include a number of efficient
implementations of multiple inheritance tag hierarchies.

36

