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Abstract

We motivate the design of a statically typed assembly language (TAL) and present a type-
preserving translation from System F to TAL. The TAL we present is based on a conventional
RISC assembly language, but its static type system provides support for enforcing high-level
language abstractions, such as closures, tuples, and objects, as well as user-defined abstract data
types. The type system ensures that well-typed programs cannot violate these abstractions. In
addition, the typing constructs place almost no restrictions on low-level optimizations such as
register allocation, instruction selection, or instruction scheduling.

Our translation to TAL is specified as a sequence of type-preserving transformations, includ-
ing CPS and closure conversion phases; type-correct source programs are mapped to type-correct
assembly language. A key contribution is an approach to polymorphic closure conversion that is
considerably simpler than previous work. The compiler and typed assembly language provide a
fully automatic way to produce proof carrying code, suitable for use in systems where untrusted
and potentially malicious code must be checked for safety before execution.

1 Introduction

Compiling a source language to a statically typed intermediate language has compelling advantages
over a conventional untyped compiler. An optimizing compiler for a high-level language such as
ML may make as many as 20 passes over a single program, performing sophisticated analyses and
transformations such as CPS conversion [15, 35, 3, 13, 19], closure conversion [21, 40, 20, 4, 27],
unboxing [23, 31, 39], subsumption elimination [10, 12], or region inference [8]. Many of these
optimizations require type information in order to succeed, and even those that do not often benefit
from the additional structure supplied by a typing discipline [23, 19, 31, 37]. Furthermore, the ability
to typecheck intermediate code provides an invaluable tool for debugging new transformations and
optimizations [41, 29].

∗This material is based on work supported in part by the AFOSR grant F49620-97-1-0013, ARPA/RADC grant
F30602-96-1-0317, ARPA/AF grant F30602-95-1-0047, and AASERT grant N00014-95-1-0985. Any opinions, find-
ings, and conclusions or recommendations expressed in this publication are those of the authors and do not reflect
the views of these agencies.
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Today a small number of compilers work with typed intermediate languages in order to realize
some or all of these benefits [23, 34, 7, 41, 25, 38, 14]. However, in all of these compilers, there is a
conceptual line where types are lost. For instance, the TIL/ML compiler preserves type information
through approximately 80% of compilation, but the remaining 20% is untyped.

We show how to eliminate the untyped portions of a compiler and by so doing, extend the approach
of compiling with typed intermediate languages to typed target languages. The target language
in this paper is a strongly typed assembly language (TAL) based on a generic RISC instruction
set. The type system for the language is surprisingly standard, supporting tuples, polymorphism,
existentials, and a very restricted form of function pointer, yet it is sufficiently powerful that
we can automatically generate well-typed and efficient code from high-level ML-like languages.
Furthermore, we claim that the type system does not seriously hinder low-level optimizations such
as register allocation, instruction selection, instruction scheduling, and copy propagation.

TAL not only allows us to reap the benefits of types throughout a compiler, but it also enables a
practical system for executing untrusted code both safely and efficiently. For example, as suggested
by the SPIN project [6], operating systems could allow users to download TAL extensions into
the kernel. The kernel could typecheck the TAL code to ensure that the code never accesses
hidden resources within the kernel, always calls kernel routines with the right number and types
of arguments, etc., and then assemble and dynamically link the code into the kernel.1 However,
SPIN currently requires the user to write the extension in a single high-level language (Modula-
3) and use a single trusted compiler (along with cryptographic signatures) in order to ensure the
safety of the extension. In contrast, a kernel based on a typed assembly language could support
extensions written in a variety of high-level languages using a variety of untrusted compilers, as
the safety of the resulting assembly code can be checked independently of the source code or
the compiler. Furthermore, critical inner-loops could be hand-written in assembly language in
order to achieve optimal performance. TAL could also be used to support extensible web-browsers,
extensible servers, active networks, or any other “kernel” where security, performance, and language
independence are desired.

Software Fault Isolation (SFI) [47] also provides memory safety and language independence. How-
ever, SFI requires the insertion of extra “sandboxing” code, corresponding to dynamic type tests,
to ensure that the extension is safe. In contrast, TAL does not have the overhead of the additional
sandboxing code, as typechecking is performed offline.

With regard to these security properties, TAL is an instance of Necula and Lee’s proof carrying code
(PCC) [33, 32]. Necula suggests that the relevant operational content of simple type systems may
be encoded using extensions to first-order predicate logic, and proofs of relevant security properties
such as memory safety may be automatically verified [32]. In addition, Necula’s approach places no
restrictions on code sequences or instruction scheduling, whereas TAL has a small number of such
restrictions (see Section 6.2). However, in general there is no complete algorithm for constructing
the proof that the code satisfies the desired security properties. In contrast, we provide a fully
automatic procedure for generating typed assembly language from a well-formed source term.

1Of course, while type safety implies many important security properties such as memory safety, there are a variety
of other important security properties, such as termination, that do not follow from type safety.
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1.1 Overview

In order to motivate the typing constructs in TAL and to justify our claims about its expressiveness,
we spend much of this paper sketching a compiler from a variant of the polymorphic λ-calculus to
TAL. The eager reader may wish to glance at Figure 26 for a sample TAL program.

Our compiler is structured as five translations between six typed calculi:

λF -
CPS-conversion

λK -
Closure conversion

λC -
Hoisting

λH -
Allocation

λA -
Code generation TAL

Each of these calculi is used as a first-class programming calculus in the sense that each translation
accepts any well-typed program of its input calculus; it does not assume that the input is the
output from the preceding translation. This allows the compiler to aggressively optimize code
between any of the translation steps. The inspiration for the phases and their ordering is derived
from SML/NJ [5, 3] (which is in turn based on the Rabbit [40] and Orbit compilers [20]) except
that types are used throughout compilation.

The rest of this paper proceeds by describing each of the languages and translations in our compiler
in full detail. We give the syntax and static semantics of each language as well as type-directed and
type-preserving translations between them. Section 2 presents λF, the compiler’s source language.
Section 3 presents the first intermediate language, λK, and gives a typed CPS translation to it based
on Danvy and Filinski [13] and Harper and Lillibridge [19]. Section 4 presents the next intermediate
language, λC, and gives a typed closure translation based on, but considerably simpler than, the
presentation of Minamide, Morrisett, and Harper [27]. Section 5 presents the λA intermediate
language and a translation that makes allocation and initialization of data structures explicit. At
this point in compilation, the intermediate code is essentially in a λ-calculus syntax for assembly
language, following the ideas of Wand [48]. Finally, Section 6 presents our typed assembly language
and defines a translation from λA to TAL. In Section 7 we show the type correctness of the compiler
and in Section 8 we discuss extensions to TAL to support language constructs not considered here.

2 System F

The source language for our compiler, λF, is a call-by-value variant of System F [16, 17, 36] (the
polymorphic λ-calculus) augmented with products and recursion on terms. The syntax for λF

appears below:

types τ ::= α | int | τ1→ τ2 | ∀α.τ | 〈τ1, . . . , τn〉
terms e ::= x | i | fix x(x1:τ1):τ2.e | e1e2 | Λα.e | e[τ ] |

〈e1, . . . , en〉 | πi(e) | e1 p e2 | if0 (e1, e2, e3)
primitives p ::= + | − | ×
type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

In order to simplify the presentation, λF has only integers as a base type (ranged over by the
metavariable i). We use ~X to denote a vector of syntactic objects drawn from X . For instance,
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FTV (τ) ⊆ ∆
∆ `F τ

∆; Γ `F x : τ
(Γ(x) = τ)

∆; Γ `F i : int

∆ `F τ1 ∆ `F τ2 ∆; Γ{x:τ1→ τ2, x1:τ1} `F e : τ2

∆; Γ `F fix x(x1:τ1):τ2.e : τ1→ τ2
(x, x1 6∈ Γ)

∆; Γ `F e1 : τ1→ τ2 ∆; Γ `F e2 : τ1

∆; Γ `F e1e2 : τ2

∆{α}; Γ `F e : τ

∆; Γ `F Λα.e : ∀α.τ
(α 6∈ ∆)

∆ `F τ ∆; Γ `F e : ∀α.τ ′

∆; Γ `F e[τ ] : τ ′[τ/α]

∆; Γ `F ei : τi

∆; Γ `F 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
∆; Γ `F e : 〈τ1, . . . , τn〉

∆; Γ `F πi(e) : τi
(1 ≤ i ≤ n)

∆; Γ `F e1 : int ∆; Γ `F e2 : int
∆; Γ `F e1 p e2 : int

∆; Γ `F e1 : int ∆; Γ `F e2 : τ ∆; Γ `F e3 : τ

∆; Γ `F if0 (e1, e2, e3) : τ

Figure 1: Static Semantics of λF

〈~τ〉 is shorthand for a product type 〈τ1, . . . , τn〉. The term fix x(x1:τ1):τ2.e represents a recursively-
defined function x with argument x1 of type τ1 and body e. Hence, both x and x1 are bound within
e. Similarly, α is bound in e for Λα.e and bound in τ for ∀α.τ . As usual, we consider syntactic
objects to be equivalent up to alpha-conversion of bound variables.

We interpret λF with a conventional call-by-value operational semantics (not presented here). The
static semantics (given in Figure 1) is specified as a set of inference rules for concluding judgments
of the form ∆; Γ `F e : τ where ∆ is a context containing the free type variables of Γ, e, and τ ; Γ is
a context that assigns types to the free variables of e; and τ is the type of e. A judgment ∆ `F τ

asserts that type τ is well-formed under type context ∆.

As a running example, we will consider the compilation of the following computation of 6 factorial:

(fix f(n:int):int .if0(n, 1, n× f(n − 1))) 6.

3 CPS Conversion

The first compilation stage is conversion to continuation-passing style (CPS). This stage names all
intermediate computations and eliminates the need for a control stack. All unconditional control
transfers, including function invocation and return, are achieved via function call. The target
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calculus for this phase is λK:

types τ ::= α | int | ∀[~α].(~τ)→ void | 〈~τ〉
terms e ::= v[~τ ](~v) | if0 (v, e1, e2) | halt [τ ]v | let x = v in e |

let x = πi(v) in e | let x = v1 p v2 in e
values v ::= x | i | 〈~v〉 | fix x[~α](x1:τ1, . . . , xn:τn).e
primitives p ::= + | − | ×
type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

Code in λK is nearly linear: it consists of a series of let bindings followed by a function call. The
exception to this is the if0 construct, which is still a tree containing two expressions.

In λK there is only one abstraction mechanism (fix), which abstracts both type and value variables,
thereby simplifying the rest of the compiler. The corresponding ∀ and → types are also combined.
However, we abbreviate ∀[ ].(~τ)→ void as (~τ)→ void .

Unlike in λF, functions in λK do not return values; instead, they invoke continuations. The function
notation “→ void” is intended to suggest this fact. Execution is completed by the construct halt [τ ]v,
which accepts a result value v of type τ and terminates the computation. Typically, this construct
is used by the top-level continuation. Since expressions never return values, typing judgments for
expressions do not state types. Instead, the judgment ∆; Γ `K e indicates that the expression e is
well-formed under type and value contexts ∆ and Γ. Aside from these issues, the static semantics
for λK is completely standard and appears in Figure 2.

3.1 Translating λF to λK

The implementation of CPS-conversion follows Danvy and Filinski [13] and Harper and Lillib-
ridge [19]. Danvy and Filinski give a CPS translation with a two-level type system that distin-
guishes between static (or “administrative”) β-redices and dynamic ones. They use this in a one-
pass translation that produces an efficient CPS value and prove the resulting value βη-equivalent to
a standard CPS translation (as given by Fischer and Plotkin [15, 35]) They also show how to modify
their translation so that it is “properly tail-recursive” (i.e., so that the unnecessary η-expansions
of tail-recursive functions are eliminated). Our translation uses both the two-level system and the
tail-recursion optimizations. Harper and Lillibridge discuss the typing properties of CPS conversion
of Fω augmented with callcc and abort primitives. We used their call-by-value translation to guide
our translation. Note that a real implementation would uncurry a type abstraction followed by a
value abstraction during the translation, creating a single polymorphic function.

The type translation K[[ · ]] mapping λF types to λK types is given in Figure 3. For any λF type
τ , N [[τ ]] represents the λK type for a τ -continuation, which is (K[[τ ]])→ void . The translation of
terms (Figures 4 and 5) is given by three judgments. Full programs are translated by the judgment
`F eF : τ

cps
; ecps, which asserts that ecps is a correct CPS conversion of the program eF. Most of the

work is done by two other judgments: one for terms in tailcall positions and another for all other
positions.

The non-tailcall translation is given by the judgment ∆; Γ `F eF : τ
cps∗
; ecps. The result, ecps, is a

static function that takes a static continuation representing the rest of the program and invokes it

5



FTV (τ) ⊆ ∆
∆ `K τ

∆; Γ `K x : τ
(Γ(x) = τ)

∆; Γ `K i : int

∆; Γ `K vi : τi

∆; Γ `K 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉
∆{~α} `K τi ∆{~α}; Γ{x:∀[~α](~τ)→ void , x1:τ1, . . . , xn:τn} `K e

∆; Γ `K fix x[~α](x1:τ1, . . . , xn:τn).e : ∀[~α](~τ)→ void
(x, xi 6∈ Γ, αi 6∈ ∆)

∆ `K σi ∆; Γ `K v : ∀[α1, . . . , αn].(τ1, . . . , τm)→ void ∆; Γ `K vj : τj[~σ/~α]
∆; Γ `K v[σ1, . . . , σn](v1, . . . , vm)

∆; Γ `K v : int ∆; Γ `K e1 ∆; Γ `K e2

∆; Γ `K if0 (v, e1, e2)
∆; Γ `K v : τ

∆; Γ `K halt [τ ]v

∆; Γ `K v : τ ∆; Γ{x:τ} `K e

∆; Γ `K let x = v in e
(x 6∈ Γ)

∆; Γ `K v : 〈τ1, . . . , τn〉 ∆; Γ{x:τi} `K e

∆; Γ `K let x = πi(v) in e
(x 6∈ Γ, 1 ≤ i ≤ n)

∆; Γ `K v1 : int ∆; Γ `K v2 : int ∆; Γ{x:int} `K e

∆; Γ `K let x = v1 p v2 in e
(x 6∈ Γ)

Figure 2: Static Semantics of λK

K[[α]] def= α

K[[int ]] def= int
K[[τ1→ τ2]]

def= (K[[τ1]],N [[τ2]])→ void
K[[∀α.τ ]] def= ∀[α].(N [[τ ]])→ void

K[[〈τ1, . . . , τn〉]] def= 〈K[[τ1]], . . . ,K[[τn]]〉

N [[τ ]] def= (K[[τ ]])→ void

Figure 3: Type Translation from λF to λK
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∅; ∅ `F e : τ
cps∗
; e′

`F e : τ
cps
; e′@(λy.halt [K[[τ ]]]y)

∆; Γ `F x : τ
cps∗
; λk.k@x

(Γ(x) = τ)
∆; Γ `F i : int cps∗

; λk.k@i

∆ `F τ1 ∆ `F τ2 ∆; Γ{x:τ1→ τ2, x1:τ1} `F e : τ2
cpst

; e′

∆; Γ `F fix x(x1:τ1):τ2.e : τ1→ τ2
cps∗
; λk.k@(fix x[ ](x1:K[[τ1]], c:N [[τ2]]).e′@c)

(x, x1 6∈ Γ)

∆; Γ `F e1 : τ1→ τ2
cps∗
; e′1 ∆; Γ `F e2 : τ1

cps∗
; e′2

∆; Γ `F e1e2 : τ2
cps∗
; λk.e′1@(λy1.e

′
2@(λy2.y1[ ](y2, fix [ ](z:K[[τ2]]).k@z)))

∆{α}; Γ `F e : τ
cpst

; e′

∆; Γ `F Λα.e : ∀α.τ
cps∗
; λk.k@(fix [α](c:N [[τ ]]).e′@c)

(α 6∈ ∆)

∆ `F τ ∆; Γ `F e : ∀α.τ ′ cps∗
; e′

∆; Γ `F e[τ ] : τ ′[τ/α] cps∗
; λk.e′@(λy.y[K[[τ ]]](fix [ ](z:K[[τ ′[τ/α]]]).k@z))

∆; Γ `F ei : τi
cps∗
; e′i

∆; Γ `F 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
cps∗
;

λk.e′1@(λy1.e
′
2@ · · · e′n@(λyn.k@〈y1, . . . , yn〉) · · ·)

∆; Γ `F e : 〈τ1, . . . , τn〉〉
cps∗
; e′

∆; Γ `F πi(e) : τi
cps∗
; λk.e′@(λy.let z = πi(y) in k@z)

(1 ≤ i ≤ n)

∆; Γ `F e1 : int cps∗
; e′1 ∆; Γ `F e2 : int cps∗

; e′2
∆; Γ `F e1 p e2 : int cps∗

; λk.e′1@(λy1.e
′
2@(λy2.let z = y1 p y2 in k@z))

∆; Γ `F e1 : int cps∗
; e′1 ∆; Γ `F e2 : τ

cpst

; e′2 ∆; Γ `F e3 : τ
cpst

; e′3
∆; Γ `F if0 (e1, e2, e3) : τ

cps∗
;

λk.e′1@(λy.let c = fix [ ](z : K[[τ ]]).k@z in
if0 (y, e′2@c, e′3@c))

Figure 4: Term Translation from λF to λK (except tailcalls)
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∆; Γ `F x : τ
cpst

; λc.c[ ](x)
(Γ(x) = τ)

∆; Γ `F i : int cpst

; λc.c[ ](i)

∆ `F τ1 ∆ `F τ2 ∆; Γ{x:τ1→ τ2, x1:τ1} `F e : τ2
cpst

; e′

∆; Γ `F fix x(x1:τ1):τ2.e : τ1→ τ2
cpst

; λc.c[ ](fix x[ ](x1:K[[τ1]], c′:N [[τ2]]).e′@c′)
(x, x1 6∈ Γ)

∆; Γ `F e1 : τ1→ τ2
cps∗
; e′1 ∆; Γ `F e2 : τ1

cps∗
; e′2

∆; Γ `F e1e2 : τ2
cpst

; λc.e′1@(λy1.e
′
2@(λy2.y1[ ](y2, c)))

∆{α}; Γ `F e : τ
cpst

; e′

∆; Γ `F Λα.e : ∀α.τ
cpst

; λc.c[ ](fix [α](c:N [[τ ]]).e′@c)
(α 6∈ ∆)

∆ `F τ ∆; Γ `F e : ∀α.τ ′ cps∗
; e′

∆; Γ `F e[τ ] : τ ′[τ/α] cpst

; λc.e′@(λy.y[K[[τ ]]](c))

∆; Γ `F ei : τi
cps∗
; e′i

∆; Γ `F 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
cpst

;

λc.e′1@(λy1.e
′
2@ · · · e′n@(λyn.c[ ](〈y1, . . . , yn〉)) · · ·)

∆; Γ `F e : 〈τ1, . . . , τn〉〉
cps∗
; e′

∆; Γ `F πi(e) : τi
cpst

; λc.e′@(λy.let z = πi(y) in c[ ](z))
(1 ≤ i ≤ n)

∆; Γ `F e1 : int cps∗
; e′1 ∆; Γ `F e2 : int cps∗

; e′2

∆; Γ `F e1 p e2 : int cpst

; λc.e′1@(λy1.e
′
2@(λy2.let z = y1 p y2 in c[ ](z)))

∆; Γ `F e1 : int cps∗
; e′1 ∆; Γ `F e2 : τ

cpst

; e′2 ∆; Γ `F e3 : τ
cpst

; e′3

∆; Γ `F if0 (e1, e2, e3) : τ
cpst

; λc.e′1@(λy.if0(y, e′2@c, e′3@c))

Figure 5: Tailcall Term Translation from λF to λK
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with the result of computing eF. The tailcall translation is given by the judgment ∆; Γ `F eF : τ
cpst

;

ecps. Its result, ecps, is similar except that it is a static function taking a dynamic continuation
(that is, a continuation coded in λK).

Throughout the translation, static functions and applications are denoted by λx.e and e1@e2, and
dynamic functions and applications are written in λK syntax. The static variables k, y and yi and
the dynamic variables c, c′ and z, which are used internally by the translation, are always assumed
fresh. An underscore is used in place of unreferenced variables.

Lemma 3.1 ∅; ∅ `F e : τ if and only if there exists e′ such that `F e : τ
cps
; e′.

Lemma 3.2 (CPS Conversion Type Correctness) If `F e : τ
cps
; e′ then ∅; ∅ `K e′.

These lemmas and the others like it are proved by induction on the source derivations.

When applied to the factorial example, this translation yields the following λK term:

(fix f [ ] (n:int, k:(int)→ void).
if0 (n, k[ ](1),

let x = n − 1 in
f [ ](x, fix [ ] (y:int).

let z = n× y
in k[ ](z))))

[ ] (6, fix [ ] (n:int). halt [int]n)

4 Simplified Polymorphic Closure Conversion

The second compilation stage is closure conversion, which separates program code from data. This
is done in two steps. Most of the work is done in the first step, closure conversion proper, which
rewrites all functions so that they are closed. In order to do this, any variables from the context
that are used in the function must be taken as additional arguments. These additional arguments
are collected in an environment, which is paired with the (now closed) code to make a closure. In
the second step, hoisting, closed function code is lifted to the top of the program, achieving the
desired separation between code and data. We begin with closure conversion proper; the hoisting
step is considered in Section 4.1.

Our approach to typed closure conversion is based on that of Minamide et al. [27]: If two functions
with the same type but different free variables (and therefore different environment types) were
naively closure converted, the types of their closures would not be the same. To prevent this,
closures are given existential types [28] where the type of the environment is held abstract.

However, we propose an approach to polymorphic closure conversion that is considerably simpler
than that of Minamide et al. which requires both abstract kinds and translucent types. Both of
these mechanisms arise because Minamide et al. desire a type-passing interpretation of polymor-
phism where types are constructed and passed to polymorphic functions at run-time. Under a
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types τ ::= α | int | ∀[~α].(~τ)→ void | 〈~τ〉 | ∃α.τ
terms e ::= v(~v) | if0 (v, e1, e2) | halt [τ ]v | let x = v in e | let x = πi(v) in e |

let x = v1 p v2 in e | let [α, x] = unpack v in e
values v ::= x | i | 〈~v〉 | v[τ ] | pack [τ, v] as ∃α.τ ′ | fixcode x[~α](x1:τ1, . . . , xn:τn).e
primitives p ::= + | − | ×
type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

Figure 6: Syntax of λC

type-passing interpretation, polymorphic instantiation cannot be treated via substitution, as this
requires making a copy of the code at run-time. Instead, a closure is constructed that consists of
closed code, a value environment mapping variables to values, and a type environment mapping
type variables to types.

In our approach, we assume a type-erasure interpretation of polymorphism as in The Definition
of Standard ML [26], and polymorphic instantiation is semantically handled via substitution (i.e.,
making a copy of the code with the types substituted for the type variables). As types will ul-
timately be erased from terms for execution, the “copies” can (and will) be represented by the
same term. This avoids the need for abstract kinds (since there are no type environments), as
well as translucent types. A type-erasure interpretation is not without its costs: It precludes some
advanced implementation techniques [31, 43, 1, 30] and has subtle interactions with side-effects.
We address the latter concern by forcing polymorphic abstractions to be values [42, 49] (i.e., they
must be syntactically attached to value abstractions).

To support this interpretation, we consider the partial application of functions to type arguments
to be values. For example, suppose v has the type ∀[~α, ~β].(~τ)→ void where the type variables
~α are intended for the type environment and the type variables ~β are intended for the function’s
type arguments. If ~σ is a vector of types to be used for the type environment, then the partial
instantiation v[~σ] is still treated as a value and has type ∀[~β].(~τ [~σ/~α])→ void . The syntax of λC is
otherwise similar to λK and appears in Figure 6. The static semantics of λC appears in Figure 7.
Notice in particular that the body e of a function expression fixcode x[~α](x1:τ1, . . . , xn:τn).e must
typecheck given only the type and value contexts ~α and {x:(τ1, . . . , τn)→ void , x1:τ1, . . . , xn:τn},
which result from the fixcode abstraction. In other words, code must be closed.

The closure conversion algorithm is formalized as a type-directed translation in Figures 8 and 9.
The translation of λK types is denoted by C[[ · ]]. Terms are translated by the judgment ∆; Γ `K

ecps
clos
; eclos, which asserts that eclos is a correct closure conversion of the term ecps, and values are

translated by the judgment ∆; Γ `K vcps : τ
clos
; vclos, which asserts that vclos is a correct closure

conversion of the value vcps. The variables z, xcode and xenv, which are used internally by the
translation, are always assumed fresh.

The key to the translation is the treatment of function types:

C[[∀[~α].(τ1, . . . , τn)→ void ]] def= ∃β.〈∀[~α].(β, C[[τ1]], . . . , C[[τn]])→ void , β〉

The existentially-quantified variable β is the type of the value environment for the closure. The
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FTV (τ) ⊆ ∆
∆ `C τ

∆; Γ `C x : τ
(Γ(x) = τ)

∆; Γ `C i : int

∆; Γ `C vi : τi

∆; Γ `C 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉

∆ `C σ ∆; Γ `C v : ∀[α, ~β].(~τ)→ void

∆; Γ `C v[σ] : ∀[~β].(~τ [σ/α])→ void

∆ `C τ ∆; Γ `C v : τ ′[τ/α]
∆; Γ `C pack [τ, v] as ∃α.τ ′ : ∃α.τ ′

~α `C τi ~α; {x:∀[~α].(~τ)→ void , x1:τ1, . . . , xn:τn} `C e

∆; Γ `C fixcode x[~α](x1:τ1, . . . , xn:τn).e : ∀[~α].(~τ)→ void

∆; Γ `C v : ∀[ ].(τ1, . . . , τn)→ void ∆; Γ `C vi : τi

∆; Γ `C v(v1, . . . , vn)

∆; Γ `C v : int ∆; Γ `C e1 ∆; Γ `C e2

∆; Γ `C if0 (v, e1, e2)

∆; Γ `C v : τ

∆; Γ `C halt [τ ]v

∆; Γ `C v : τ ∆; Γ{x:τ} `C e

∆; Γ `C let x = v in e
(x 6∈ Γ)

∆; Γ `C v : 〈τ1, . . . , τn〉 ∆; Γ{x:τi} `C e

∆; Γ `C let x = πi(v) in e
(x 6∈ Γ, 1 ≤ i ≤ n)

∆; Γ `C v1 : int ∆; Γ `C v2 : int ∆; Γ{x:int} `C e

∆; Γ `C let x = v1 p v2 in e
(x 6∈ Γ)

∆; Γ `C v : ∃α.τ ∆α; Γ{x:τ} `C e

let [α, x] = unpack v in e
(x 6∈ Γ, α 6∈ ∆)

Figure 7: Static Semantics of λC

11



C[[α]] def= α

C[[int ]] def= int
C[[∀[~α].(τ1, . . . , τn)→ void ]] def= ∃β.〈∀[~α].(β, C[[τ1]], . . . , C[[τn]])→ void , β〉

C[[〈τ1, . . . , τn〉]] def= 〈C[[τ1]], . . . , C[[τn]]〉

Figure 8: Type Translation from λK to λC

closure itself is a pair consisting of a piece of code that is instantiated with the type environment,
and the value environment. The instantiated code takes as arguments the type arguments and
value arguments of the original abstraction, as well as the value environment of the closure.

Lemma 4.1 ∅; ∅ `K e if and only if there exists e′ such that ∅; ∅ `K e
clos
; e′

Lemma 4.2 (Closure Conversion Type Correctness) If ∅; ∅ `K e
clos
; e′ then ∅; ∅ `C e′.

4.1 Hoisting

After closure conversion, all functions are closed and may be hoisted out to the top-level without
difficulty. In a real compiler, these two phases would be combined but we have separated them
here for simplicity. After hoisting, programs belong to a calculus, λH, that is similar to λC except
that fixcode is no longer a value. Instead, code blocks are defined at the top-level by a letrec prefix,
which is called a heap in anticipation of λA and TAL. A new value form, labels (`), is used to refer
to those code blocks. The syntax of λH appears in Figure 10.

These changes require a small change to the typing system. In addition to typing values, we also
must assign heap types (ranged over by Ψ) to heaps. These heap types are added to value and term
typing judgments as an additional context and are passed unmodified through each typing rule.
There are also two new judgments: the judgment `H P indicates that the program P is well-formed,
and the judgment Ψ `H b : ` 7→ τ indicates that the block b gives the label ` type τ assuming the
heap has type Ψ. The static semantics of λH appear in Figure 11; rules that appear identically
(except for the addition of heap types) in the static semantics of λC are omitted for brevity.

The translation of full programs from λC to λH is given by the judgment `C eclos
hst
; ehst, which

states that ehst is the hoisted version of the program eclos. No translation is required for types. The
translation rules are exactly as expected and are omitted in the interest of brevity.

Lemma 4.3 ∅; ∅ `C e if and only if there exists P such that `C e
hst
; P .

Lemma 4.4 (Hoisting Type Correctness) If `C e
hst
; P then `H P .

In Figure 12 appears the factorial example after the closure conversion and hoisting translations
are applied and some simple optimizations are performed (beta reduction and copy propagation).
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∆ `K τi Γ = {y1:τ ′
1, . . . , ym:τ ′

m} ∆ = ~β

∆~α; Γ[x:τcode, x1:τ1, . . . , xn:τn] `K e
clos
; e′

∆; Γ `K fix x[~α](x1:τ1, . . . , xn:τn).e : τcode
clos
;

pack [τenv, 〈vcode[~β], venv〉] as C[[τcode]]

where τcode = ∀[~α].(τ1, . . . , τn)→ void
τenv = 〈C[[τ ′

1]], · · · , C[[τ ′
m]]〉

venv = 〈y1, . . . , ym〉
vcode = fixcode xcode[~β, ~α](xenv:τenv, x1:C[[τ1]], . . . , xn:C[[τn]]).

let x = pack [τenv, 〈xcode[~β], xenv〉] as C[[τcode]] in
let y1 = π1(xenv) in
...

let ym = πm(xenv) in e′

(x, xi 6∈ Γ, αi 6∈ ∆)

∆; Γ `K v : ∀[α1, . . . , αm].(τ1, . . . , τn)→ void clos
; v′ ∆ `K σi ∆; Γ `K vi : τi[~σ/~α] clos

; v′i
∆; Γ `K v[σ1, . . . , σm](v1, . . . , vn) clos

; e

where e = let [αenv, z] = unpack v′ in
let xcode = π1(z) in
let xenv = π2(z) in
xcode[C[[σ1]]] · · · [C[[σm]]](xenv, v

′
1, . . . , v

′
n)

∆; Γ `K x : τ
clos
; x

(Γ(x) = τ)
∆; Γ `K i : int clos

; i

∆; Γ `K vi : τi
clos
; v′i

∆; Γ `K 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉 clos
; 〈v′1, . . . , v′n〉

∆; Γ `K v : int clos
; v′ ∆; Γ `K e1

clos
; e′1 ∆; Γ `K e2

clos
; e′2

∆; Γ `K if0 (v, e1, e2)
clos
; if0 (v′, e′1, e′2)

∆; Γ `K v : τ
clos
; v′

∆; Γ `K halt [τ ]v clos
; halt [C[[τ ]]]v′

∆; Γ `K v : τ
clos
; v′ ∆; Γ{x:τ} `K e

clos
; e′

∆; Γ `K let x = v in e
clos
; let x = v′ in e′

(x 6∈ Γ)

∆; Γ `K v : 〈τ1, . . . , τn〉 clos
; v′ ∆; Γ{x:τi} `K e

clos
; e′

∆; Γ `K let x = πi(v) in e
clos
; let x = πi(v′) in e′

(x 6∈ Γ, 1 ≤ i ≤ n)

∆; Γ `K v1 : int clos
; v′1 ∆; Γ `K v2 : int clos

; v′2 ∆; Γ{x:int} `K e
clos
; e′

∆; Γ `K let x = v1 p v2 in e
clos
; let x = v′1 p v′2 in e′

(x 6∈ Γ)

Figure 9: Term Translation from λK to λC
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types τ ::= α | int | ∀[~α].(~τ)→ void | 〈~τ〉 | ∃α.τ

terms e ::= v(~v) | if0 (v, e1, e2) | halt [τ ]v | let x = v in e | let x = πi(v) in e |
let x = v1 p v2 in e | let [α, x] = unpack v in e

values v ::= x | ` | i | 〈~v〉 | v[τ ] | pack [τ, v] as ∃α.τ ′

blocks b ::= ` 7→ code[~α](x1:τ1, . . . , xn:τn).e
programs P ::= letrec~b in e

primitives p ::= + | − | ×
type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

heap types Ψ ::= `1:τ1, . . . , `n:τn

Figure 10: Syntax of λH

Ψ; ∆; Γ `H ` : τ
(Ψ(`) = τ)

~α `H τi Ψ; ~α; {x1:τ1, . . . , xn:τn} `H e

Ψ `H ` 7→ code[~α](x1:τ1, . . . , xn:τn).e : ` 7→ ∀[~α].(τ1, . . . , τn)→ void

∅ `H τi Ψ `H bi : `i 7→ τi Ψ; ∅; ∅ `H e

`H letrec b1, . . . , bn in e

(
Ψ = `1:τ1, . . . , `n:τn

`j 6= `k when j 6= k

)

Figure 11: New Rules in the Static Semantics of λH
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letrec `fact 7→ (* main factorial code block *)
code[ ](env:〈〉, n:int, k:τk).

if0 (n, (* true branch: continue with 1 *)
let [β, kunpack ] = unpack k in
let kcode = π0(kunpack ) in
let kenv = π1(kunpack )
in

kcode (kenv , 1),
(* false branch: recurse with n− 1 *)
let x = n− 1 in
(* compute factorial of n − 1 and continue to k′ *)

`fact (env , x, pack [〈int, τk〉, 〈`cont , 〈n, k〉〉] as τk))
`cont 7→ (* code block for continuation after factorial computation *)

code[ ](env:〈int, τk〉, y:int).
(* open the environment *)
let n = π0(env) in
let k = π1(env) in
(* continue with n × y *)
let z = n× y in
let [β, kunpack ] = unpack k in
let kcode = π0(kunpack ) in
let kenv = π1(kunpack )
in

kcode (kenv , z)
`halt 7→ (* code block for top-level continuation *)

code[ ](env:〈〉, n:int). halt[int](n)
in

`fact(〈〉, 6, pack [〈〉, 〈`halt , 〈〉〉] as τk)

where τk is ∃α.〈(α, int)→ void , α〉

Figure 12: Factorial in λH
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types τ ::= α | int | ∀[~α].(~τ)→ void | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ
initialization flags ϕ ::= 0 | 1
terms e ::= let ~d in v(~v) | let ~d in if0 (v, e1, e2) | let ~d in halt[τ ]v
declarations d ::= x = v | x = πi(v) | x = v1 p v2 | [α, x] = unpack v |

x = malloc[~τ ] | x = v[i]← v′

values v ::= x | ` | i | v[τ ] | pack [τ, v] as ∃α.τ ′

blocks b ::= ` 7→ code[~α](x1:τ1, . . . , xn:τn).e
programs P ::= letrec~b in e

primitives p ::= + | − | ×
type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

heap types Ψ ::= `1:τ1, . . . , `n:τn

Figure 13: Syntax of λA

5 Explicit Allocation

The λH intermediate language still has an atomic constructor for forming tuples, but machines
must allocate space for a tuple and fill it out field by field; the allocation stage makes this process
explicit. The syntax of λA, the target calculus of this stage, is similar to that of λH, and appears
in Figure 13. Note that there is no longer a value form for tuples. The creation of an n-element
tuple becomes a computation that is separated into an allocation step and n initialization steps.
For example, if v0 and v1 are integers, the pair 〈v0, v1〉 is created as follows (where types have been
added for clarity):

let x0:〈int0, int0〉 = malloc[int , int]
x1:〈int1, int0〉 = x0[0]← v0

x :〈int1, int1〉 = x1[1]← v1
...

The “x0 = malloc[int , int]” step allocates an uninitialized tuple and binds the address (i.e., label)
of the tuple to x0. The “0” superscripts on the types of the fields indicate that the fields are
uninitialized, and hence no projection may be performed on those fields. The “x1 = x0[0] ← v0”
step updates the first field of the tuple with the value v0 and binds the address of the tuple to x1.
Note that x1 is assigned a type where the first field has a “1” superscript, indicating that this field
is initialized. Finally, the “x = x1[1]← v1” step initializes the second field of the tuple with v1 and
binds the address of the tuple to x, which is assigned the fully initialized type 〈int1, int1〉. Hence,
both π0 and π1 are allowed on x.

Like all the intermediate languages of the compiler, this code sequence need not be atomic; it
may be rearranged or optimized in any well-typed manner. The initialization flags on the types
ensure that a field cannot be projected unless it has been initialized. Furthermore, the syntactic
value restriction ensures there is no unsoundness in the presence of polymorphism. However, it is
important to note that x[i]← v is interpreted as an imperative operation, and thus at the end of
the sequence, x0, x1, and x are all aliases for the same location, even though they have different
(but compatible) types. Consequently, the initialization flags do not prevent a field from being
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initialized twice. It is possible to use monads [44, 22] or linear types [18, 45, 46] to ensure that a
tuple is initialized exactly once, but we have avoided these approaches in the interest of a simpler
type system.

The static semantics for λA are given in Figure 14. Figure 15 presents the type translation from
λH to λA. All that happens is that initialization flags are added to each field of tuple types:

A[[〈τ1, . . . , τn〉]] def= 〈A[[τ1]]
1, . . . ,A[[τn]]1〉

The term translation appears in Figure 16. In this translation, values are translated to both a
value and a series of declarations that are used to construct that value. For non-tuple values, that
series of declarations will be null (denoted by ε). The variables yi, which are used internally by
the translation, are always assumed fresh. When e is let ~d in E, we write let ~d′ in e to mean
let ~d, ~d′ in E.

Lemma 5.1 `H P if and only if there exists P ′ such that `H P
alloc
; P ′.

Lemma 5.2 (Allocation Type Correctness) If `H P
alloc
; P ′ then `A P ′.

The factorial example after application of the explicit allocation translation appears in Figure 17.

6 Typed Assembly Language

The final compilation stage, code generation, converts λA to TAL. All of the major typing constructs
in TAL are present in λA and, indeed, code generation is largely syntactic. To summarize the type
structure at this point, there is a combined abstraction mechanism that may simultaneously abstract
a type environment, a set of type arguments, and a set of value arguments. Values of these types
may be partially applied to type environments and remain values. There are existential types to
support closures and other data abstractions. Finally, there are n-tuples with flags on the fields
indicating whether the field has been initialized.

A key technical distinction between λA and TAL is that λA uses alpha-varying variables, whereas
TAL uses register names, which like labels on records, do not alpha-vary.2 Following standard
practice, we assume an infinite supply of registers. Mapping to a language with a finite number of
registers may be performed by spilling registers into a tuple, and reloading values from this tuple
when necessary.

One of the consequences of this aspect of TAL is that a register calling convention must be used
in code generation, and that calling convention must be made explicit in the types. Hence TAL
includes the type ∀[~α]{r1:τ1, . . . , rn:τn}, which is used to describe entry points of code blocks (i.e.,
code labels) and is the TAL analog of the λA function type, ∀[~α].(τ1, . . . , τn)→ void . The key
difference is that we assign fixed registers to the arguments of the code. Intuitively, to jump to
a block of code of this type, the type variables ~α must be suitably instantiated, and registers r1
through rn must contain values of type τ1 through τn, respectively.

2Indeed, the register file may be viewed as a record, and register names as field labels for this record.
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FTV (τ) ⊆ ∆
∆ `A τ

Ψ; ∆; Γ `A x : τ
(Γ(x) = τ)

Ψ; ∆; Γ `A ` : τ
(Ψ(`) = τ)

Ψ; ∆; Γ `A i : int

∆ `A σ Ψ; ∆; Γ `A v : ∀[α, ~β].(~τ)→ void

Ψ; ∆; Γ `A v[σ] : ∀[~β].(~τ [σ/α])→ void

∆ `A τ Ψ; ∆; Γ `A v : τ ′[τ/α]
Ψ; ∆; Γ `A pack [τ, v] as ∃α.τ ′ : ∃α.τ ′

Ψ; ∆; Γ `A v : ∀[ ].(τ1, . . . , τn)→ void Ψ; ∆; Γ `A vi : τi

Ψ; ∆; Γ `A let in v(v1, . . . , vn)

Ψ; ∆; Γ `A v : int Ψ; ∆; Γ `A e1 Ψ; ∆; Γ `A e2

Ψ; ∆; Γ `A let in if0 (v, e1, e2)

Ψ; ∆; Γ `A v : τ

Ψ; ∆; Γ `A let in halt [τ ]v

Ψ; ∆; Γ `A v : τ Ψ; ∆; Γ{x:τ} `A let ~d in e

Ψ; ∆; Γ `A let x = v, ~d in e
(x 6∈ Γ)

Ψ; ∆; Γ `A v : 〈τϕ1
1 , . . . , τϕn

n 〉 Ψ; ∆; Γ{x:τi} `A let ~d in e

Ψ; ∆; Γ `A let x = πi(v), ~d in e
(ϕi = 1, x 6∈ Γ, 1 ≤ i ≤ n)

Ψ; ∆; Γ `A v1 : int Ψ; ∆; Γ `A v2 : int Ψ; ∆; Γ{x:int} `A let ~d in e

Ψ; ∆; Γ `A let x = v1 p v2, ~d in e
(x 6∈ Γ)

Ψ; ∆; Γ `A v : ∃α.τ Ψ; ∆α; Γ{x:τ} `A let ~d in e

Ψ; ∆; Γ `A let [α, x] = unpack v, ~d in e
(x 6∈ Γ, α 6∈ ∆)

∆ `A τi Ψ; ∆; Γ{x:〈τ0
1 , . . . , τ0

n〉} `A let ~d in e

Ψ; ∆; Γ `A let x = malloc[τ1, . . . , τn], ~d in e
(x 6∈ Γ)

Ψ; ∆; Γ `A v : 〈τϕ1
1 , . . . , τϕn

n 〉 Ψ; ∆; Γ `A v′ : τi

Ψ; ∆; Γ{x:〈τϕ1
1 , . . . , τ

ϕi−1

i−1 , τ1
i , τ

ϕi+1

i+1 , . . . , τϕn
n 〉} `A let ~d in e

Ψ; ∆; Γ `A let x = v[i]← v′, ~d in e
(x 6∈ Γ, 1 ≤ i ≤ n)

~α `A τi Ψ; ~α; {x1:τ1, . . . , xn:τn} `A e

Ψ `A ` 7→ code[~α](x1:τ1, . . . , xn:τn).e : ` 7→ ∀[~α].(τ1, . . . , τn)→ void

∅ `A τi Ψ `A bi : `i 7→ τi Ψ; ∅; ∅ `A e

`A letrec b1, . . . , bn in e

(
Ψ = `1:τ1, . . . , `n:τn

`j 6= `k when j 6= k

)

Figure 14: Static Semantics of λA
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A[[α]] def= α

A[[int]] def= int
A[[∀[~α].(~τ)→ void ]] def= ∀[~α].(A[[~τ ]])→ void
A[[〈τ1, . . . , τn〉]] def= 〈A[[τ1]]

1, . . . ,A[[τn]]1〉
A[[∃α.τ ]] def= ∃α.A[[τ ]]

Figure 15: Type Translation from λH to λA

Another technical point is that registers may contain only word values, which are integers, pointers
into the heap (i.e., labels), and instantiated or packed word values. Tuples and code blocks are
large values and must be heap allocated. In this manner, TAL makes the layout of data in memory
explicit.

In the remainder of this section, we present the syntax of TAL (Section 6.1), its dynamic semantics
(Section 6.2), and its full static semantics (Section 6.3). Finally, we sketch the translation from λA

to TAL (Section 6.4).

6.1 TAL Syntax

We present the full syntax of TAL in Figure 18. A TAL abstract machine or program consists of
a heap, a register file and a sequence of instructions. The heap is a mapping of labels to heap
values, which are tuples and code. The register file is a mapping of registers (ranged over by the
metavariable r) to word values. Heaps, register files, and their respective types are not considered
syntactically correct if they repeat labels or registers. When r appears in R, the notation R{r 7→ w}
represents the register file R with the r binding replaced with w, and a similar notation is used for
register file types; if r does not appear in R, the indicated binding is merely added, as usual.

Although heap values are not word values, the labels that point to them are. The other word values
are integers, instantiations of word values, existential packages, and junk values (?τ), which are
used by the operational semantics to represent uninitialized data. A small value is either a word
value, a register, or an instantiated or packed small value. The distinction between word and small
values is drawn because a register must contain a word, not another register. Code blocks are linear
sequences of instructions that abstract a set of type variables, and state their register assumptions.
The sequence of instructions is always terminated by a jmp or halt instruction. Expressions that
differ only by alpha-variation (of type variables) are considered identical, as are programs that
differ only in the order of fields in a heap or register file.

6.2 TAL Operational Semantics

The operational semantics of TAL is presented in Figure 19 as a deterministic rewriting system
P 7−→ P ′ that maps programs to programs. Although, as discussed above, we ultimately intend
a type-erasure interpretation, we do not erase the types from the operational semantics presented
here, so that we may more easily state and prove a subject reduction theorem (Lemma 6.1). The
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Ψ; ∆; Γ `H x : τ
alloc
; x, ε

(Γ(x) = τ)
Ψ; ∆; Γ `H ` : τ

alloc
; `, ε

(Ψ(`) = τ)

Ψ; ∆; Γ `H i : int alloc
; i, ε

Ψ; ∆; Γ `H vi : τi
alloc
; v′i, ~di

Ψ; ∆; Γ `H 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉 alloc
; yn, (~d1, . . . , ~dn,

y0 = malloc[A[[τ1]], . . . ,A[[τn]]],
y1 = y0[1]← v′1,
...
yn = yn−1[n]← v′n)

∆ `H σ Ψ; ∆; Γ `H v : ∀[α, ~β](~τ)→ void alloc
; v′, ~d

Ψ; ∆; Γ `H v[σ] : ∀[~β](~τ [σ/α])→ void ; v′[A[[σ]]], ~d

∆ `H τ Ψ; ∆; Γ `H v : τ ′[τ/α] alloc
; v′, ~d

Ψ; ∆; Γ `H pack [τ, v] as ∃α.τ ′ : ∃α.τ ′ alloc
; pack [A[[τ ]], v′] as A[[∃α.τ ′]], ~d

Ψ; ∆; Γ `H v : ∀[ ].(τ1, . . . , τn)→ void alloc
; v′, ~d Ψ; ∆; Γ `H vi : τi

alloc
; v′i, ~di

Ψ; ∆; Γ `H v(v1, . . . , vn) alloc
; let ~d, ~d1, . . . , ~dn in v′(v′1, . . . , v′n)

Ψ; ∆; Γ `H v : int alloc
; v′, ~d Ψ; ∆; Γ `H e1

alloc
; e′1 Ψ; ∆; Γ `H e2

alloc
; e′2

Ψ; ∆; Γ `H if0 (v, e1, e2)
alloc
; let ~d in if0 (v′, e′1, e′2)

Ψ; ∆; Γ `H v : τ
alloc
; v′, ~d

Ψ; ∆; Γ `H halt [τ ]v; let ~d in halt [A[[τ ]]]v′

Ψ; ∆; Γ `H v : τ
alloc
; v′, ~d Ψ; ∆; Γ{x:τ} `H e

alloc
; e′

Ψ; ∆; Γ `H let x = v in e
alloc
; let ~d, x = v′ in e′

(x 6∈ Γ)

Ψ; ∆; Γ `H v : 〈τ1, . . . , τn〉 alloc
; v′, ~d Ψ; ∆; Γ{x:τi} `H e

alloc
; e′

Ψ; ∆; Γ `H let x = πi(v) in e
alloc
; let ~d, x = πi(v′) in e′

(x 6∈ Γ, 1 ≤ i ≤ n)

Ψ; ∆; Γ `H v1 : int alloc
; v′1, ~d1 Ψ; ∆; Γ `H v2 : int alloc

; v′2, ~d2 Ψ; ∆; Γ{x:int} `H e
alloc
; e′

Ψ; ∆; Γ `H let x = v1 p v2 in e
alloc
; let ~d1, ~d2, x = v′1 p v′2 in e′

(x 6∈ Γ)

Ψ; ∆; Γ `H v : ∃α.τ
alloc
; v′, ~d Ψ; ∆α; Γ{x:τ} `H e

alloc
; e′

Ψ; let [α, x] = unpack v in e
alloc
; let ~d, [α, x] = unpack v′ in e′

(x 6∈ Γ, α 6∈ ∆)

~α `H τi Ψ; ~α; {x1:τ1, . . . , xn:τn} `H e
alloc
; e′

Ψ `H ` 7→ code[~α](x1:τ1, . . . , xn:τn).e : ` 7→ ∀[~α].(τ1, . . . , τn)→ void alloc
;

` 7→ code[~α](x1:A[[τ1]], . . . , xn:A[[τn]]).e′

∅ `H τi Ψ `H bi : `i 7→ τi
alloc
; b′i Ψ; ∅; ∅ `H e

alloc
; e′

`H letrec b1, . . . , bn in e
alloc
; letrec b′1, . . . , b′n in e′

(
Ψ = `1:τ1, . . . , `n:τn

`j 6= `k when j 6= k

)

Figure 16: Term Translation from λH to λA
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letrec `fact 7→ code[ ](env:〈〉, n:int, k:τk).
let in if0 (n,

let [β, kunpack ] = unpack k

kcode = π0(kunpack )
kenv = π1(kunpack )

in kcode (kenv , 1),
let x = n− 1

y5 = malloc[int , τk]
y6 = y5[1]← n
y7 = y6[2]← k

y8 = malloc[(〈int1, τ1
k 〉, int)→ void , 〈int1, τ1

k 〉, ]
y9 = y8[1]← `cont

y10 = y9[2]← y7

in `fact (env, x, pack [〈int1, τ1
k 〉, y10] as τk))

`cont 7→ code[ ](env:〈int1, τ1
k 〉, y:int).

let n = π0(env)
k = π1(env)
z = n× y

[β, kunpack ] = unpack k
kcode = π0(kunpack )
kenv = π1(kunpack )

in kcode (kenv , z)
`halt 7→ code[ ](env:〈〉, n:int). let in halt [int ](n)

in
let y0 = malloc[ ]

y1 = malloc[ ]
y2 = malloc[(〈〉, int)→ void , 〈〉]
y3 = y2[1]← `halt
y4 = y3[2]← y1

in `fact (y0, 6, pack [〈〉, y4] as τk)

where τk is ∃α.〈(α, int)→ void1, α1〉

Figure 17: Factorial in λA
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types τ ::= α | int | ∀[~α].Γ | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ
initialization flags ϕ ::= 0 | 1
heap types Ψ ::= {`1:τ1, . . . , `n:τn}
register file types Γ ::= {r1:τ1, . . . , rn:τn}
type contexts ∆ ::= ~α

registers r ::= r1 | r2 | r3 | · · ·
word values w ::= ` | i | ?τ | w[τ ] | pack [τ, w] as τ ′

small values v ::= r | w | v[τ ] | pack [τ, v] as τ ′

heap values h ::= 〈w1, . . . , wn〉 | code[~α]Γ.S

heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {r1 7→ w1, . . . , rn 7→ wn}

instructions ι ::= add rd, rs, v | bnz r, v | ld rd, rs[i] | malloc rd[~τ ] | mov rd, v |
mul rd, rs, v | st rd[i], rs | sub rd, rs, v | unpack[α, rd], v

instruction sequences S ::= ι; S | jmp v | halt[τ ]
programs P ::= (H, R, S)

Figure 18: Syntax of TAL

well-formed terminal configurations of the rewriting system have the form (H, R{r1 7→ w}, halt[τ ]).
This corresponds to a machine state where the register r1 contains the value computed by the
computation. All other terminal configurations are considered to be “stuck” programs.

If we erase the types from the instructions, then their meaning is intuitively clear and there is a
one-to-one correspondence with conventional assembly language instructions. The two exceptions
to this are the unpack and malloc instructions, which are discussed below.

Intuitively, the ld rd, rs[i] instruction loads the ith component (counting from 0) of the tuple bound
to the label in rs, and places this word value in rd. Conversely, st rd[i], rs places the word value in
rs at the ith position of the tuple bound to the label in rd. The instruction jmp v, where v is a value
of the form `[~τ ], transfers control to the code bound to the label `, instantiating the abstracted
type variables of ` with ~τ . The bnz r, v instruction tests the value in r to see if it is zero. If so,
then control continues with the next instruction. Otherwise control is transferred to v as with the
jmp instruction.

The instruction unpack[α, rd], v, where v is a value of the form pack [τ ′, v′] as τ , is evaluated by
substituting τ ′ for α in the remainder of the sequence of instructions currently being executed,
and by binding the register rd to the value v′. If types are erased, the unpack instruction can be
implemented with a mov instruction.

As at the λA level, malloc rd[τ1, . . . , τn] allocates a fresh, uninitialized tuple in the heap and binds
the address of this tuple to rd. Of course, real machines do not provide a primitive malloc in-
struction. Our intention is that, as types are erased, malloc is expanded into a fixed instruction
sequence that allocates a tuple of the appropriate size. Because this instruction sequence is ab-
stract, it prevents optimization from re-ordering and interleaving these underlying instructions with
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(H, R, S) 7−→ P where
if S = then P =
add rd, rs, v; S ′ (H, R{rd 7→ R(rs) + R̂(v)}, S ′)

and similarly for mul and sub

bnz r, v; S ′ (H, R, S ′)
when R(r) = 0

bnz r, v; S ′ (H, R, S ′′[~τ/~α])
when R(r) = i and i 6= 0 where R̂(v) = `[~τ ]

and H(`) = code[~α]Γ.S ′′

jmp v (H, R, S ′[~τ/~α])
where R̂(v) = `[~τ ]
and H(`) = code[~α]Γ.S ′

ld rd, rs[i]; S ′ (H, R{rd 7→ wi}, S ′)
where R(rs) = `
and H(`) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

malloc rd[τ1, . . . , τn]; S ′ (H{` 7→ 〈?τ1, . . . , ?τn〉}, R{rd 7→ `}, S ′)
where ` 6∈ H

mov rd, v; S ′ (H, R{rd 7→ R̂(v)}, S ′)
st rd[i], rs; S ′ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, S ′)

where R(rd) = `
and H(`) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

unpack[α, rd], v; S ′ (H, R{rd 7→ w}, S ′[τ/α])
where R̂(v) = pack [τ, w] as τ ′

Where R̂(v) =




R(r) when v = r
w when v = w

R̂(v′)[τ ] when v = v′[τ ]
pack [τ, R̂(v′)] as τ ′ when v = pack [τ, v′] as τ ′

Figure 19: Operational Semantics of TAL

the surrounding TAL code. However, this is the only instruction sequence that is abstract in TAL.

Real machines also have a finite amount of heap space. It is straightforward to link our TAL to a
conservative garbage collector [9] in order to reclaim unused heap values. Support for an accurate
collector would require introducing tags so that we may distinguish pointers from integers, or else
require a type-passing interpretation [43, 30]. The tagging approach is readily accomplished in our
framework.

6.3 TAL Static Semantics

The static semantics for TAL appears in Figures 21 and 22 and consists of thirteen judgments,
summarized in Figure 20 and elaborated briefly below. The static semantics is inspired by and
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Judgment Meaning
∆ `TAL τ type τ is a well-formed type
`TAL Ψ htype Ψ is a well-formed heap type
∆ `TAL Γ rftype Γ is a well-formed register file type
∆ `TAL τ1 ≤ τ2 type τ1 is a subtype of τ2

∆ `TAL Γ1 ≤ Γ2 rftype Γ1 is register file subtype of Γ2

`TAL H : Ψ heap H is a well-formed heap of heap type Ψ
Ψ `TAL R : Γ regfile R is a well-formed register file of register file type Γ
Ψ `TAL h : τ hval h is a well-formed heap value of type τ
Ψ; ∆ `TAL w : τ wval w is a well-formed word value of type τ

Ψ; ∆ `TAL w : τϕ fwval w is a well-formed word value of flagged type τϕ

(i.e., w has type τ or w is ?τ and ϕ is 0)
Ψ; ∆; Γ `TAL v : τ v is a well-formed small value of type τ
Ψ; ∆; Γ `TAL S S is a well-formed instruction sequence
`TAL P P is a well-formed program

Figure 20: TAL Static Semantic Judgments

follows the conventions of Morrisett and Harper’s λ→∀
gc [30].

The first five judgments state well-formedness and subtyping of various sorts of types. Each of
these judgments are relative to a type context except the heap type well-formedness judgment;
heaps and heap types are required to be closed, so no type context is used. Next are two judgments
for assigning types to heaps and to register files; neither heaps nor register files may contain free
type variables, but register files may contain references to the heap.

The next four judgments are for assigning types to values. In addition to one rule for each sort
of value, there is a rule for assigning flagged types to word values: the junk value ?τ may not
be assigned any regular type, but it may be assigned the flagged type τ0. Each value sort may
contain references to the heap, all but heap values may contain free type variables, but (as discussed
above) only small values may contain registers. The final two judgments assert well-formedness of
instruction sequences and programs.

A few additional words are merited on the two subtyping judgments. Neither of these are intended
to support subtyping in the usual sense, although they could be expanded to do so. Instead, they
are used to allow the forgetting of information in particular places where necessary. The subtyping
judgment makes it possible to forget that a field of a tuple has been initialized. This is used in
the subject reduction argument (Lemma 6.1) where it is sometimes necessary that references to an
initialized tuple be given the old uninitialized type. The register file subtyping judgment makes it
possible to forget the types of some registers. This makes it possible to jump to a code block when
“too many” registers are defined.

The following two lemmas and their corollary establish type safety for TAL. Their proofs appear
in Appendix A.

Lemma 6.1 (Subject Reduction) If `TAL P and P 7−→ P ′, then `TAL P ′.
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∆ `TAL τ type `TAL Ψ htype ∆ `TAL Γ rftype

(type) FTV (τ ) ⊆ ∆
∆ `TAL τ type

(heap-type) ∅ `TAL τi type
`TAL {`1:τ1, . . . , `n:τn} htype

(reg-type) ∆ `TAL τi type
∆ `TAL {r1:τ1, . . . , rn:τn} rftype

∆ `TAL τ1 ≤ τ2 type ∆ `TAL Γ1 ≤ Γ2 rftype

(reflex) ∆ `TAL τ type
∆ `TAL τ ≤ τ type

(trans) ∆ `TAL τ1 ≤ τ2 type ∆ `TAL τ2 ≤ τ3 type
∆ `TAL τ1 ≤ τ3 type

(0-1) ∆ `TAL τi type
∆ `TAL 〈τϕ1

1 , . . . , τ
ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉 ≤ 〈τ
ϕ1
1 , . . . , τ

ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉 type

(weaken) ∆ `TAL τi type (for 1 ≤ i ≤ m)
∆ `TAL {r1 : τ1, . . . , rm : τm} ≤ {r1 : τ1, . . . , rn : τn} rftype

(m ≥ n)

`TAL P `TAL H : Ψ heap Ψ `TAL R : Γ regfile

(prog) `TAL H : Ψ heap Ψ `TAL R : Γ regfile Ψ; ∅; Γ `TAL S

`TAL (H, R, S)

(heap) `TAL Ψ htype Ψ `TAL hi : τi hval
`TAL {`1 7→ h1, . . . , `n 7→ hn} : Ψ heap

(Ψ = {`1:τ1, . . . , `n:τn})

(reg) Ψ; ∅ `TAL wi : τi wval (for 1 ≤ i ≤ m)
Ψ `TAL {r1 7→ w1, . . . , rm 7→ wm} : {r1 7→ τ1, . . . , rn 7→ τn} regfile

(m ≥ n)

Ψ `TAL h : τ hval Ψ; ∆ `TAL w : τ wval Ψ; ∆ `TAL w : τϕ fwval Ψ; ∆; Γ `TAL v : τ

(tuple)
Ψ; ∅ `TAL wi : τϕi

i fwval
Ψ `TAL 〈w1, . . . , wn〉 : 〈τϕ1

1 , . . . , τϕn
n 〉 hval

(code) ~α `TAL Γ rftype Ψ; ~α; Γ `TAL S

Ψ `TAL code[~α]Γ.S : ∀[~α].Γ hval

(label) ∆ `TAL τ ′ ≤ τ type
Ψ; ∆ `TAL ` : τ wval

(Ψ(`) = τ ′) (int)
Ψ; ∆ `TAL i : int wval

(tapp-word)
∆ `TAL τ type Ψ; ∆ `TAL w : ∀[α, ~β].Γ wval

Ψ; ∆ `TAL w[τ ] : ∀[~β].Γ[τ/α] wval

(pack-word) ∆ `TAL τ type Ψ; ∆ `TAL w : τ ′[τ/α] wval
Ψ; ∆ `TAL pack [τ, w] as ∃α.τ ′ : ∃α.τ ′ wval

(init) Ψ; ∆ `TAL w : τ wval
Ψ; ∆ `TAL w : τϕ fwval

(uninit) ∆ `TAL τ type
Ψ; ∆ `TAL ?τ : τ0 fwval

(reg-val)
Ψ; ∆; Γ `TAL r : τ

(Γ(r) = τ ) (word-val) Ψ; ∆ `TAL w : τ wval
Ψ; ∆; Γ `TAL w : τ

(tapp-val)
∆ `TAL τ type Ψ; ∆; Γ `TAL v : ∀[α, ~β].Γ′

Ψ; ∆; Γ `TAL v[τ ] : ∀[~β].Γ′[τ/α]

(pack-val) ∆ `TAL τ type Ψ; ∆; Γ `TAL v : τ ′[τ/α]
Ψ; ∆; Γ `TAL pack [τ, v] as ∃α.τ ′ : ∃α.τ ′

Figure 21: Static Semantics of TAL (except instructions)
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Ψ; ∆; Γ `TAL S

(s-arith)

Ψ; ∆; Γ `TAL rs : int Ψ; ∆; Γ `TAL v : int
Ψ; ∆; Γ{rd:int} `TAL S

Ψ; ∆; Γ `TAL arith rd, rs, v; S
(arith ∈ {add, mul, sub})

(s-bnz)

Ψ; ∆; Γ `TAL r : int Ψ; ∆; Γ `TAL v : ∀[ ].Γ′

∆ `TAL Γ ≤ Γ′ rftype Ψ; ∆; Γ `TAL S

Ψ; ∆; Γ `TAL bnz r, v; S

(s-ld)
Ψ; ∆; Γ `TAL rs : 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉 Ψ; ∆; Γ{rd:τi} `TAL S

Ψ; ∆; Γ `TAL ld rd, rs[i]; S
(ϕi = 1, 0 ≤ i < n)

(s-malloc)
∆ `TAL τi type Ψ; ∆; Γ{rd:〈τ0

1 , . . . , τ0
n〉} `TAL S

Ψ; ∆; Γ `TAL mallocrd[τ1, . . . , τn]; S

(s-mov) Ψ; ∆; Γ `TAL v : τ Ψ; ∆; Γ{rd : τ} `TAL S

Ψ; ∆; Γ `TAL mov rd, v; S

(s-sto)

Ψ; ∆; Γ `TAL rd : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 Ψ; ∆; Γ `TAL rs : τi

Ψ; ∆; Γ{rd:〈τϕ0
0 , . . . , τ

ϕi−1

i−1 , τ1
i , τ

ϕi+1

i+1 , . . . , τ
ϕn−1
n−1 〉} `TAL S

Ψ; ∆; Γ `TAL st rd[i], rs; S
(0 ≤ i < n)

(s-unpack)
Ψ; ∆; Γ `TAL v : ∃α.τ Ψ; ∆α; Γ{rd:τ} `TAL S

Ψ; ∆; Γ `TAL unpack[α, rd], v; S
(α 6∈ ∆)

(s-jmp) Ψ; ∆; Γ `TAL v : ∀[ ].Γ′ ∆ `TAL Γ ≤ Γ′ rftype
Ψ; ∆; Γ `TAL jmp v

(s-halt) Ψ; ∆; Γ `TAL r1 : τ

Ψ; ∆; Γ `TAL halt[τ ]

Figure 22: Static Semantics of TAL instructions
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T [[α]] def= α

T [[int ]] def= int
T [[∀[~α].(τ1, . . . , τn)→ void ]] def= ∀[~α].{r1:T [[τ1]], . . . , rn:T [[τn]]}

T [[〈τϕ1
1 , . . . , τ

ϕn〉
n ]] def= 〈T [[τ1]]

ϕ1, . . . , T [[τn]]ϕn〉
T [[∃α.τ ]] def= ∃α.T [[τ ]]

T [[x1:τ1, . . . , xn:τn]] def= {r1:T [[τ1]], . . . , rn:T [[τn]]}

Figure 23: Type Translation from λA to TAL

Lemma 6.2 (Progress) If `TAL P , then either there exists P ′ such that P 7−→ P ′ or P is of the
form (H, R{r1 7→ w}, halt[τ ]).

Corollary 6.3 (Type Safety) If `TAL P , then there is no stuck P ′ such that P 7−→∗ P ′.

6.4 Code Generation

The type translation, T [[ · ]] from λA to TAL is straightforward. The only point of interest is the
translation of function types, which must assign registers to value arguments:

T [[∀[~α](τ1, · · · , τn)→ void ]] def= ∀[~α]{r1:T [[τ1]], . . . , rn:T [[τn]]}

The term translation appears in Figures 24 and 25. In this translation, values are translated to
small values, terms are translated to pairs of instruction sequences and heaps, blocks are translated
to heaps, and programs are translated to programs. The translation for terms needs to heap allocate
the false branch of if0 expressions, which requires the use of a fresh label. In the other translations
of the compiler, variables used internally by the translation have always been assumed fresh, but,
since labels have global scope, choosing fresh labels is not necessarily simple. Consequently, the
translation handles fresh label generation explicitly by supplying a set of used labels to the term
and block translation judgments. The translation uses the notation |Γ|, representing the number
of bindings in Γ, and the notations H and Ψ, representing the sets of labels bound in H and Ψ.

Informally, terms are translated to instruction sequences as follows:

• x = v is mapped to mov rx, v.

• x = πi(v) is mapped to the sequence mov rx, v ; ld rx, rx[i− 1]

• x = v1 p v2 is mapped to the sequence mov rx, v1 ; arith rx, rx, v2 where arith is the appro-
priate arithmetic instruction.

• [α, x] = unpack v is mapped to unpack[α, rx], v.

• x = malloc[~τ ] is mapped to malloc rx[~τ ].
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Ψ; ∆; {x1:τ1, . . . , xn:τn} `A xi : τi
TAL
; ri

(1 ≤ i ≤ n)

Ψ; ∆; Γ `A ` : τ
TAL
; `

(Ψ(`) = τ)
Ψ; ∆; Γ `A i : int TAL

; i

∆ `A σ Ψ; ∆; Γ `A v : ∀[α, ~β].(~τ)→ void TAL
; v′

Ψ; ∆; Γ `A v[σ] : ∀[~β].(~τ [σ/α])→ void TAL
; v′[T [[σ]]]

∆ `A τ Ψ; ∆; Γ `A v : τ ′[τ/α] TAL
; v′

Ψ; ∆; Γ `A pack [τ, v] as ∃α.τ ′ : ∃α.τ ′ TAL
; pack [T [[τ ]], v′] as T [[∃α.τ ′]]

~α `A τi Ψ; ~α; {x1:τ1, . . . , xn:τn} `A e | L TAL
; S, H

Ψ `A ` 7→ code[~α](x1:τ1, . . . , xn:τn).e : ` 7→ ∀[~α].(τ1, . . . , τn)→ void | L TAL
;

H, ` 7→ code[~α]{r1:T [[τ1]], . . . , rn:T [[τn]]}.S

Ψ `A bi : `i 7→ τi | Li−1
TAL
; Hi ∅ `A τi

Ψ; ∅; ∅ `A e | Ln
TAL
; S, H

`A letrec b1, . . . , bn in e
TAL
; ((H1, . . . , Hn, H), ∅, S)


 Li = Ψ ∪H1 ∪ · · · ∪Hi

Ψ = `1:τ1, . . . , `n:τn

`j 6= `k when j 6= k




Figure 24: Program Translation from λA to TAL (except terms)

• x = v[i]← v′ is mapped to the sequence:

mov rx, v ; mov rtemp, v
′ ; st rx[i− 1], rtemp

• v(v1, . . . , vn) is mapped to the sequence:

mov rtemp1
, v1 ; . . . ; mov rtempn

, vn ; movr1, rtemp1
; . . . ; movrn, rtempn

; jmp v

Note that the arguments cannot be moved immediately into the registers r1, . . . , rn because
those registers may be used in later arguments.

• if0 (v, e1, e2) is mapped to the sequence:

mov rtemp, v ; bnz rtemp, `[~α] ; S1

where ` is bound in the heap to code[~α]Γ.S2, the translation of ei is Si, the free type variables
of e2 are contained in ~α, and Γ is the register file type corresponding to the free variables of
e2.

• halt [τ ]v is mapped to the sequence movr1, v ; halt[τ ]

Lemma 6.4 `A P if and only if there exists P ′ such that `A P
TAL
; P ′

Lemma 6.5 (TAL Conversion Type Correctness) If b `A P
TAL
; P ′ then `TAL P ′.
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Ψ; ∆; Γ `A v : ∀[ ].(τ1, . . . , τn)→ void TAL
; v′ Ψ; ∆; Γ `A vi : τi

TAL
; v′i

Ψ; ∆; Γ `A let in v(v1, . . . , vn) | L TAL
;

(movr(k + 1), v′1 ; . . . ; movr(k + n), v′n ;
movr1, r(k + 1) ; . . . ; movrn, r(k + n) ; jmp v′), ε

(|Γ| = k)

Ψ; ∆; Γ `A v : int TAL
; v′

Ψ; ∆; Γ `A e1 | L TAL
; S1, H1 Ψ; ∆; Γ `A e2 | L ∪H1

TAL
; S2, H2

Ψ; ∆; Γ `A let in if0 (v, e1, e2) | L TAL
;

(mov r, v ; bnz r, `[~α] ; S1), (H1, H2, ` 7→ code[~α]T [[Γ]].S2)


 ` 6∈ L ∪H1 ∪H2

r = r(|Γ|+ 1)
∆ = ~α




Ψ; ∆; Γ `A v : τ
TAL
; v′

Ψ; ∆; Γ `A let in halt [τ ]v | L TAL
; (movr1, v′ ; halt[T [[τ ]]]), ε

Ψ; ∆; Γ `A v : τ
TAL
; v′ Ψ; ∆; Γ{x:τ} `A let ~d in e | L TAL

; S, H

Ψ; ∆; Γ `A let x = v, ~d in e | L TAL
;; (mov r, v′ ; S), H

(
r = r(|Γ|+ 1)
x 6∈ Γ

)

Ψ; ∆; Γ `A v : 〈τϕ1
1 , . . . , τϕn

n 〉
TAL
; v′ Ψ; ∆; Γ{x:τi} `A let ~d in e | L TAL

; S, H

Ψ; ∆; Γ `A let x = πi(v), ~d in e | L TAL
; (mov r, v′ ; ld r, r[i− 1] ; S), H




r = r(|Γ|+ 1)
ϕi = 1
x 6∈ Γ
1 ≤ i ≤ n




Ψ; ∆; Γ `A v1 : int TAL
; v′1 Ψ; ∆; Γ `A v2 : int TAL

; v′2
Ψ; ∆; Γ{x:int} `A let ~d in e | L TAL

; S, H

Ψ; ∆; Γ `A let x = v1 p v2, ~d in e | L TAL
; (mov r, v′1 ; arithp r, r, v′2 ; S), H




r = r(|Γ|+ 1)
arith+ = add
arith− = sub
arith× = mul
x 6∈ Γ




Ψ; ∆; Γ `A v : ∃α.τ
TAL
; v′ Ψ; ∆α; Γ{x:τ} `A let ~d in e | L TAL

; S, H

Ψ; ∆; Γ `A let [α, x] = unpack v, ~d in e | L TAL
; (unpack[α, r], v′ ; S), H


 r = r(|Γ|+ 1)

x 6∈ Γ
α 6∈ ∆




∆ `A τi Ψ; ∆; Γ{x:〈τ0
1 , . . . , τ0

n〉} `A let ~d in e | L TAL
; S, H

Ψ; ∆; Γ `A let x = malloc[τ1, . . . , τn], ~d in e | L TAL
;

(malloc[T [[τ1]], . . . , T [[τn]]] ; S), H

(
r = r(|Γ|+ 1)
x 6∈ Γ

)

Ψ; ∆; Γ `A v1 : 〈τϕ1
1 , . . . , τϕn

n 〉
TAL
; v′1 Ψ; ∆; Γ `A v2 : τi

TAL
; v′2

Ψ; ∆; Γ{x:〈τϕ1
1 , . . . , τ

ϕi−1

i−1 , τ1
i , τ

ϕi+1

i+1 , . . . , τϕn
n 〉} `A let ~d in e | L TAL

; S, H

Ψ; ∆; Γ `A let x = v1[i]← v2, ~d in e | L TAL
;

(mov r, v′1 ; mov r′, v′2 ; st r[i− 1], r′ ; S), H




r = r(|Γ|+ 1)
r′ = r(|Γ|+ 2)
x 6∈ Γ
1 ≤ i ≤ n




Figure 25: Term Translation from λA to TAL
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Before the resulting TAL code may be run on a real machine, a compiler must perform a final
register allocation step to ensure that the TAL code runs with the number of registers supplied
by the machine. This may be viewed as a type-preserving optimization within the framework
of TAL. A clever register allocator could greatly improve the performance of the output code by
choosing registers in order to make moves unnecessary. A practical compiler would want to perform
intelligent register allocation as well as other traditional low-level optimizations such as improving
instruction selection and scheduling, strength reduction, common subexpression elimination, flow-
control optimizations, and dead code elimination. Each of these may be implemented as a type-
preserving transformation on TAL code using well-known techniques [2].

6.5 TAL Factorial

The factorial computation translated into TAL appears in Figure 26. To obtain the code shown, a
few standard optimizations were applied; in particular, a clever (but automatable) register alloca-
tion and the removal of redundant moves. If the efficiency of this version is unsatisfactory, a more
efficient, tail-recursive version of factorial could be coded in λF, or a highly optimized version could
be hand-coded in TAL:

l loop:
code[ ]{r1:int,r2:int}. % r1: the product so far, r2: the next number to be multiplied

bnz r2,l nonzero % check if done
halt[int] % halt with result in r1

l nonzero:
code[ ]{r1:int,r2:int}.

mul r1,r1,r2 % multiply next number
sub r2,r2,1 % decrement the counter
jmp l loop

l fact:
code[ ]{r1:int}. % compute factorial of r1

mov r2,r1 % set up for loop
mov r1,1
jmp l loop

with S = mov r1,6; jmp l fact.

7 Compiler Type Correctness

We have presented a compiler for System F which translates programs through a series of four
intermediate lambda calculi before finally generating typed assembly language. The full compiler
may then be defined by the judgment `F e : τ ; P :

`F e : τ
cps
; ecps ∅; ∅ `K ecps

clos
; eclos `C eclos

hst
; Phst `H Phst

alloc
; Palloc `A Palloc

TAL
; P

`F e : τ ; P

For each translation we have given a type correctness lemma. A corollary of these type correctness
lemmas is the type correctness of the entire compiler:
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(H, {}, S) where
H =
l fact:

code[ ]{r1:〈〉,r2:int,r3:τk}.
bnz r2,l nonzero
unpack [α,r3],r3 % zero branch: call k (in r3) with 1
ld r4,r3[0] % project k code
ld r1,r3[1] % project k environment
mov r2,1
jmp r4 % jump with {r1 = env, r2 = 1}

l nonzero:
code[ ]{r1:〈〉,r2:int,r3:τk}.

sub r4,r2,1 % n− 1
malloc r5[int, τk] % create environment for cont in r5
st r5[0],r2 % store n into environment
st r5[1],r3 % store k into environment
malloc r3[∀[ ].{r1:〈int1, τ1

k 〉,r2:int}, 〈int1, τ1
k 〉] % create cont closure in r3

mov r2,l cont
st r3[0],r2 % store cont code
st r3[1],r5 % store environment 〈n, k〉
mov r2,r4 % arg := n− 1
mov r3,pack [〈int1, τ1

k 〉,r3] as τk % abstract the type of the environment
jmp l f % jump to k with {r1 = env, r2 = n− 1, r3 = cont}

l cont:
code[ ]{r1:〈int1, τ1

k 〉,r2:int}. % r2 contains (n− 1)!
ld r3,r1[0] % retrieve n
ld r4,r1[1] % retrieve k
mul r2,r3,r2 % n× (n− 1)!
unpack [α,r4],r4 % unpack k
ld r3,r4[0] % project k code
ld r1,r4[1] % project k environment
jmp r3 % jump to k with {r1 = env, r2 = n!}

l halt:
code[ ]{r1:〈〉,r2:int}.

mov r1,r2
halt[int] % halt with result in r1

and S =
malloc r1[ ] % create an empty environment (〈〉)
malloc r2[ ] % create another empty environment
malloc r3[∀[ ].{r1:〈〉,r2:int}, 〈〉] % create halt closure in r3
mov r4,l halt
st r3[0],r4 % store cont code
st r3[1],r2 % store environment 〈〉
mov r2,6 % load argument (6)
mov r3,pack [〈〉,r3] as τk % abstract the type of the environment
jmp l fact % begin fact with {r1 = 〈〉, r2 = 6, r3 = haltcont}

and τk = ∃α.〈∀[ ].{r1:α,r2:int}1, α1〉

Figure 26: Typed Assembly Code for Factorial
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Lemma 7.1 ∅; ∅ `F e : τ if and only if there exists P such that `F e : τ ; P

Lemma 7.2 (Compiler Type Correctness) If `F e : τ ; P then `TAL P

8 Extensions and Practice

We claim that the framework presented here is a practical approach to compilation. To substantiate
this claim, we are constructing a compiler called TALC that maps the KML programming language
[11] to a variant of the TAL described here, suitably adapted for the Intel x86 family of processors.
We have found it straightforward to enrich the target language type system to include support
for other type constructors, such as references, higher-order constructors, and recursive types. We
omitted discussion of these features here in order to simplify the presentation.

Although this paper describes a CPS-based compiler, we opted to use a stack-based compilation
model in the TALC compiler. Space considerations preclude a complete discussion of the details
needed to support stacks, but the primary mechanisms are as follows: The size of the stack and the
types of its contents are specified by stack types, and code blocks indicate stack types describing
the state of the stack they expect. Since code is typically expected to work with stacks of varying
size, functions may quantify over stack type variables, resulting in stack polymorphism.

Efficient support for disjoint sums and arrays also requires considerable additions to the type
system. For sums, the critical issue is making the projection and testing of tags explicit. In a naive
implementation, the connection between a sum and its tag is forgotten once the tag is loaded. For
arrays the issue is that the index for a subscript or update operation must be checked to see that it
is in bounds. Exposing the bounds check either requires a fixed code sequence, thereby constraining
optimization, or else the type system must be strengthened so that some (decidable) fragment of
arithmetic can be encoded in the types. Sums may also be implemented with either of the above
techniques, or by using abstract types to tie sums to their tags. In the TALC compiler, in order
to retain a simple type system and economical typechecking, we have initially opted for fixed code
sequences but are exploring the implications of the more complicated type systems.

Finally, since we chose a type-erasure interpretation of polymorphism, adding floats to the language
requires a boxing translation. However, recent work by Leroy [24] suggests that it is only important
to unbox floats in arrays and within compilation units, which is easily done in our framework.

9 Summary

We have given a compiler from System F to a statically typed assembly language. The type system
for the assembly language ensures that source level abstractions such as closures and polymorphic
functions are enforced at the machine-code level. Furthermore, the type system does not preclude
aggressive low-level optimization, such as register allocation, instruction selection, or instruction
scheduling. In fact, programmers concerned with efficiency can hand-code routines in assembly,
as long as the resulting code typechecks. Consequently, TAL provides a foundation for high-
performance computing in environments where untrusted code must be checked for safety before
being executed.
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A Soundness of TAL

Lemma A.1 (Context Strengthening) If ∆ ⊆ ∆′ then:

1. If ∆ `TAL τ type then ∆′ `TAL τ type

2. If ∆ `TAL τ1 ≤ τ2 type then ∆′ `TAL τ1 ≤ τ2 type.

Proof:

Part 1 is immediate by (type). Part 2 is by induction on derivations.

2

Lemma A.2 (Subtyping Regularity) If ∆ `TAL τ ≤ τ ′ type then ∆ `TAL τ type and ∆ `TAL

τ ′ type.

Proof:

By induction on derivations.

2

Lemma A.3 (Heap Extension) If `TAL H : Ψ heap, ∅ `TAL τ type, Ψ{` : τ} `TAL h : τ hval,
and ` 6∈ H then:

1. `TAL Ψ{` : τ} htype

2. `TAL H{` 7→ h} : Ψ{` : τ} heap

3. If Ψ `TAL R : Γ regfile then Ψ{` : τ} `TAL R : Γ regfile

4. If Ψ; ∆; Γ `TAL S then Ψ{` : τ}; ∆; Γ `TAL S

5. If Ψ `TAL h : σ hval then Ψ{` : τ} `TAL h : σ hval

6. If Ψ; ∆ `TAL w : σϕ fwval then Ψ{` : τ}; ∆ `TAL w : σϕ fwval

7. If Ψ; ∆ `TAL w : σ wval then Ψ{` : τ}; ∆ `TAL w : σ wval

8. If Ψ; ∆; Γ `TAL v : σ then Ψ{` : τ}; ∆; Γ `TAL v : σ

Proof:

Part 1 is immediate by (heap-type). Part 2 follows from parts 1 and 5. Parts 3–8 are by
induction on derivations.

2

Lemma A.4 (Heap Update) If `TAL H : Ψ heap, ∅ `TAL τ ≤ Ψ(`) type, and Ψ{` : τ} `TAL h : τ

then:

1. `TAL Ψ{` : τ} htype
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2. `TAL H{` 7→ h} : Ψ{` : τ} heap

3. If Ψ `TAL R : Γ regfile then Ψ{` : τ} `TAL R : Γ regfile

4. If Ψ; ∆; Γ `TAL S then Ψ{` : τ}; ∆; Γ `TAL S

5. If Ψ `TAL h : σ hval then Ψ{` : τ} `TAL h : σ hval

6. If Ψ; ∆ `TAL w : σϕ fwval then Ψ{` : τ}; ∆ `TAL w : σϕ fwval

7. If Ψ; ∆ `TAL w : σ wval then Ψ{` : τ}; ∆ `TAL w : σ wval

8. If Ψ; ∆; Γ `TAL v : σ then Ψ{` : τ}; ∆; Γ `TAL v : σ

Proof:

Part 1 is immediate by (heap-type) and Subtyping Regularity. Part 2 follows from parts 1
and 5. Parts 3–8 are by induction on derivations. The only interesting case is the case for
the rule (label). The derivation must end:

∆ `TAL σ′ ≤ σ type
Ψ; ∆ `TAL `′ : σ wval

(Ψ(`′) = σ′)

If ` 6= `′ then clearly the inference also holds for Ψ{` : τ}. Suppose ` = `′. By hypothesis and
Context Strengthening, we deduce ∆ `TAL τ ≤ σ′ type. Then the conclusion may be proven
with the (trans) rule:

∆ `TAL τ ≤ σ′ type ∆ `TAL σ′ ≤ σ type
∆ `TAL τ ≤ σ type

Ψ{` : τ}; ∆ `TAL ` : σ wval
(Ψ{` : τ}(`) = τ)

2

Lemma A.5 (Register File Update) If Ψ `TAL R : Γ regfile and Ψ; ∅ `TAL w : τ wval then
Ψ `TAL R{r 7→ w} : Γ{r : τ} regfile.

Proof:

Suppose R is {r1 7→ w1, . . . , rn 7→ wn} and Γ is {r1 7→ τ1, . . . , rm 7→ τm} where r may or may
not be in {r1, . . . , rn}. Since Ψ `TAL R : Γ, by the rule (reg) it must be the case that n ≥ m

and Ψ; ∅ `TAL wi : τi wval (for all 1 ≤ i ≤ n and some τm+1, . . . , τn). So certainly for i such
that ri 6= r, Ψ; ∅ `TAL wi : τi wval, and by hypothesis Ψ; ∅ `TAL w : τ wval so by rule (reg)
Ψ `TAL R{r 7→ w} : Γ{r 7→ τ} regfile.

2

Lemma A.6 (Canonical Heap Forms) If Ψ `TAL h : τ hval then:

1. If τ = ∀[~α].Γ then:
(a) h = code[~α]Γ.S

(b) Ψ; ~α; Γ `TAL S

2. If τ = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 then:

(a) h = 〈w0, . . . , wn−1〉
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(b) Ψ; ∅ `TAL wi : τϕi
i fwval

Proof:

By inspection.

2

Lemma A.7 (Canonical Word Forms) If `TAL H : Ψ heap and Ψ; ∅ `TAL w : τ wval then:

1. If τ = int then w = i.

2. If τ = ∀[β1, . . . , βm].Γ then:
(a) w = `[σ1, . . . , σn]

(b) H(`) = code[α1, . . . , αn, β1, . . . , βm]Γ′.S
(c) Γ = Γ′[~σ/~α]

(d) Ψ; α1, . . . , αn, β1, . . . , βm; Γ′ `TAL S

3. If τ = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 then:

(a) w = `

(b) H(`) = 〈w0, . . . , wn−1〉
(c) Ψ; ∅ `TAL wi : τϕi

i fwval

4. If τ = ∃α.τ then w = pack [τ ′, w′] as ∃α.τ and Ψ; ∅ `TAL w′ : τ [τ ′/α] wval.

Proof:

1. By inspection.

2. By induction on the derivation of Ψ; ∅ `TAL w : τ wval: The derivation must end
with either the (label) or the (tapp-word) rule. Suppose the former. Then w = `,
Ψ(`) = τ ′ and ∅ `TAL τ ′ ≤ ∀[~β].Γ type. Inspection of the subtyping rules then reveals
that τ ′ = ∀[~β].Γ. Since `TAL H : Ψ heap, we may deduce that Ψ `TAL H(`) : ∀[~β].Γ hval.
The conclusion follows by Canonical Heap Forms.
Alternatively, suppose the derivation ends with (tapp-word). Then w = w′[σ] and
Ψ; ∅ `TAL w′ : ∀[α, ~β].Γ′ wval with Γ = Γ′[σ/α]. The conclusion follows by induction.

3. The derivation Ψ; ∅ `TAL w : τ wval must be shown by use of the (label) rule. Thus,
w = `, Ψ(`) = τ ′ and ∅ `TAL τ ′ ≤ 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉 type. Let us say that ϕ ≤ ϕ and 1 ≤ 0.

Then inspection of the subtype rules reveals that τ ′ must be of the form 〈τϕ′
0

0 , . . . , τ
ϕ′

n−1

n−1 〉
with ϕ′

i ≤ ϕi (for each 0 ≤ i ≤ n − 1). Since `TAL H : Ψ heap, we may deduce that

Ψ `TAL H(`) : 〈τϕ′
0

0 , . . . , τ
ϕ′

n−1

n−1 〉 hval. Thus H(`) = 〈w0, . . . , wn−1〉 and Ψ; ∅ `TAL wi :

τ
ϕ′

i
i fwval by Canonical Heap Forms. It remains to show that Ψ; ∅ `TAL wi : τϕi

i fwval for
all 0 ≤ i ≤ n − 1. Suppose ϕ′

i = 1 and ϕi = 0 (otherwise the conclusion is immediate).
Then Ψ; ∅ `TAL wi : τ1

i fwval is shown by the (init) rule, which also permits the deduction
of Ψ; ∅ `TAL wi : τ0

i fwval.

4. By inspection.

2

Lemma A.8 (R̂ Typing) If Ψ `TAL R : Γ regfile and Ψ; ∅; Γ `TAL v : τ then Ψ; ∅ `TAL R̂(v) :
τ wval.
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Proof:

The proof is by induction on the syntax of v. Cases:

v = w: Immediate.

v = r: The only rule that can type v is (reg-val) and this rule requires τ = Γ(r). The only rule
that can type R is (reg) and this rule requires Ψ; ∅ `TAL R(r) : τ wval, the conclusion follows
since R̂(r) = R(r).

v = v′[σ]: The only rule that can type v is (tapp-val), so τ = ∀[~β].Γ′[σ/α] and Ψ; ∅; Γ `TAL v′ :
∀[α, ~β].Γ′. By induction we deduce Ψ; ∅ `TAL R̂(v′) : ∀[α, ~β].Γ′ wval, and then the rule (tapp-
word) proves Ψ; ∅ `TAL R̂(v′)[σ] : ∀[~β].Γ′[σ/α] wval. The result follows since R̂(v′[σ]) =
R̂(v′)[σ].

v = pack [σ, v′] as ∃α.τ ′: The only rule that can type v is (pack-val), so τ = ∃α.τ ′ and Ψ; ∅; Γ `TAL

v′ : τ ′[σ/α]. By induction we deduce Ψ; ∅ `TAL R̂(v′) : τ ′[σ/α] wval and then the rule
(pack-word) proves Ψ; ∅ `TAL pack [σ, R̂(v′)] as ∃α.τ ′ : ∃α.τ ′ wval. The result follows since
R̂(pack [σ, v′] as ∃α.τ ′) = pack [σ, R̂(v′)] as ∃α.τ ′.

2

Lemma A.9 (Canonical Forms) If `TAL H : Ψ hval, Ψ `TAL R : Γ regfile, and Ψ; ∅; Γ `TAL v : τ

then:

1. If τ = int then R̂(v) = i.

2. If τ = ∀[β1, . . . , βm].Γ then:
(a) R̂(v) = `[σ1, . . . , σn]

(b) H(`) = code[α1, . . . , αn, β1, . . . , βm]Γ′.S

(c) Γ = Γ′[~σ/~α]

(d) Ψ; α1, . . . , αn, β1, . . . , βm; Γ′ `TAL S

3. If τ = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 then:

(a) R̂(v) = `

(b) H(`) = 〈w0, . . . , wn−1〉
(c) Ψ; ∅ `TAL wi : τϕi

i fwval

4. If τ = ∃α.τ then R̂(v) = pack [τ ′, w] as ∃α.τ and Ψ; ∅ `TAL w : τ [τ ′/α] wval.

Proof:

Immediate from R̂ Typing and Canonical Word Forms.

2

Lemma A.10 (Type Substitution) If ~β `TAL τi type then:

1. If Ψ; ~α, ~β; Γ `TAL S then Ψ; ~β; Γ[~τ/~α] `TAL S[~τ/~α]

2. If Ψ; ~α, ~β; Γ `TAL v : τ then Ψ; ~β; Γ[~τ/~α] `TAL v[~τ/~α] : τ [~τ/~α]

3. If Ψ; ~α, ~β `TAL w : τ wval then Ψ; ~β `TAL w[~τ/~α] : τ [~τ/~α] wval
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4. If ~α, ~β `TAL Γ1 ≤ Γ2 rftype then ~β `TAL Γ1[~τ/~α] ≤ Γ2[~τ/~α] rftype

5. If ~α, ~β `TAL τ1 ≤ τ2 type then ~β `TAL τ1[~τ/~α] ≤ τ2[~τ/~α] type

6. If ~α, ~β `TAL τ `TAL type then ~β `TAL τ [~τ/~α] type

Proof:

By induction on derivations. The only interesting case the case for the rule (type):

FTV (τ) ⊆ {~α, ~β}
~α, ~β `TAL τ type

The hypothesis must also be proven with the rule (type), so FTV (τi) ⊆ {~β}. Consequently:

FTV (τ [~τ/~α]) ⊆ FTV (τ) \ {~α} ∪ (
⋃

i
FTV (τi))

⊆ {~α, ~β} \ {~α} ∪ {~β}
= {~β}

Hence we may prove ~β `TAL τ [~τ/~α] type using the (type) rule.

2

Lemma A.11 (Register File Weakening)
If ∆ `TAL Γ1 ≤ Γ2 rftype and Ψ; ∆ `TAL R : Γ1 regfile then Ψ; ∆ `TAL R : Γ2 regfile.

Proof:

By inspection of the rules (weaken) and (reg).

2

Lemma A.12 (Subject Reduction) If `TAL P and P 7−→ P ′ then `TAL P ′.

Proof:

P has the form (H, R, ι; S) or (H, R, jmpv). Let TD be the derivation of `TAL P . Consider
the following cases for jmp or ι:

case jmp: TD has the form:

`TAL H : Ψ heap Ψ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ ∅ `TAL Γ ≤ Γ′ rftype

Ψ; ∅; Γ `TAL jmp v

`TAL P

By the operational semantics, P ′ = (H, R, S[~σ/~α]) where R̂(v) = `[~σ] and H(`) = code[~α]Γ′′.S.
Then:

1. `TAL H : Ψ heap is in TD.

2. From ∅ `TAL Γ ≤ Γ′ rftype and Ψ `TAL R : Γ regfile it follows by Register File Weakening
that Ψ `TAL R : Γ′ regfile.

3. By Canonical Forms it follows from Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ that Γ′ = Γ′′[~σ/~α] and
Ψ; ~α; Γ′′ `TAL S. By Type Substitution we conclude Ψ; ∅; Γ′ `TAL S[~σ/~α].
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case add, mul, sub: TD has the form

`TAL H : Ψ heap Ψ `TAL R : Γ regfile

Ψ; ∅; Γ `TAL rs : int Ψ; ∅; Γ `TAL v : int
Ψ; ∅; Γ′ `TAL S

Ψ; ∅; Γ `TAL arithp rd, rs, v; S
`TAL P

where Γ′ = Γ{rd : int}. By the operational semantics, P ′ = (H, R′, S) where R′ = R{rd 7→
R(rs) p R̂(v)}. Then:

1. `TAL H : Ψ heap is in TD.

2. By Canonical Forms it follows that R(rs) and R̂(v) are integer literals, and therefore
Ψ; ∅ `TAL R(rs) p R̂(v) wval. We conclude Ψ `TAL R′ : Γ′ regfile by Register File Update.

3. Ψ; ∅; Γ′ `TAL S is in TD.

case bnz: TD has the form:

`TAL H : Ψ heap Ψ `TAL R : Γ regfile

Ψ; ∅; Γ `TAL r : int Ψ; ∅; Γ `TAL v : ∀[ ].Γ′

∅ `TAL Γ ≤ Γ′ rftype Ψ; ∅; Γ `TAL S

Ψ; ∅; Γ `TAL bnz r, v; S
`TAL P

If R(r) = 0 then P ′ = (H, R, S) and `TAL P ′ follows since Ψ; ∅; Γ `TAL S is in TD. Otherwise
the reasoning is exactly as in the case for jmp.

case ld: TD has the form

`TAL H : Ψ heap Ψ `TAL R : Γ regfile

0 ≤ i ≤ n − 1 ϕi = 1
Ψ; ∅; Γ `TAL rs : 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉

Ψ; ∅; Γ′ `TAL S

Ψ; ∅; Γ `TAL ld rd, rs[i]; S
`TAL P

where Γ′ = Γ{rd : τi}. By the operational semantics, P ′ = (H, R′, S) where R′ = R{rd 7→ wi},
R(rs) = `, H(`) = 〈w0, . . . , wm−1} and 0 ≤ i < m. Then:

1. `TAL H : Ψ heap is in TD.

2. By Canonical Forms it follows from Ψ; ∅; Γ `TAL rs : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 that m = n and

Ψ; ∅ `TAL wj : τ
ϕj

j fwval for 0 ≤ j < n. Since ϕi = 1 it must be the case (by inspection
of the (init) rule) that Ψ; ∅ `TAL wi : τi wval. By Register File we conclude Ψ `TAL R′ :
Γ′ regfile.

3. Ψ; ∅; Γ′ `TAL S is in TD.

case malloc: TD has the form

`TAL H : Ψ heap Ψ `TAL R : Γ regfile
∅ `TAL τi type Ψ; ∅; Γ′ `TAL S type
Ψ; ∅; Γ `TAL malloc rd[τ1, . . . , τn]; S

`TAL P

where σ = 〈τ0
1 , . . . , τ0

n〉, Ψ′ = Ψ{` : σ}, and Γ′ = Γ{rd : σ}. By the operational semantics,
P ′ = (H ′, R′, S) where H ′ = H{` 7→ 〈?τ1, . . . , ?τn〉}, R′ = R{rd 7→ `}, and ` 6∈ H . Then:
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1. By the (tuple) and (uninit) rules we may deduce Ψ′ `TAL 〈?τ1, . . . , ?τn〉 hval : σ. By
Heap Extension it follows that `TAL H ′ : Ψ′ heap.

2. By the (type), (reflex), and (label) rules we may deduce that Ψ′; ∅ `TAL ` : σ wval. By
Heap Extension we deduce that Ψ′ `TAL R : Γ regfile and it follows by Register File
Update that Ψ′ `TAL R′ : Γ′ regfile.

3. By Heap Extension, Ψ′; ∅; Γ′ `TAL S.

case mov: TD has the form

`TAL H : Ψ heap Ψ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL v : τ Ψ; ∅; Γ′ `TAL S

Ψ; ∅; Γ `TAL mov r, v; S
`TAL P

where Γ′ = Γ{r : τ}. By the operational semantics, P ′ = (H, R′, S) where R′ = R{r 7→ R̂(v)}.
Then:

1. `TAL H : Ψ heap is in TD.

2. By R̂ Typing it follows from Ψ; ∅; Γ `TAL v : τ that Ψ; ∅ `TAL R̂(v) : τ wval. Using
Register File Update we conclude that Ψ `TAL R′ : Γ′ regfile.

3. Ψ; ∅; Γ′ `TAL S is in TD.

case st: TD has the form

`TAL H : Ψ heap Ψ `TAL R : Γ regfile

0 ≤ i ≤ n− 1 Ψ; ∅; Γ `TAL rd : σ0

Ψ; ∅; Γ `TAL rs : τi Ψ; ∅; Γ′ `TAL S

Ψ; ∅; Γ `TAL st rd[i], rs; S
`TAL P

where:

σ0 = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

σ1 = 〈τϕ0
0 , . . . , τ

ϕi−1

i−1 , τ1
i , τ

ϕi+1

i+1 , . . . , τ
ϕn−1
n−1 〉

Γ′ = Γ{rd : σ1}

By the operational semantics, P ′ = (H ′, R, S) where

H ′ = H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wm−1〉}

and R(rd) = `, H(`) = 〈w0, . . . , wm〉, and 0 ≤ i < m. Then:

1. Since Ψ; ∅; Γ `TAL rd : σ0, it must be the case that Γ(rd) = σ0 and thus since Ψ `TAL

R : Γ regfile and R(rd) = ` we may deduce Ψ; ∅ `TAL ` : σ0 wval. The latter judgment
must be proven with the (label) rule, hence ∅ `TAL σ′

0 ≤ σ0 type where Ψ(`) = σ′
0. Note

that it follows from Subtyping Regularity and the definition of σ0 that ∅ `TAL τj type
for each 0 ≤ j < n.
Let us say that ϕ ≤ ϕ and 1 ≤ 0. Inspection of the subtyping rules reveals that σ′

0 must

be of the form 〈τϕ′
0

0 , . . . , τ
ϕ′

n−1

n−1 〉 with ϕ′
j ≤ ϕj. Let:

σ′
1 = 〈τϕ′

0
0 , . . . , τ

ϕ′
i−1

i−1 , τ1
i , τ

ϕ′
i+1

i+1 , . . . , τ
ϕ′

n−1
n−1 〉
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Then ∅ `TAL σ′
1 ≤ σ′

0 type and ∅ `TAL σ′
1 ≤ σ1 type. Since `TAL H : Ψ heap, we may

deduce that m = n and Ψ; ∅ `TAL wj : τ
ϕ′

j

j fwval for 0 ≤ j < n. Let Ψ′ = Ψ{rd : σ′
1}. By

Heap Update it follows that Ψ′; ∅ `TAL wj : τ
ϕ′

j

j fwval.

Using R̂ Typing and Heap Update, we may deduce that Ψ′; ∅ `TAL R(rs) : τi wval and,
by applying the (init) and (tuple) rules, we may conclude:

Ψ′; ∅ `TAL 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wm−1〉 : σ′
1 hval

Hence `TAL H ′ : Ψ′ heap by Heap Update.

2. By Heap Update we may deduce Ψ′ `TAL R : Γ. Recall that ∅ `TAL σ′
1 ≤ σ1 type. Thus,

Ψ′; ∅ `TAL ` : σ1 wval, and by Register File Update we may conclude that Ψ′ `TAL R :
Γ′ regfile (since R = R{rd 7→ `}).

3. By Heap Update, Ψ′; ∅; Γ′ `TAL S.

case unpack: TD has the form

`TAL H : Ψ heap Ψ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL v : ∃α.τ ′ Ψ; α; Γ{r:τ ′} `TAL S

Ψ; ∅; Γ `TAL unpack[α, r], v;S
`TAL P

By the operational semantics, P ′ = (H, R′, S ′) where R′ = R{r 7→ w}, S ′ = S[τ/α] and
R̂(v) = pack [τ, w] as ∃α.τ ′. Then:

1. `TAL H : Ψ heap is in TD.

2. By Canonical Forms it follows from Ψ; ∅; Γ `TAL v : ∃α.τ ′ that Ψ; ∅ `TAL w : τ ′[τ/α] wval.
Let Γ′ = Γ{r : τ ′[τ/α]}. By Register File Update if follows that Ψ `TAL R′ : Γ′ regfile.

3. By Type Substitution it follows from Ψ; α; Γ{r:τ ′} `TAL S that Ψ; ∅; Γ′ `TAL S ′.

2

Lemma A.13 (Progress) If `TAL P then either there exists P ′ such that P 7−→ P ′ or P is of
the form (H, R{r1 7→ w}, halt[τ ]) (and, moreover, Ψ; ∅ `TAL w : τ wval for some Ψ such that
`TAL H : Ψ heap).

Proof:

Suppose P = (H, R, Sfull). Let TD be the derivation of `TAL P . The proof is by cases on the
first instruction of Sfull.

case halt: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL r1 : τ

Ψ; ∅; Γ `TAL halt [τ ]
`TAL (H, R, halt[τ ])

By R̂ Typing we may deduce that R̂(r1) is defined and Ψ; ∅ `TAL R̂(r1) : τ wval. In other
words, R = R′{r1 7→ w} and Ψ; ∅ `TAL w : τ wval.
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case add, mul, sub: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL rs : int Ψ; ∅; Γ `TAL v : int · · ·

Ψ; ∅; Γ `TAL arithp rd, rs, v; S
`TAL (H, R, Sfull)

By Canonical Forms, R(rs) and R(v) each represent integer literals. Hence P 7−→ (H, R{rd 7→
R(rs) p R̂(v)}, S).

case bnz: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL r : int Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ · · ·

Ψ; ∅; Γ `TAL bnz r, v; S
`TAL (H, R, Sfull)

By Canonical Forms, R(r) is an integer literal and R̂(v) = `[σ1, . . . , σn] with H(`) =
code[α1, . . . , αn].Γ′′.S ′. If R(r) = 0 then P 7−→ (H, R, S). If R(r) 6= 0 then P 7−→
(H, R, S ′[~σ/~α]).

case jmp: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ · · ·

Ψ; ∅; Γ `TAL jmp v; S
`TAL (H, R, Sfull)

By Canonical Forms, R̂(v) = `[σ1, . . . , σn] with H(`) = code[α1, . . . , αn].Γ′′.S ′. Hence P 7−→
(H, R, S ′[~σ/~α]).

case ld: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL rs : 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉 · · ·

Ψ; ∅; Γ `TAL ld rd, rs[i]; S
(1 ≤ i < n)

`TAL (H, R, Sfull)

By Canonical Forms, R(rs) = ` with H(`) = 〈w0, . . . , wn−1〉. Hence P 7−→ (H, R{rd 7→
wi}, S).

case malloc: Suppose Sfull is of the form malloc r[τ1, . . . , τn]; S. Then P 7−→ (H{` 7→
〈?τ1, . . . , ?τn〉}, R{r 7→ `, S) for some ` 6∈ H .

case mov: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL v : τ · · ·
Ψ; ∅; Γ `TAL mov r, v; S

`TAL (H, R, Sfull)

By R̂ Typing, R̂(v) is defined. Hence P 7−→ (H, R{r 7→ R̂(v), S).

case st: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile

Ψ; ∅; Γ `TAL rd : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

Ψ; ∅; Γ `TAL rs : τi · · ·
Ψ; ∅; Γ `TAL st rd[i], rs; S

(1 ≤ i < n)

`TAL (H, R, Sfull)

By Canonical Forms, R(rd) = ` with H(`) = 〈w0, . . . , wn−1〉. By R̂ Typing, R(rs) is defined.
Hence P 7−→ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, S).
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case unpack: TD has the form:

`TAL H : Ψ heap Ψ; ∅ `TAL R : Γ regfile
Ψ; ∅; Γ `TAL v : ∃α.τ · · ·

Ψ; ∅; Γ `TAL unpack[α, r], v; S
`TAL (H, R, Sfull)

By Canonical Forms, R̂(v) = pack [τ ′, w] as ∃α.τ . Hence P 7−→ (H, R{r 7→ w}, S[τ ′/α]).

2
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